电弧直接制造过程监测与工艺智能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电弧直接制造技术(ADRPM)是一种金属零件直接制造的低成本新方法。该方法材料利用率高,能耗低,设备投资小,成本低,成形效率高,材料制备简单,能够快速响应市场需要,有广泛的应用前景。由于ADRPM制造的零件为全焊缝组织,其技术关键是选择合适的工艺参数保证制造零件的形状尺寸和成形性能质量。电弧直接制造过程十分复杂,影响成形质量的因素众多。为了提高电弧直接制造工艺水平,对电弧直接制造进行过程监测、工艺特点分析、成形质量预报和工艺参数智能优化有着非常重要的意义。
     本文以电弧直接制造的工艺实验为基础,结合模式识别方法对现有参数样本的工艺特征进行研究,并提出了对工艺参数进行质量预测和智能优化的原理和算法。选择遗传算法设计新的工艺参数指导工艺实验,扩充了工艺参数样本容量,基于主成分法对扩充后的参数样本进行分析,提取了工艺特征,并在此基础上建立了质量预测模型。基于特征抽提法分析各参数对成形质量的影响程度,并结合模式识别调优法提出了线性规划判据,从而确定了参数优化的方向和参数取值范围。
     本研究对电弧直接成形参数样本进行分析,结果表明:由主成分分析处理,参数样本由5维降为3维,得到的映射图,能够将成形质量优和非优的样本点以一条判别直线明显区分开,充分反映了现有参数样本的工艺特征。根据不同目标量的映射图特点,分别建立了隶属度函数,以宽度稳定性为目标量的隶属度为好区半径与参数对应映射图上的点到好区中心的距离之比,以0.714为阈值,若预报点隶属度值大于0.714则判别为优类,否则为非优;以高度稳定性为目标量的隶属度为参数对应映射图上的点到表示优区的球心的距离与球的半径之比,以0.653为阈值,若预报点隶属度值大于0.653则判别为优,否则为非优。用建立的质量预测模型对3组未知工艺参数的成形质量进行预测,经实验验证,预测值与实验结果相符,进一步说明了质量预测模型的合理性。对各参数对成形质量的影响程度进行了分析。以宽度的标准差为目标量,则影响成形质量的程度从大到小为:送丝速度、频率、机器人行走速度、弧长、脉宽比;以高度的标准差为目标量,则影响成形质量的程度从大到小为:频率;机器人行走速度;送丝速度;枪板距;脉宽比。对工艺参数进行优化调控,依照线性规划判据确定的优化方向和参数取值范围依次设计了3个优化样本点,经实验验证,3组参数对应的成形质量逐步提升,实现了参数优化的功能。综上述结果,说明论文提出的参数样本特征分析方法能迅速挖掘参数工艺特征,在此基础上建立的质量预测模型和工艺优化方案较为可靠,具有一定实用性,可用于指导建立合理的电弧直接制造工艺。
Arc-Direct Rapid Prototyping Manufacturing (ADRPM) is a new technique for direct manufacture of metal components. It stands out for its high efficiency of utilizing the materials and shaping the components, as well as its low cost of energy usage and equipment expense. Besides, due to simple material preparation and quick response to the market demands, ADRPM shows its value of various applications in the future. Since the component made by ADRPM is complete welding microstructure, the core technique of ADRPM is to choose proper technological parameters to ensure the shape, size and the formability of the components.The process of ADRPM is very complex, since there are a number of factors which influence the forming quality. To improve the technology level of ADRPM, the process monitoring of ADRPM, the analysis of technology characteristics, the prediction of forming quality and the intelligent adjustment of the main processing parameters have great significance.
     Based on the technology experiments of ADRPM and combined with pattern recognition, this paper made scientific research on the technology characteristics of existing parameters samples, and proposed the principles and algorithms of the quality predication and intelligent optimization of the technology parameters. The author chose Genetic Algorithms to design new technology parameters so as to guide the technology experiment, which expanded the amount of technology parameters.Then the author analyzed the expanded parameters samples based on Principal Component Analysis, extracted the technology characteristics, and then built a quality prediction model.In addition, the author analyzed each parameter's impact on the forming quality on account of feature extraction, and proposed the criterion of linear programming combined with pattern recognition evolutionary method to determine the direction of the parameters optimization and the range of parameters.
     This research analyzed the samples of parameters, and the results indicated: the samples analyzed by Principal Component Analysis have been decreased from 5 dimensions to 3 dimensions, and the mapping obtained from Principal Component Analysis could obviously distinguish the samples in high forming quality from the ones with relatively low quality , which fully reflected the technology characteristics; According to the Organizing Map's features of different desired value,the record of degrees' funtion can be established .The record of degree weighing width's stability is defined as the ratio of the radius of good area and the distance from the point in the Organizing Map to the centre of good area.Setting 0.714 as the standard value,if the forecasting point's record of degree is greaterthan 0.714 ,then we can judge the point as good point ,or no-good point.The record of degree weighing height's stability is defined as the ratio of the radius of sphere and the distance from the point in the Organizing Map to the centre of sphere.Setting 0.653 as the standard value,if the forecasting point's record of degree is greater than 0.653,then we can judge the point as good point ,or no-good point.the research used the quality prediction model to predict the forming quality of three groups of unknown technology parameters, and the experiment verified that the predictive values were consistent with the result of experiment, which further explained the rationality of the quality prediction model; The influence degree from various parametars to forming quality has been analysised .Weighing the width's standard deviation,parametars can be ranged for the forming quality's degree from much to little:wire feed speed、frequency、robot's speed of travel、Gun-board distance、pulse width ratio;Weighing the height's standard deviation,parametars can be ranged for the forming quality's degree from much to little:frequency、robot's speed of travel、wire feed speed、Gun-board distance、pulse width ratio; the research conducted the optimization control of the technology parameters, according to the direction of optimization which was determined by the criterion of linear programming and the range of parameters, three optimization sample points were designed. The experiment verified that the forming quality of the three groups of parameters increased gradually, which achieved the function of parameters optimization. In conclusion, the analysis of the characteristics of parameter samples could excavate the characteristics of parameter samples quickly, and the quality prediction model and technology optimization scheme were more reliable and practical, which could be used to guide to establish reasonable technological parameters in ADRPM .
引文
[1]张海鸥.金属模具快速制造技术[J].电加工与模具, 2002(2):6~9.
    [2]胡层良.快速成型和快速模具在现代工业中的应用[J].塑料工业, 2006(2):66~69.
    [3]张海鸥,蒋疆,王桂兰.金属零件直接快速制造技术[J].航空制造技术, 2008(07):42-45.
    [4]王冰.快速成形技术发展新趋势[J].中国科技信息, 2005(9):43~44.
    [5]邹海平,田玉东,张海鸥.金属零件直接制造的工艺参数及其控制[J].上海电机学院学报, 2007,10(2):107-110.
    [6]郭家林,张义成,钟定忠等.模式识别在钢铁工业生产中的应用[J].武汉钢铁学院学报, 1995(1):107~110.
    [7]张人佶,林峰,王小红等.快速制造技术的发展现状及其展望[J].航空制造技术, 2010(07):26-29.
    [8] Pham DT, Dimov SS. Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling[J]. New York: Springer, 2001.
    [9] Cooper KG. Rapid Prototyping Technology: Selection and Application[J]. New York: Marcel Dekker, 2001.
    [10]颜永年,张人佶,林峰.快速制造技术及其应用发展之路[J].航空制造技术, 2008(11):26-31.
    [11]赵云峰,闫美丽.模具快速制造技术的发展趋势[J].科技资讯, 2005(24):38~39.
    [12]卢锡龙,史玉升,陈森昌.选择性激光烧结金属件精度和密度的研究[J].机械科学与技术, 2003(4): 646~649.
    [13]杨林,钟敏霖,黄婷等.激光直接制造镍基高温合金零件成形工艺的研究[J].应用激光,2004,24(6): 345~349.
    [14]席明哲,张永忠,石力开.激光快速成形致密金属零件(模具)的研究[J].北京科技大学学报, 2002, 4: 441~444.
    [15]张剑峰,沈以赴,赵剑峰. Ni基金属粉末激光快速制造的研究[J].航空学报, 2002(3): 221~225.
    [16] Griffith ML, Schlienger ME, Harwell LD et al. Understanding thermal behavior in the LENS process[J]. Materials and Design, 1999, 20(2-3): 107~113.
    [17] Griffith ML, Ensz MT, Puskar JD et al. Understanding the microstructure and properties of components fabricated by laser engineered net shaping (LENS) [J]. In: Danforth SC, Dimos DB, Prinz F. Materials Research Society Symposium Proceedings: Solid Freeform and Additive Fabrication. San Francisco: Springer Materials Research Society, 2000. 9~20. .[18] Taminger KM, Hafley RA. Characterization of 2219 aluminum produced by electron beam freeform fabrication. In: Bourell DL[J]. The 13th Solid Freeform Fabrication Symposium. University of Texas at Austin. Austin: 2002. 482~489.
    [19] Taminger KM, Hafley RA. Electron beam freeform fabrication for cost effective near-net shape manufacturing[J]. Scientific and Technical Aerospace Reports: Metals and Metallic Materials, 2006, 44(7): 1~10.
    [20] Himmer T, Techel A, Nowotny S et al. Recent developments in metal laminated tooling by multiple laser processing[J]. In: Bourell DL. The 13th Solid Freeform Fabrication Symposium. University of Texas at Austin. Austin: 2002. 466~473
    [21] Xiong XH, Zhang HO, Wang GL. Metal direct prototyping by using hybrid plasma deposition and milling[J]. Journal of Materials Processing Technology, 2009, 209(1): 124~130.
    [22] Doumanidis Charalabos.Three-dimensional welding update rapidrototyping report [R],American Society of Mechanical Engineers,1999,17 (6):41-45.
    [23] Kruth J P, Meroelis P, Vaerenbergh J V, et al. Binding mechanisms in selective laser sintering and selective laser melting[J]. Rapid prototyping journal, 2005, 11( 1) : 26-36.
    [24] Morgan R, Sutcliffe C J, O'Neill W. Density analysis of direct metal laser remelted316L stainless steel cubic primitives[J]. Journal of materials science, 2004, 39:195-120.
    [25] Khaing MW,Fuh JYH,Lu L. Direct metal laser sintering for rapid tooling: processing and characterisation of EOS parts[J]. Journal of Materials Processing Technology, 2001, (113) : 269.
    [26] Keicher D M, Miller W D, Smugeresky J E, et al. Laser engineered net shaping ( LENS+TMS) beyond rapid prototyping to direct fabrication[J]. TMS Annual Meeting, 1998: 369-377.
    [27] Harrysson OLA, Cansizoglu O, Marcellin LDJ et al. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology[J]. Materials Science and Engineering C?Biomimetic and Supramolecular Systems, 2008, 28(3): 366~373.
    [28]杨鑫,汤慧萍,贺卫卫等.电子束烧结快速成形技术[J].钛工业进展,2007,24(3): 10~14
    [29]陈云霞,朱妙凤,姚舜等.三维扫描电子束快速成型技术[J].电焊机,2008,38(5): 16~18, 61.
    [30] Watson JK, Taminger KM, Hafley RA et al. Development of a prototyping low-voltage electron beam freefrom fabrication system[J]. In: Bourell DL. The 13th Solid Freeform Fabrication Symposium. University of Texas at Austin. Austin: 2002. 458~465.
    [31]张海鸥,熊新红,王桂兰.等离子熔积/铣削复合直接制造高温合金双螺旋整体叶轮[J].中国机械过程, 2007, 14: 1723~1725.
    [32]李金宗.模式识别导论.第1版[M]..北京:高等教育出版社, 1994.1~5
    [33]杨光正,吴泯,张晓莉.模式识别.第1版[M].合肥:中国科学技术大学出版社, 2001.1~7
    [34]严红平.模式识别简述[J].自动化博览, 2006(2):22~26
    [35]康复,程兆年,陈念贻等.化学模式识别在宝钢的应用[J].上海金属,1994,16(1):59~62
    [36]杨善升,陆文聪,陈念贻.数据挖掘技术在化工优化中的应用[J].江苏化工, 2004,32(4):1~4
    [37] Bhat NV, Minderman PA, McAvoy Jr. T,et al. Modelingchemical process systems via neural computation[J]. IEEE Control Systems Magazine, 1990, 10(3): 24~30.
    [38] Nascimento C A O, Giudici R, Guardani T. Neural networkbased approach for optimization of industrial chemical process[J]. Computers and Chemical Engineering, 2000, 24: 2 303~2 314.
    [39] Ruiz D, Nougues J M, Calderon Z, et al. Neural network based framework for fault diagnosis in batch chemical plant[J]. Computers and Chemical Engineering, 2000, 24: 777~784.
    [40] Yu D L, Gomm J B. Enhanced neural network modeling for a real multivariable chemical process[J]. Neural Computing&Applications, 2002,10: 289~299.
    [41] Abou-Jeyab, R.A,Gupta Y.P,Gervais J.R et al. Constrained multivariable control of adistillation column using a simplified model predictive control algorithm[J]. Journal of process control,2004(11):509~517
    [42] Dusan D.Golobocanin Biljana D.Skrbic,et al.Principal Component analysis for soil contamination with PAHs[J]. Chemometrics and Intelligent Laboratory Systems,2004,72(20):219~223
    [43] Schmuhl J,Hartmann R,Muller H et al. Structural parameter approach and multicriteria optimization techniques for complex chemical engineering design[J]. Computers and Chemical Engineering,2005(20):327~332
    [44]陈念贻,钦佩,陈瑞亮等.模式识别方法在化学化工中的应用.第1版[M].北京:科学出版社,2000.23~50
    [45] Chen NY, LuWC, Chen RL, et al. Chemometric methodsapplied to industrial optimization and materials optimal design[J]. Chemometrics and Intelligent Laboratory Systems,1999, 45: 329~333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700