聚烯烃弹性体接枝改性及其对SAN树脂增韧作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚烯烃弹性体(ES)大分子无碳-碳双键或碳-碳双键含量低而具有优异的耐老化性能。用ES与乙烯基单体(M)的自由基接枝共聚产物对塑料进行共混改性,可制备出耐气候老化黄变性能优异的高抗冲工程塑料。这种高抗冲工程塑料是目前市面上耐候性能较差的ABS的理想升级换代产品,可广泛用作汽车配件、摩托车护罩和其他室外构件,应用前景广阔。
     本文分别用饱和聚烯烃弹性体二元乙丙橡胶(EPM)和乙烯-α-辛烯共聚物(POE)与甲基丙烯酸甲酯-丙烯腈(MMA-AN)进行悬浮接枝共聚反应。系统研究了EPM/MMA-AN和POE/MMA-AN悬浮接枝共聚体系中AN的用量(f_(AN))、弹性体的用量(f_(ES))、引发剂BPO用量、溶剂甲苯用量、主分散剂用量、助分散剂用量、水/油比,反应温度和反应时间等聚合反应条件对单体转化率(CR)、平均接枝率(GR)、接枝效率(GE)及相应的接枝共聚产物/SAN树脂共混物的缺口冲击强度的影响,确定了对SAN树脂增韧效率最高的接枝共聚产物的最优合成条件。用最优条件合成的EPM/MMA-AN和POE/MMA-AN两种接枝共聚产物分别与SAN树脂共混制备了共混物AEMS和AOMS。
     建立了共混物的弹性体含量与共混物的缺口冲击强度、拉伸强度、弯曲强度和熔体流动速率之间的关系曲线。用FTIR、GPC、TEM、SEM、DMA、DSC、TG等现代测试手段和人工模拟气候老化试验研究了接枝共聚反应机理、产物及其共混物的共组成、相容性、相结构、增韧机理、热稳定性和耐老化黄变性能的影响因素,结果表明,两个反应体系都存在弹性体与MMA-AN接枝共聚或与MMA接枝均聚、MMA-AN非接枝共聚和MMA非接枝均聚的基元反应,不存在弹性体与AN接枝均聚或AN非接枝均聚的反应;建立了两个反应体系的单体投料质量比f_(AN)与接枝共聚产物的共组成比F_(AN)之间的定量关系,发现接枝共聚产物的F_(AN)都小于f_(AN);当EPM/MMA-AN接枝共聚产物的F_(AN)为14.8wt%左右,POE/MMA-AN接枝共聚产物的F_(AN)为12.2wt%左右时,两种接枝共聚物的极性分别与SAN树脂的极性最为匹配,相容性最好,相应的共混物AEMS和AOMS的缺口冲击强度最高。TEM和SEM分析表明,缺口冲击强度达到最高值的AEMS和AOMS,其相结构为近连续相结构,增韧机理为剪切屈服机理。随着f_(AN)的增加,AEMS和AOMS的热稳定性提高。AEMS的熔体流动速率随着EPM含量的增加而逐渐下降。
     通过研究PEB/MMA-AN、POE/MMA-AN、EPM/MMA-AN三个悬浮接枝共聚体系和EPDM/St-AN溶液接枝共聚体系的CR、GR和GE与反应时间的关系,发现4个体系都遵循先进行接枝反应,接枝反应基本结束后才进行非接枝共聚反应的规律,表明体系的链增长自由基转移接枝形成接枝共聚物的反应速度大于链增长自由基双基终止形成非接枝共聚物的反应速度。发现用GPC将反应初期形成的非接枝共聚物的不同分子量组分分离进行定量分析,可为推算接枝链的分子量提供依据的原理,应用这一原理推算了4个体系的接枝共聚物的接枝链的分子量,结果表明接枝链的分子量低于体系中单体正常共聚形成的非接枝共聚物的分子量,而明显高于由链增长自由基转移终止形成的非接枝共聚物的分子量。研究了体系中参与反应的弹性体的量随反应时间的延长而发生的变化,发现聚烯烃弹性体与乙烯基单体接枝共聚反应结束后发生两类机理不同的反应,一类是已接枝弹性体与未接枝弹性体发生断链再接形成可溶性多嵌段接枝共聚物,PEB和POE大分子分别带乙基侧基和己基侧基,空间位阻效应较大而发生这一类反应。另一类是已接枝弹性体与未接枝弹性体发生交联反应形成不溶性交联网络结构,EPM大分子带甲基侧基,其空间位阻效应小,EPDM带含碳-碳双键的乙叉降冰片烯侧基,其反应活性较大而发生这类反应。两类反应都具有结合未接枝弹性体越多,产物的增韧效率就越高的特点。
     通过研究PEB/MMA-AN悬浮接枝共聚产物不同组分对其与SAN树脂共混物ABMS的增韧作用的影响,结果表明,在PEB/MMA-AN接枝共聚产物所含各组分中,起增韧作用的有效组分是接枝共聚物PEB-g-MAN,非接枝共聚物MAN在PEB-g-MAN与SAN基体之间起协同增容作用而提高了增韧效率,未接枝PEB的存在会降低PEB-g-MAN对ABMS的增韧效率。
     EPDM-g-SAN/SAN树脂、EPDM-g-MAN/SAN树脂和EPM-g-MAN/SAN树脂三种共混物的老化性能研究表明,三种共混物的耐气候老化和耐热氧老化性能都优于ABS;EPDM-g-SAN/SAN树脂和EPDM-g-MAN/SAN树脂两种共混物的人工模拟气候老化机理和热氧老化机理主要都是共混物的大分子发生-CH_2-脱氢、脱氰基、脱苯环和羟基先生成后脱掉的反应。
EPM-g-MAN, synthesized by suspension grafting copolymerization of methyl methacrylate and acrylonitrile (MMA-AN) from ethylene-propylene bipolymer (EPM), was blended with styrene-acrylonitrile copolymer (SAN) to prepare a high impact plastic AEMS. POE-g-MAN, synthesized by suspension grafting copolymerization of methyl methacrylate and acrylonitrile from polyethylene-octene copolymer (POE), was blended with styrene-acrylonitrile copolymer (SAN) to prepare a high impact plastic AOMS. AEMS and AOMS are characterized by excellent weatherability and yellow discoloration resistivity because of no double bond in molecule chain of polyolefin elastomer (ES): EPM and POE. AEMS and AOMS are potential engineering plastic,will substitute ABS if it can be in industrial production.
     The effect of f_(AN) (f_(AN) was equal to AN/MMA-AN), f_(ES) (f_(ES) was equal to ES/(ES+MMA-AN), content of initiator BPO, content of solvent toluene, main dispersant PVA,assistant dispersant, water/oil ratio, reactive temperature and reactive time on the monomer conversion ratio (CR), average grafting ratio (GR) and grafting efficiency (GE) of copolymerization and the notched impact strength of grafting copolymer/SAN resin blends were investigated systematically. EPM-g-MAN and POE-g-MAN synthesize by optimized condition were blended with SAN resin respectively to prepare AEMS and AOMS.
     Contemporary analysis methods were used to investigate grafting copolymer and blends systematically. The components of the grafted copolymer were separated by different solvent and were qualitative/quantitative analyzed using Fourier transform infrared spectroscopy (FTIR). The results showed that, the main elementary reactions in EPM/MMA-AN grafting reaction system were graft copolymerization of EPM/MMA-AN, graft polymerization of EPM/MMA, copolymerization of MMA and AN, homopolymerization of MMA, crosslinking reaction of EPM, and there were no grafting polymerization of EPM/AN and homopolymerization of AN. The main elementary reactions in POE/MMA-AN grafting reaction system were graft copolymerization of POE/MMA-AN, graft polymerization of POE/MMA, copolymerization of MMA and AN, homopolymerization of MMA, and there were no grafting polymerization of POE/AN, homopolymerization of AN and crosslinking reaction of POE. DSC analysis indicated that the graft branches affected the crystallization of POE chains and made the melt temperature and the fusion heat be lower. For EPM/MMA-AN system, the quantitative relationship of f_(AN) on AN unit-to-MMA unit weight ratio in g-MAN chains/non-grafted components had been established by using FTIR quantitative analysis method, and it was found that the average weight fraction of AN unit in g-MAN (FAN-1) was less than f_(AN). EPM-g-MAN had a best toughening effect on SAN resin while FAN-1 was 13.9wt%. TEM and SEM analysis showed that the phase structure of AEMS and AOMS were co-continue structure and the toughening machenism was severe shear yielding when the blends reached their highest notched Izod impact strength. DMA analysis showed that the miscibility between grafting copolymer and SAN resin was good. TG/DTG analysis showed that thermal stability of AEMS and AOMS increased with increasing f_(AN). The melt flow rate(MFR) of AEMS decreased as EPM increasing. The less EPM content in the blends was, the better rheological and processing properties were.
     With research on the effect of reaction time on CR, GR, and GE of PEB/MMA-AN suspension system, POE/MMA-AN suspension system, EPM/MMA-AN suspension system and EPDM/St-AN solution system, the grafting copolymerization mechanism was investigated. The grafting polymerization product was characterized by GPC and FTIR analysis, the grafting copolymerization mechanism was investigated and the formula of calculating molecular weight of grafted chain was established. The results showed that, firstly the polymerization was mainly forming non-grafted copolymer with low molecular weight (MANL) of the transferring terminating polymerization of chain propagating free radicals and forming the grafted chains (g-MAN) of the transferring graft polymerization, and then the polymerization was mainly forming non-grafted copolymer with high molecular weight (MANH) of bimolecular terminating polymerization of chain propagating free radicals; molecular weight of MANL was less than that of g-MAN and molecular weight of g-MAN was less than that of MANH. The effects of reaction time on rubber’s grafting ratio of the four system were investigated. The results showed that the reaction mechanism after grafting copolymerization could be divided into two kinds. The one was that there existed chain scission and random regrafting of the backbone of ES-g-M and ungrafted ES which resulted in the production of multi-block polymer of ES and ES-g-M during the grafting copolymerization after transferring grafting polymerization, such as PEB and POE. The other was that the crosslinking reaction between grafted and ungrafted ES which resulted in the production of crosslinked polymer, such as EPDM and EPM. The same point of the two reaction was that the more ungrafted ES joined, the better toughening effect of the product on SAN resin.
     For PEB/MMA-AN system, toughening effect of different components on SAN resin was studied. The results showed that, grafted PEB (PEB-g-MAN) was the effective component that had toughening effect, non-grafted copolymer (MAN) was synergistic agent between PEB-g-MAN and SAN resin, and ungrafted PEB decreased the toughening effect.
     The thermal oxidative aging and accelerated weather aging results showed that the aging property of the blends of EPDM-g-SAN/SAN, EPDM-g-MAN/SAN and EPM-g-MAN/SAN was better than ABS. The aging mechanism was mainly the decrease of -CH2, -C≡N and benzene ring and firstly the increase and then the decrease of -OH of the blends during aging process.
引文
[1] Zeng Z.P., Wang L.S., Cai T.M., et al. Synthesis of High Rubber Styrene–EPDM–Acrylonitrile Graft Copolymer and Its Toughening Effect on SAN. J. Appl. Polym. Sci., 2004, 94(2): 416-423
    [2] Minoura Y., Ueda M., Mizunuma S., et al. The reaction of polypropylene with maleic anhydride. J. Appl. Polym. Sci., 1969, 13(8): 1625-1640
    [3] Tan R.A.,Wang W.,Hu G.H.,et a1.Functionalization of polypropylene with fluorinated acrylic monomers in the molten state[J]. Eur. Polym. J.,1999,35(11): 1 979-1984
    [4] Xie X.M., Chen N.H., Guo B.H., et al. Study of multi-monomer melt-grafting onto polypropylene in an extruder[J]. Polym. Int., 2000, 49(12): 1677-1683
    [5] Ramesh R.,Vetkav R.P., Sunggyu L. Analysis of polypropylene-maleic anhydride copolymer[J]. Polymer, 1990, 31(9): 1703-1706
    [6]陶颖,李剑,周持兴.低等规度聚丙烯固相接枝[J].高分子材料科学与工程,2003,l9(4):72-74
    [7]冯钠,黄锐,李书娟等.预处理方法对PP固相接枝MAH的影响[J].合成树脂及塑料, 2006, 23(3): 25-27
    [8]邬润德,童筱莉,杨正龙.悬浮溶胀法合成接枝聚丙烯[J].中国塑料, 2002, l6(8):62-66.
    [9]费建奇,忻海.聚丙烯水相悬浮溶胀接枝法接枝苯乙烯[J].石油化工, 2006,35:7.
    [10] Peascoe W.J. Impact-resistant thermoplastic composition based on graft copolymer[P]. US: 4202948, 1980
    [11] Limbert F.J. Method of making graft polymers of vinyl monomers onto ethylene/propylene terpolymer in a latex[P]. US: 3435096, 1969
    [12]程为庄,彭蓉,杜强国.聚乙烯与丙烯酸的溶液接枝聚合[J].功能高分子学报, 1997, 10(l):67-71
    [13] Ghosh P., ChattoPadhyay B., Sen A.K. Modifieation of low density polythylene(LDPE)by graft copolymerization with some acrylic monomers[J]. Polymer, 1998, 39(l): 193-201
    [14]朱成怡,黄华,刘念才.油酸熔融接枝聚丙烯的研究[J].合成树脂及塑料, 2000, 17(6): 9-12
    [15]童身毅,万敏,张良均.氯化聚丙烯接枝聚乙二醇的合成与性能[J].合成树脂及塑料, 2001, 18(3): 6-8
    [16] Kim T.H., Kim H.K., Oh D.R., et al. Melt free-radical grafting of hindered phenol antixoxidant onto polyethylene[J]. J. Appl. Polym. Sci., 2001, 77(13): 2968-2977
    [17]阳范文,赵耀明,高倩斐等. HDPE/LDPE混合物熔融接枝GMA的研究[J].中国塑料, 2001,15(7): 58-61
    [18] Lu B., Chung T.C. Synthesis of maleie anhydride grafted polyethylene and polypropylene,with controlled molecular struetures[J]. J. Polym. Sci., PartA:Polym. Chem., 2000, 38(8): 1337~1343
    [19] Ghosh P., Chakrabarti A. Reactive processing of polyethylene and polyethylene-ethylene/propylene/dicyclopentadiene blends under static and dynamic conditions [J]. Plast. Rubber. Compos., 1999, 28(7): 330-340
    [20] Seda ?avdar, Tongu? ?zdemir, Ali Usanmaz. Mechanical, Vulcametric, and Thermal Properties of the Different 5-ethylidene 2-norbornene Content of Ethylene-Propylene-Diene-Monomer Vulcanized with Different Types and Compositions of Peroxides [J]. J. Appl. Polym. Sci., 2009, 112(4): 1891–1896
    [21] Zhou S., Wang Z.Z., Hu Y., Melt grafting of vinyltrimethoxysilane and water crosslinking of polypropylene/ethylene-propylene diene terpolymer blends [J]. J. Polym. Res., 2009, 16(2):173-181.
    [22] Martina G., Barres C., Sonntagc P., et al. Co-continuous morphology and stress relaxation behaviour of unfilled and silica filled PP/EPDM blends[J]. Mater. Chem. Phys., 2009, 113(2-3):889-898
    [23] Kotter I., Grellmann W., Koch T. Morphology–Toughness Correlation of Polypropylene/Ethylene–Propylene Rubber Blends [J]. J. Appl. Polym. Sci., 2006, 100(4): 3364-3371
    [24] Sheng J., Hu J. Graft polymerization of styrene onto random ethylene-propylene diene monmer[J]. J. Appl. Polym. Sci., 1996, 60: 1499-1053.
    [25] Anita P., Zlata H.M., Jasenka J., et al. Study of structure of ethylene-propylene-diene-graft-polystyrene coplymers on their physical properties[J]. Polym. Degrad. Stabil., 2005, 90(2): 319-325.
    [26]龚春锁,揣成智. POE熔融挤出接枝MAH的研究[J],塑料制造, 2007,(10):80-83
    [27] Huang N.J, Sundberg D.C. Fundamental studies of grafting reactions in free radical copolymerization. I. A detailed kinetic model for solution polymerization[J]. J. Polym. Sci. Part A: Polym.Chem., 1995, 33 (15): 2533-2549
    [28] Coran A.Y. In: Mark H.F., Bikales N.M., Overberger C.G., Menges G., editors. Vulcanization, Other vulcanization agents, vol. 17. New York: John Wiley & Sons; 1989: 695.
    [29] Dikland H.G., Hulskotte R.J.M., Van der Does L., et al. The mechanism of EPDM peroxide vulcanisations in the presence of triallylcyanurate as a coagent[J]. Kautsch Gummi Kunstst, 1993, 46(8): 608-13
    [30]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社, 1990
    [31]王国忠, POE接枝物的制备及对SAN树脂的增韧作用研究[D].广州:华南理工大学,2006.
    [32]徐永宁. SAN的生产应用及市场需求[J].化工科技市场, 2005, 1:5
    [33]王国忠,章永化,游华燕等.马来酸酐接枝POE改性SAN树脂的制备与性能研究[J].塑料工业, 2006, 34(5): 23-25
    [34]张明耀,娄秀东,张会轩等.PB-g-SAN弹性体对SAN树脂的增韧[J].吉林工学院学报(自然科学版), 2001, 22(1): 1-3
    [35]张明耀,左良,徐新锋等. PB-g-SAN弹性体的合成及其对SAN树脂的增韧[J].东北大学学报(自然科学版), 2003, 24(10): 919-924
    [36]张明耀,张会轩,杨海东等.橡胶粒子的粒径及粒径分布对ABS性能和结构的影响[J].塑料工业, 2000, 28(4): 32-36
    [37]张明耀,徐新峰,张会轩等.接枝SAN分子量对ABS树脂性能和形态结构的影响[J].吉林工学院学报(自然科学版), 2001, 22(2): 8-12
    [38]谭志勇,张明耀,杨海东等. SAN树脂的相对分子质量对ABS树脂力学性能的影响[J].中国塑料, 2001, 15(9): 17-19
    [39]谭志勇,张明耀,杨海东等. SAN树脂相对分子质量的连续变化对ABS树脂力学性能的影响[J].高分子材料科学与工程, 2004, 20(2): 122-125
    [40]谭志勇,张明耀,杨海东等. PB-g-SAN接枝粉料的含胶量对ABS性能的影响[J].工程塑料应用, 2003,31(6):11-14
    [41]谭志勇,张明耀,杨海东等. ABS树脂合成中影响PB-g-SAN接枝共聚物接枝率的因素[J].高分子材料科学与工程, 2003, 19(3): 83-86
    [42]谭志勇,何浩会,张明耀等.链转移剂用量对ABS树脂性能的影响[J].塑料工业, 2003, 31(4): 41-43
    [43] Zhang N., Bao X.X., Tan Z.Y., et al. Morphology and mechanical properties of ABS blends prepared from emulsion-polymerized PB-g-SAN impact modifier with AIBN as initiator[J]. J. Appl. Polym. Sci., 2007, 105(3): 1237-1243
    [44]蔡彤旻,王炼石,周奕雨.粉末改性SBR对SAN的增韧作用[J].中国塑料,1999,13(9): 40-45.
    [45]张明耀,徐新峰,杨海东等.小粒橡胶粒子对SAN树脂的增韧作用[J].塑料工业, 2001, 29(1): 26-27
    [46]冯汇,刘诤,刘佑习. AS/MBS/SBR的力学性能及其微观形态[J].塑料工业, 1999, 27(1): 25-26
    [47]周奕雨,王炼石,夏明飞.凝聚包覆法粉末NBR对SAN的增韧作用[J].材料科学与工程, 2000, 18(1): 70-73
    [48]王炼石,胡孝昌,周奕雨等.粉末改性NR对SAN的增韧作用[J].橡胶工业,1998,45(9): 515-519
    [49]丁运生,史铁均,张志成等. CPE三元接枝共聚物对CPE/AS共混物的改性研究[J].中国塑料, 2003, 17(1): 51-53
    [50]郝文涛,王煦漫,史铁钧等. AS/CPE共混物的流变性能研究[J].现代塑料加工应用, 1997, 9(2): 6-8
    [51]史铁钧,徐鼐,郝文涛等. AS/ABS/CPE共混体系的力学性能和断裂形态[J].高分子材料科学与工程, 2003, 19(6): 139-142
    [52]李为民,李松. MBS与CPE协同增韧AS树脂研究[J].工程塑料应用, 1994, 22(5): 8-12
    [53] Hwang I.J., Kim B.K. Effect of the type of SAN in SAN/CPE blend: Morphology, mechanical, and rheological properties[J]. J. Appl. Polym. Sci., 1998, 67(1): 27-36
    [54] Morimoto M., Sanijiki T., Horiike H., et al. Process for producing binary of ternary graft-copolymer[P]. US: 3876730, 1975
    [55] Morimoto M. Process for production binary or ternary graft-copolyme[P]. US: 3984496, 1976
    [56] Michels, Gisbert et al. Graft polymers based on ethylene/alpha-olefin rubbers and process for their production[P]. US: 20040127642, 2004
    [57] Arrighetti S. Method for the preparation of novel thermoplastic materials, and products obtained thereby[P]. US: 4145378, 1979
    [58] Abe M. Process for producing rubber modified thermoplastic resin[P]. US: 4490507, 1984
    [59] Qu X.W., Shang S.R., Zhang L.C., et al. Graft copolymerization of styrene and acrylonitrile onto EPDM[J]. J. Appl. Polym. Sci. 2002, 86 (2): 428-432
    [60] Zeng ZP,Wang LS,Cai TM et al.Synthesis of high rubber Styrene-EPDM-acrylonitrile graft copolymer and its toughening effect on SAN[J]. J. Appl. Polym. Sci., 2004, 94(2): 416-423.
    [61]曾治平,王炼石,蔡彤旻等.溶液接枝法合成EPDM-g-SAN[J].弹性体, 2004,14(3): 6-9 .
    [62]曾治平,王炼石,蔡彤旻等. EPDM-g-SAN接枝共聚反应的研究[J].橡胶工业, 2004, 51(04): 197-200 .
    [63] Peascoe W.J. Impact-resistant thermoplastic composition based on graft copolymer[P]. US: 4202948,1980.
    [64] Frank J.,Limbert Charles F. Method of making graft polymers of vinyl monomers onto ethylene/propylene terpolymer in a latex[P]. US: 3435096, 1969.
    [65] Dai J.Q., Wang L.S., Cai T.M., et al. EPDM/St-An graft copolymerization reaction behavior by phase inversion emulsion and the toughness effect of EPDM-g-SAN on SAN resin[J]. J. Appl. Polym. Sci., 2008, 107(5): 3393-3400
    [66]代惊奇,王炼石,李银环等.相反转乳液接枝合成EPDM-g-SAN及AES树脂的制备[J].化工新型材料, 2007, 35(4): 41-43.
    [67] Bishop W.A. Preparation of rubber modified plastics[P]. US: 3538192,1970
    [68]刘伟涛,王炼石,蔡彤旻等. EPDM-g-MAN的合成及AEMS的冲击性能研究[J].工程塑料应用, 2009, 37(3): 14-17
    [69] Taheri M., Morshedian J., Esfandeh M., et al. Reactive compatibilization of SAN/EPDM blend and study of the parameters affecting its properties[J]. Iran. Polym. J., 2006, 15(12): 955-965
    [70] Taheri M., Morshedian J., Esfandeh M. Compatibilization and properties of SAN/EPDM blends with the addition of coagents[J]. J. Appl. Polym. Sci., 2008, 110(2): 753-760
    [71] Hoang T., Trung T., Yoo G., et al. Compatibilization of SAN/EPDM blends by grafting EPDM with methyl methacrylate[J]. B. Kor. Chem. Soc., 2001, 22(9): 1037-1040
    [72] Pticek A., Hrnjak-Murgic Z., Jelencic J. Effect of compatibilizer on morphology and mechanical properties of SAN/EPDM blends[J]. Int. Polym. Proc., 2008, 23(4): 356-362
    [73] Hwang IJ, Lee MH, Kim BK.Preparation and properties of SAN/EPDM/CPE ternary blends[J]. Eur. Polym. J., 1998, 34(5):671-675
    [74] Li Y.H., Wang L.S., Dai J.Q., et al. Graft reaction of styrene-acrylonitrile onto metallocene-based polyethylene-octene elastomer and its toughening effect on SAN[J]. Polym. J., 2008, 40(6): 520-527
    [75]李银环,王炼石,代惊奇等. POE-g-MAS增韧SAN树脂及其相容性[J].合成树脂及塑料, 2008, 25(3): 23-26
    [76]李银环,王炼石,代惊奇等.悬浮接枝共聚合成POE-g-MAS及其对SAN的增韧作用[J].中国塑料, 2008, 22(3): 12-17
    [77]王炼石.塑料/橡胶共混物的相结构与增韧作用[J].塑料助剂, 2005, 53: 45-49
    [78]常平,洪重奎.乙丙橡胶增韧聚丙烯共混物中橡胶相形态[J].塑料科技, 2002 (2): 4-6, 10
    [79]马洵炜.改性复合阻燃剂对HIPS的增韧阻燃作用[D].广州:华南理工大学, 2003
    [80]王炼石,周奕雨,蔡彤旻等. PS/粉末SBR-g-S共混体研究I.相结构、冲击断裂机理与冲击韧性[J].高分子材料科学与工程, 2000, 16(3): 113-117
    [81]王炼石,夏新江,周奕雨等. PS/粉末SBR-g-S共混体的相结构与增韧效应[J].中国塑料, 1999, 13(2): 36-41
    [82]付锦锋.接枝改性EPDM及其对聚合物增韧作用的研究[D].广州:华南理工大学, 2009
    [83]王炼石,蔡彤旻,吴向东等.粉末改性SBR对PVC的增韧作用[J].塑料工业, 1997, 3: 102-105
    [84]江明.高分子合金的物理化学.四川教育出版社.成都,1988年3月
    [85]刘伟涛. EPDM/MMA-AN接枝反应行为及其接枝物对SAN树脂的增韧作用[D].广州:华南理工大学, 2009
    [86]张敦福.悬浮法EPDM-g-SAN的合成及其对SAN树脂的增韧作用[D].广州:华南理工大学, 2007
    [87]李银环. POE接枝改性及其增韧SAN的研究[D].广州:华南理工大学, 2008
    [88]王炼石.塑料/橡胶共混物的相结构与增韧作用(续) [J].塑料助剂, 2005, 54:46-54.
    [89] Mertz E.H., Claver G.C., Baer M.J. Studies on heterogeneous polymeric systems[J]. J. Polym. Sci., 1956, 22(101):325-341
    [90]夏新江.粉末SBR-g-St的制备及其对PS的增韧研究[D].广州:华南理工大学, 1996
    [91] Pearson R.A., Yee A.F. Toughening mechanisms in elastomer-modified expoxies. Part 1: Mechanical studies[J]. J. Mater. Sci., 1986, 21(7): 2462-2475
    [92] Pearson R.A, Yee A.F. Toughening mechanisms in elastomer-modified expoxies. Part 2:Microscopy studies[J]. J. Mater. Sci., 1986, 21(7): 2475-2488
    [93] Smith J.A., Keskkula H. Sort-time stress relaxtion and toughness of rubber modified polystyrene[J]. J. Appl. Polym. Sci., 1960, 3(8): 132-142
    [94] Bucknall C.B., Smith R.R. Stress-whitening in high impact polystyrene[J]. Polymer. 1965, 6(8): 437-446
    [95]蔡彤旻.粉末改性SBR的制备及其对SAN的增韧作用[D].广州:华南理工大学, 1998
    [96]郭涛. UCaCO3-La的制备及其与PP及PET复合材料的结构与性能[D].广州:华南理工大学, 2005
    [97] Newman S., Strella S.J. Stress-strain behavior of rubber-inforced glass polymers[J]. J. Appl. Polym. Sci., 1965, 9(6): 2797-2310
    [98] Bucknall C B. Toughened Plastics[M]. London:Applied Science Publishers, 1977
    [99] Jang B Z, Uhlman D R, Vander Sande J B. Ductile brittle transition in polymer. J. Appl. Polym.Sci. 1984,29(11): 3409-3420
    [100] Bucknall C.B., Clayton D., Keast W.E. Rubber-toughening of plastics: 2.creep mechanisms in HIPS/PPO blends[J]. Journal of Materials Science, 1972, 7(12): 1443-1453
    [101] Wu S.H. Phase structure and adhesion in polymer blends: A criterion for rubber toughening[J]. Polymer, 1985, 26(12): 1855-1863
    [102] Speroni F., Castoldi E., Fabbri P., et al. Mechanisms of energy dissipation during impact in toughened polyamides: a SEM analysis[J]. J.Mater.Sci., 1989, 24(6): 2165-2176
    [103] Hourston D.J., Lane S., Zhang H.X. Toughened thermoplastics. 2. Impact properties and fracture mechanisms of rubber modified poly(butylene terephthalates)[J]. Polymer, 1991, 32(12): 2215-2220
    [104] Kinloch A.J., Young R.J. Fracture Behaviour of Polymers[M]. London: Appl Sci Pub, 1983
    [105] Riew C.K., Rowe E.H., Siebert A.R.,et al. Toughness and brittleness of Plastics[M]. New York: Academic Press, 1978
    [106] Nielsen L.E.高分子和复合材料的力学性能[M].丁佳鼎.北京:轻工业出版社,1981
    [107] Kim G.M., Michler G.H., Gahleitner M., et al. Relationship between morphology and micromechanical toughening mechanisms in modified polypropylenes[J]. J.Appl.Polym.Sci, 1996, 60(9): 1391-1403
    [108]汪晓东,金东吉,金日光.尼龙6/“壳-核”型聚合物共混合金的力学性能与亚微形态[J].高分子材料科学与工程, 1997, 13(1): 89-93
    [109] Hyungsu K., Keskkula H., Paul D.R. Toughening of SAN copolymers by an SAN emulsion grafted rubber[J]. Polymer, 1990, 31(5): 869-876
    [110] Wu S. Chain structure, phase morphology, and toughness relationships in polymers and blends. Polym.Eng.Sci. 1990, 30(13): 753-761
    [111] Oshinski A.J., Keskkula H., Paul D.R. The role of matrix molecular weight in rubber toughened Nylon 6 blends: 2. Room temperature Izod impact toughness[J]. Polymer, 1996, 37(22): 4909-4918
    [112] Oshinski A.J., Keskkula H., Paul D.R.. The role of matrix molecular weight in rubber toughened Nylon 6 blends: 3. Ductile-brittle transition temperature[J]. Polymer, 1996, 37(22): 4919-4928
    [113] Vincent P.I. Impact Tests and Service Performance of Thermoplastics[M]. London: Plastics Inst, 1971
    [114] Plati E., Williams J.G. The determination of the fracture parameters for polymers in impact[J]. Polym. Eng. Sci., 1975, 15(6): 470-477
    [115] Plati E., Williams J.G. Effect of temperature on the impact fracture toughness of polymers[J]. Polymer, 1975, 16(12): 915-920
    [116] Vincent P.I. A correlation between critical tensile strength and polymer cross-sectional area[J]. Polymer, 1972, 13(12): 558-560
    [117] Williams J.G., Hodgkinson J.M. Crack-Blunting Mechanisms in Impact Tests on Polymers[J]. Proc. Roy. Soc. Series A, 1981, 375:231-248
    [118] Hodgkinson J.M., Vlachos N.S., Whitelaw J.H., et al. Drop-Weight Impact Tests with the Use of Laser-Doppler Velocimetry Drop-Weight Impact Tests with the Use of Laser-Doppler Velocimetry [J]. Proc. Roy. Soc. Series A, 1982, 379: 133-144
    [119] Williams J.G., Birsh M.W. In; Proc 4th Intern Conf Fracture(ICF4). Vol 1, Univ Waterloo, Canada, 1977
    [120] Pitman G.L., Ward I.M., Duchett R.A. The effects of thermal pre-treatment and molecular weight on the impact behavior of polycarbonate[J]. J. Mater. Sci., 1978, 13(10): 2092-2104
    [121] Parvin M., Williams J.G.. Ductile-brittle fracture transitions in polycarbonate[J]. Int. J. Fracture., 1975, 11(6): 963-972
    [122] Mills N.J. The mechanism of brittle fracture in notched impact tests on polycarbonate[J]. J. Mater. Sci, 1976, 11(2): 363-375
    [123] Brown H.R. A model for brittle-ductile transitions in polymers[J]. Journal. Mater. Sci., 1982, 17(2): 469-476
    [124] Nobutaka H., Ichiro S., Yoshifumi O., et al. Thermoplastic resin compositions with high production stability and their moldings with good heat and impact resistance [P]. JP: 2006045465, 2006.
    [125] Oscar C., Marino G., Massimo L. Thermal oxidative degradation of AES[J]. Polym. Degrad. Stabil., 1995, 47: 141-148.
    [126] Morimoto M., Sanijiki T., Horiike H., et al. Process for production thermoplastic resins[P]. US: 3904709,1973
    [127] Chiantore O., Trossarelli L., Lazzari M. Polymer Compatibilization effects in the thermal degradation of blends containing SAN and EPDM polymers[J]. Polymer, 1998,39(13): 2777-2781
    [128] Priest D.C., Langdale-Smith R.A . Polymer Polyols and Process for Production Thereof[P]. US: 4208314, 1980
    [129]潘祖仁.悬浮聚合[M].北京:化学工业出版社, 1997:13-14, 91-92
    [130] Park D.J., Ha C.S., Cho W.J. Synthesis and properties of methyl methacrylate-EPDM-styrene graft terpolymer[J]. J. Polym. Sci., 1994, 54(6):763.
    [131]王炼石,高智梅,周奕雨等.粉末改性NR对PVC的增韧作用[J].橡胶工业, 1998, 45(6): 343-347.
    [132]李银环,王炼石,代惊奇等.悬浮接枝共聚合成POE-g-MAS及其对SAN的增韧作用[J].中国塑料, 2008, 22(3): 12-17
    [133] Manaresi P., Passalacqua V., Pilati F. Kinetics of graft polymerization of styrene on cis-1,4-polybutadiene[J]. Polymer, 1975, 16(7): 520.
    [134] Young O.B., Chang S.H., Won J.C. Synthesis and Prorerties of Acrylonitrile-EPDM-Methyl Methacrylate Graft Copolymer [J]. Eur. Polym. J. ,1991, 27(2): 121-126
    [135]商淑瑞.丙烯睛-乙丙三元橡胶-苯乙烯接枝共聚物的制备及性能研究[D].天津:河北工业大学, 2002
    [136]清华大学分析化学教研室编,现代仪器分析[M].北京:清华大学出版社, 1983, 208-213
    [137]沈德言编著.红外光谱法在高分子研究中的应用[M].科学出版社, 1982, 121
    [138]江明.高分子合金的物理化学[M].成都:四川教育出版社, 1988: 10-15
    [139]杨万泰.聚合物材料表征与测试[M].北京:中国轻工业出版社, 2008: 156-157
    [140]张俐娜,薛奇,莫志深等.高分子物理近代研究方法[M].武汉:武汉大学出版社, 2003: 242~256
    [141]曾幸荣.高分子近代测试分析技术[M].广州:华南理工大学出版社,2007:48-50, 8-11
    [142] Yang S.Y., Castilleja J.R., Barrera E.V., et al. Thermal Analysis of an acrylonitrile–butadiene–styrene/SWNT composite[J]. Polym. Degrad. Stabil., 2004,83:383-388
    [143] Silva A.L.N.D., Tavares M.I.B., Politano D.P., et al. Polymer Blends Based on Polyolefin Elastomer and Polypropylene[J], J. Appl. Polym Sci.,1997, 66 (10), 2005~2014.
    [144] Chen J., Yang W., Liu Z.Y., et al. Influence of Heat Treatment on Toughening of Polyehtylene-octene Copolymer (POE)/Poly(ethylene terephthalate) (PET) Blends[J], J. Mat. Sci., 2004, 39(12), 4049~4051.
    [145] Yu Z.Z., KeY.C., Ou Y.C., et al. Impact Fracture Morphology of Nylon 6 Toughened with a Maleated Polyethylene–Octene Elastomer[J], J. Appl. Polym. Sci., 2000, 76(8), 1285~1295.
    [146] Li Q.F., Kim D. G., Wu D.Z., et al. Effect of Maleic Anhydride Graft Ratio on Mechanical Properties and Morphology of Nylon11/Ethylene-Octene Copolymer Blends[J], Polym. Eng. Sci., 2001, 41(12), 2155~2161.
    [147] Chiu H.T., Hsiao Y.K. Compatibilization of Poly(ethylene terephthalate)/Polypropylene Blends with Maleic Anhydride Grafted Polyethylene-Octene Elastomer[J], J. Polym. Res., 2005,13(1), 153~160.
    [148] Bai S.L., Wang G.T., Hiver J.M., et al. Microstructures and Mechanical Properties of Polypropylene/ polyamide 6/polyethelene-octene Elastomer Blends[J], Polymer, 2004, 45(9), 3063~3071.
    [149] Wu C.S., Lai S.M., Liao H.T. Graft Reaction of Acrylic Acid onto Metallocene-Based Polyethylene- Octene Elastomer[J], J. Appl. Poly. Sci., 2002, 85(14):2905~2912.
    [150] Lu M.F., Zhang S.J, Yu D.S. Study on Poly(propylene)/Ammonium Polyphosphate Composites Modified by Ethylene-1-octene Copolymer Grafted with Glycidyl Methacrylate[J], J. Appl. Poly. Sci., 2004, 93 (1), 412~419.
    [151] Ko T.M., Ning P. Peroxide-catalyzed swell grafting of maleic anhydride Onto polypropylene[J], Polym. Eng. Sci., 2000, 40 (7): 1589-1595
    [152] WU C.S. Improving Polyethylene–Octene Elastomer/Chitosan by Graftation of Acrylic Acid onto Polyethylene–Octene Elastomer—Mechanical Properties and Biodegradability Examination and Composites Characterization[J]. J. Polym. Sci. Part A: Polym. Chem., 2003,41, 3882-3886
    [153] Brydon A., et al. J. Polym. Sci., Poly. Chem. Ed. , 1974, 12:1011.
    [154]熊凯,朱勇平,王炼石等. PEB-g-MAN的合成与表征[J].高分子材料科学与工程,2010, 26(9):8-11
    [155]何曼君,陈维孝,董西侠.高分子物理[M],上海:复旦大学出版社, 2000: 208
    [156]张开.高分子物理学[M],北京:化学工业出版社, 1981: 45
    [157]朱勇平,王炼石,蔡彤旻等. PEB-g-MAN增韧SAN树脂的力学性能及增韧机理的研究[J].中国塑料, 2009, 23(10): 40-44
    [158]刘冠文,苏世琼.塑料人工气候老化试验[J].合成材料老化与应用, 2007, 36(2): 35-39
    [159]郑元林,杨淑蕙,周世生,等. CIE 1976 LAB色差公式的均匀性研究[J].包装工程, 2005, 2: 48-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700