深部开采上覆岩层中采动裂隙网络演化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文借用物理模拟和数值模拟方法,采用分形几何、逾渗与重正化理论,系统研究了深部开采条件下上覆岩层采动裂隙演化规律及其移动破坏规律。综合采用相似模拟、离散元法模拟了多方案的上覆岩层移动破坏及采动裂隙分布,并实施了现场位移监测;采用分形几何理论进行了采动裂隙分形特性及演化规律研究;运用逾渗理论建立了以单元裂隙块体为基本格点的逾渗模型,分析了采动裂隙演化的逾渗特征;建立了采动裂隙演化的重正化群格子模型。研究成果表明:深部开采上覆岩层采动裂隙分布及演化具有分形特征,并受断层构造、煤层厚度等因素影响;采动裂隙演化过程具有逾渗特性,可通过重正化技术预测采动裂隙演化的相变临界性;通过室内外试验相结合方法研究得到了典型深部开采上覆岩层移动破坏的一般规律。从而建立了一套深部开采采动裂隙演化的综合研究方法。
In this thesis, it was analyzed systematically that evolutionary law of mining induced crack in overburden strata and its movement and failure law in condition of deep mining, by mean of fractal geometry, percolation theory and renormalization group, in combination with physical analogue and numerical simulation. Analog simulation and discrete element method were integratedly used to simulate mining induced crack distribution in overburden strata and its movement and failure, and spot displacement survey was put to use. Based on the anslysis of distribution of mining induced crack, fractal geometry was employed to research fractal characters of mining induced crack and its evolutionary law, and by using of percolation model constructed with percolation theory taking unit crack block as basic lattice point, percolation behaviors of mining induced crack were analyzed, and renormalization lattice model of mining induced crack was established. Research results indicates that, mining induced crack distribution in overburden strata and its evolution have fractal behaivors and are influenced by fault occurrence, coalseam thickness and so on in condition of deep mining, evolution process of mining induced crack shows percolation characters to some extent, and phase transition criticality of evolution process of mining induced crack can be forecasted by renormalization technique, and general regularity of movement and failure of overburden strata in typical deep mining is obtained through similar model test and spot test. Thus a series of the comprehensive research methods are put forward to study the problem of evolution of mining induced crack in the condition of deep mining.
引文
1. 谢和平.深部高应力下的资源开采与地下工程——机遇与挑战[C].//第175次香山科学会议《深部高应力下的资源开采与地下工程》学术讨论会专题报告.北京,2001.
    2. 谢和平.矿山岩体力学及工程的研究进展与展望[J].中国工程科学,2003,5(3):31-38.
    3. 张玉卓.深部资源开发造成的上覆岩层移动与破坏规律[C].//第175次香山科学会议《深部高应力下的资源开采与地下工程》学术讨论会专题报告.北京,2001:14-18.
    4.于广明.矿山开采的非线性理论与实践[M].北京:煤炭工业出版社,1998:15-28,66-112.
    5. 郭奉贤等.矿山压力观测与控制[M].北京:煤炭工业出版社,2005
    6. 钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003
    7. 宋振骐.实用矿山压力控制《M].徐州:中国矿业大学出版社,1988
    8. 钱鸣高,缪协兴.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003
    9. 易顺民,朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社,2005
    10. Nolen-Hoeksema R C, Gordon R B. Optical detection of crack patterns in the opening-mode fracture of marble[J]. Int J Rock Mech Min Sci & Geomech Abstr,1987,24:135-144
    11.谢和平.分形—岩石力学导论[M].北京:科学出版社,1996
    12.赵永红,黄杰藩,耿金达等.岩石破裂带的分维及变化特征[J].地质科学,1994,29(2):137-143
    13.赵永红,受压岩石中裂纹发育过程及分维变化特征[J].科学通报,1995,40(7):621-623
    14.谢和平.脆性材料裂纹扩展的分形运动学[J].力学学报,1994,26(6):759-762
    15.谢和平.动态裂纹扩展中的分形效应[J].力学学报,1995,27(1),18-28
    16.李彪,马胜利,张流.不同实验条件下大理岩主破裂的分数维[J].地震地质,1993,15(2),157-163
    17.程海旭,吴开统,庄灿涛.岩石破裂系分形及分维测定[J].地球物理学进展,1995,10(1),92-103
    18.康天合,赵阳升,靳钟铭.煤体裂隙尺度分布的分形研究[J].煤炭学报,1995,20(4):393-398
    19.弓培林,靳钟铭,魏锦平.放顶煤开采煤体裂隙演化规律实验研究[J].太原理工大学学报,1999,30(2):119-123
    20.魏锦平,李胜利,靳钟铭.综放采场顶煤压裂机理的实验研究[J].岩石力学与工程学报,2002,8:1178-1182
    21.魏锦平.综放面顶煤压裂规律及成拱机理研究[D].太原:太原理工大学博士论文,2004
    22. Gudmundsson A. Geometry, formation and development of tectonic fractures of the Raykjanes Peninsula, Southwest Iceland[J]. Tectonophysics,1987,139:295-308
    23. Scholz C H, Cowie P A. Determination of total strain from faulting using slip measurements[J]. Nature,1990, 346:837-839
    24. Walsh J, Watterson J, Yielding G. The importance of small-scale faulting in regional extension[J]. Nature,1991, 351:391-393
    25. Jackson P, Sanderson D J. Scaling of fault displacements from the Badajoz-Cordoba shear zone, SW Spain[J]. Tectonophysics,1992,210:179-190
    26. Xie H, Sanderson D J. Peacock D C P. A fractal model and energy dissipation for an echelon fractures[J]. Engineering Fracture Mech,1994,48(5):655-662
    27.谢和平,Sanderson D J断层分形分布之间的相关关系[J],煤炭学报,1994,19(5),445449
    28. Aviles C A, Scholz C H, Boatwright J. Fractal analysis applied to characteristic segments of the San Andreas fault[J], J, Geophys. Res.,1987,92(B1):331-334
    29.金邓辉,马瑾.红河断裂带的断层几何特征及其与地震的关系[C].//马瑾,王绳组主编.第二届构造物理学术讨论会文集.北京:地震出版社,1990:75-84
    30.马瑾,马胜利,雷兴林.鲜水河断裂带断层几何与地震活动性[C].//马瑾,王绳组主编.第二届构造物理学术讨论会文集.北京,地震出版社,1990:58-67
    31.周尽.海原断层系的分形研究[J].西北地震学报,1991,13(3):78-84
    32.侯康明.吕马断裂带的分维几何学特征[J].西北地震学报,1990,12(3):92-95
    33.皇甫岗,韩明,王晋南.滇西北区断层分数维几何学研究[J].地震地质,1991,13(1):61-66
    34.易顺民,唐辉明.活动断裂的分形结构特征[J].地球科学,1995,20(1):58-63
    35.施泽进,罗蛰潭,彭大钧等.四川地区断层空间分布的多重分形特征[J],现代地质,1995,9(4):467-474
    36. Turcotte D L. A Fractal Model for Crustal Deformation[J]. Tectonophysics,1986,132(2):261-269
    37. King G. The accominodation of Large Strains in the Upper Lithosphere of the Earth and Other Solids by Self-similar Fault systems:the Geometrical Origin of b-Value[J], PAGEOPH,1983,121(5):76-81
    38. Barton C C, Larsen E. Fractal geometry of two-dimensional fracture networks at Yucca Mountain, southwestern Nevada[C],//In Fundamentals of Rock Joints, Proc. Int. Sympo.1985,77-84
    39. La-Pointe P R. Fractal Analysis of Fracture Density and Connectivity in Rock MassfJ]. Int J Rock Mech Min Sci& Geomech. Abstr.,1988,25(6):421-429
    40.大野博之,小岛圭二.岩体破裂系的分数维.[J]地震地质译丛,1990,10(2):1-6
    41.徐光黎.岩石结构面几何特征的分形与分维[J].水文地质工程地质,1991,18(6):15-18
    42.秦四清,张倬元,王士天等.节理岩体的分维特征及其工程地质意义[J].工程地质学报,1993,1(2):14-23
    43.易顺民,唐辉明,龙昱.基于分形理论的岩体工程分类初探[J].地质科技情报,1994,13(1):1 01-106
    44.申晋,朱维申,赵阳升.三峡永久船闸高边坡岩体裂隙分布的分形研究[J].岩土工程学报,1998,20(5):97-100
    45.易顺民,唐辉明.三峡工程区岩体断裂的分形研究[J].大地构造与成矿学,1998,22(2):177-184
    46.刘建国等.岩体裂隙网络的分形特征[J].兰州大学学报(自然科学版),2000,36(4):96-99
    47.邢占利.岩体裂隙的分形研究[J].矿业快报,2005,21(11):8-10
    48.谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990
    49.谢和平.岩石蠕变损伤非线性大变形分析及微观断裂FRACTAL模型[D].徐州:中国矿业大学,1987
    50. Xie H. Fractals in rock mechanicsfM]. A A BalkemaPublishers, Netherlands,1993
    51.谢和平,陈至达.岩石类材料裂纹分叉非规则性几何的分形效应[J].力学学报,1989,21(5):613-617
    52.于广明,谢和平,周宏伟等.结构化岩体采动裂隙分布规律与分形性实验研究[J].实验力学,1998,18(2):145-154
    53.谢和平,于广明,杨伦等.采动岩体裂隙分形网络研究[J].岩石力学与工程学报,1999,18(2):147-151
    54.张永波,李荣华,刘秀英.采动岩体分形裂隙网络演化规律的试验研究[J].工程勘察,2004,2
    55.谢和平,陈忠辉,王家臣.放顶煤开采巷道裂隙的分形研究[J].煤炭学报,1998,23(3):252-257
    56.薛亚东,康天合,靳钟铭.巷道围岩裂隙的分形演化规律试验研究[J].太原理工大学学报,2000,31(6):662-664
    57.郜进海,康天合,靳钟铭等.巨厚薄层状顶板回采巷道围岩裂隙演化规律的相似模拟试验研究[J].岩石力学与工程学报,2004,23(19):3292-3297
    58.贾林,王士天.裂隙网络多标度分形计算机模拟[J].地质灾害与环境保护,1997,8(3):48-53
    59.王金安,谢和平,Kwasniewski M A岩石断裂面各向异性分形和多重分形研究[J],岩土工程学报,1998,20(6):16-21
    60.刘树新,张飞.三维岩体质量的多重分形研究[J].包头钢铁学院学报,2003,22(2):97-103
    61.曾文曲,王向阳,刘丹等.分形理论与分形的计算机模拟[M].沈阳,东北大学出版社,1993:106-184
    62.齐东旭.分形及其计算机生成[C].//辛厚文主编,分形理论及其应用.合肥:中国科学技术大学出版社,1993:68-71
    63.陈乃明,王如路,刘宝琛.岩体节理网络分形的计算机模拟研究[J].岩石力学与工程学报,1995,14(4):255-259
    64.陈剑平,王清,肖树芳.岩体裂隙网络分数维计算机模拟[J].工程地质学报,1995,3(3):79-85
    65.杨米加,贺永年.岩体裂隙结构模型及其渗流规律研究[J].岩土力学,1998,19(4):8-13
    66.马宇,赵阳升,段康廉.岩体裂隙网络的二维分形仿真[J].太原理工大学学报,1999,30(5):479-482
    67.王谦源.分形分布节理的模拟研究[J].岩石力学与工程学报,1999,18(3):271-274
    68.张向东,徐峥蝾,苏仲杰等.采动岩体分形裂隙网络计算机模拟研究[J].岩石力学与工程学报,2001,20(6):809-812
    69.荣冠,周创兵.基于裂隙网络模拟技术的结构面分布分维数计算[J].岩石力学与工程学报,2004,23(20)3465-3469
    70.赵阳升,文再明,冯增朝.岩体裂隙面数量的三维分形分布仿真理论与技术[J].岩石力学与工程学报,2005,24(6):994-998
    71.许家林,钱鸣高.覆岩采动裂隙分布特征的研究[J].矿山压力与顶板管理,1997,(3-4):210-212
    72.冯志刚,周宏伟.图像的分形维数计算方法及其应用[J].江苏理工大学学报(自然科学版),2001,22(6):92-95
    73.彭瑞东,谢和平,鞠杨.二维数字图像的分形维数计算方法[J].中国矿业大学学报,2004,33(1):19-24.
    74.范留明,李宁.基于数码摄影技术的岩体裂隙测量方法初探.岩石力学与工程学报,2005,24(5):792-797
    75. Hammersley, L.& Broadbent, J. Percolation processes[J]. Mathematical Proceedings of the Cambridge Philosophical Society.1957,53(3):629-641.
    76.张济忠编著.分形[M].北京市:清华大学出版社,1995:73-79,192-198
    77.刘代俊编著.分形理论在化学工程中的应用[M].北京市:化学工业出版社,2005:75-92
    78.刘柏谦,吕太编著.逾渗理论应用导论[M].北京市:科学出版社,1997:1-107
    79. Dietrich Stauffer, Amnon Aharony. Introduction to Percolation Theory[M]. London:Taylor& Francis,1992
    80. J. Hoshen, R. Kopelman. Percolation and cluster distribution I. Cluster multiple labeling technique and critical concentration algorithm[J]. Phys. Rev. B,1976,14(8):3438-3445.
    81. A Margolina, H Nakanishi; D Stauffer; et al. Monte Carlo and series study of corrections to scaling in two-dimensional percolation[J]. Journal of Physics A:Mathematical and General,1984,17(8):1683-1701.
    82. D.C. Rapaport. Cluster number scaling in two-dimensional percolation[J]. J. Phys. A,1986,19(2):291-304.
    83. P. R. A. Campos, L. F. C. Pessoa, F.G. Brady Moreira. Cluster-size statistics of site-bond-correlated percolation models[J]. Phys. Rev. B,1997,56 (1):40-42.
    84. J. Hoshen. Percolation analog for a two component liquid vapor system[J]. Chem. Phys. Lett.,1980,75(2): 347-349.
    85. J. Hoshen, P. Klymko, R. Kopelman. Percolation and cluster distribution III. Algorithm for the site-bond problem[J]. J. Stat. Phys.,1979,21 (5):583-600.
    86. J. Hoshen. On the application of the enhanced Hoshen-Kopelman algorithm for image analysis[J], Pattern Recogn. Lett.,1998,12:575-584.
    87. J. Hoshen, M.W. Berry, K.S. Minser. Percolation and cluster structure parameters:the enhanced Hoshen-Kopelman algorithm[J]. Phys. Rev. B,1997,56 (2):1455-1460.
    88. J. Tsang, I.R. Tsang, D. Van Dyck. Cluster diversity and entropy on the percolation model:the lattice animal identiHcation algorithm[J]. Phys. Rev. B,2000,62 (5):6004-6014.
    89. A.N. Burkitt, D.W. Heermann. Parallelization of a cluster algorithm[J], Comput. Phys. Commun.,1989,54(2-3): 201-209.
    90. J.M. Constantin, M.W. Berry, B.T. VanderZanden. Parallelization of the Hoshen-Kopelman algorithm using a Hnite state machine[J]. Int. J. Supercomput. Appl. High Perform. Comput.,1997,11(1):34-48.
    91. M. Flanigan, P. Tamayo. Parallel cluster labeling for large-scale Monte-Carlo simulations[J]. Physica A, 1995,215(4):461^80.
    92. J.M. Teuler, J.C. Gimel. A direct parallel implementation of the Hoshen-Kopelman algorithm for distributed memory architectures [J]. Comput. Phys. Commun.,2000,130(1-2):118-129.
    93. M. E. J. Newman and R. M. Zif. Efficient Monte Carlo Algorithm and High-Precision Results for Percolation[J]. Phys. Rev. Lett.,2000,85(19):4104-4107
    94. Daniel Tiggemann. Percolation on Growing Lattices[J]. International Journal of Modern Physics C,2006,17(8): 1141-1150
    95. Ahmed Al-Futaisi, Tadeusz W. Patzek. Extension of Hoshen-Kopelman algorithm to non-lattice environments. Physica A,2003,321(3-4):665-678
    96. Hestir K. and J. C. S. Long Analytical Expressions for the Permeability of Random Two-Dimensional Poisson Fracture Networks Based on Regular Lattice Percolation and Equivalent Media Theories[J]. J. Geophys. Res.,1990, 95(B13):21565-21581
    97. M. Canals, M. Ayt Ougoudal. Percolation on anisotropic media, the Bethe lattice revisited. Application to fracture networks[J]. Nonlinear Processes in Geophysics,1997,4(1):11-18
    98. Tayfun Babadagli. Analysis of the Displacement in Fractal Lattices with Different Number of GridsfJ]. Fractals, 2005,13(3)207-213
    99. S. Sisavath, V. Mourzenko, P. Genthon, et al. Geometry, percolation and transport properties of fracture networks derived from line data[J]. Geophys. J. Int.,2004,157(2):917-934
    100. Sait I. Ozkaya, Joerg Mattner. Fracture connectivity from fracture intersections in borehole image logs[J]. Computers& Geosciences,2003,29 (2):143-153
    101. T. Chelidze, Yu. Kolesnikov, T. Matcharashvili. Seismological criticality concept and percolation model of fracture[J]. Geophys. J. Int.,2006,164(1):125-136
    102. Liebowitz, H. Fracture, vol.Ⅰ-Ⅶ[M]. New York:Academic Press,1984.
    103. Anderson, T. Fracture mechanics:Fundamentals and AppIications[M], Boca Raton:CRC Press.,1991.
    104.范天佑编著.断裂力学基础[M].南京市:江苏科学技术出版社,1978.
    105. Bolotin, V.V. Mechanics of Fracture[M]. Boca Raton:CRC Press,1998
    106. Peter Leary. Deep borehole log evidence for fractal distribution of fractures in crystalline rock[J]. Geophysical Journal International,1991,107(3):615-627
    107. Chelidze T. Reuschle T.& Gueguen Y. A theoretical investigation of the fracture energy of heterogeneous brittle materials[J]. J. Phys. Cond. Matter,1994,6(10):1857-1868.
    108. Scholz C. Microfracturing and inelastic deformation of rocks in compression[J]. J. geophys. Res.,1968,73(4): 1417-1432.
    109. Brady B.T. Theory of earthquakes[J]. Pure appl. Geophys.,1974,112(4):701-714.
    110. Zhurkov S., Kuksenko V., Petrov V., et al, On the prognosis of fracture of rocks[J]. Izvestia Ac. Sci. USSR, Physics of Earth,1977,6:l-18(in Russian).
    111. T. Reuschle, M. Darot and Y. Gueguen. Mechanical and transport properties of crustal rocks:from single cracks to crack statistics[J]. Physics of The Earth and Planetary Interiors,1989,55(3-4):353-360
    112. Sahimi M. Applications of Percolation Theory[M]. Taylor& Francis,1994.
    113. T. L. Chelidze. Percolation and fracture[J]. Physics of The Earth and Planetary Interiors,1982,28(2):93-101
    114. Chelidze T. Percolation Theory in the Mechanics of Geomaterials[M]. Moscow:Nauka,1987. (in Russian).
    115. Chelidze T. Fractal damage mechanics of geomaterials[J], TerraNova,1993,5:421-437.
    116. Chelidze T, Matcharashvili T., Gogiashvili J., et al. Triggering and synchronization of stick slip:waiting times and frequency-energy distribution[J]. Tectonophysics,2006,424:139-155.
    117. Y. Gueguen, T. Chelidze and M. Le Ravalec. Microstructures, percolation thresholds, and rock physical properties[J].Tectonophysics,1997,279(l-4):23-35
    118.谢和平,陈至达.分形几何与岩石断裂[J].力学学报,1988,20(3):264-275
    119. T. Chelidze and Y. Gueguen. Evidence of fractal fracture[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts.1990,27(3):223-225
    120.周维垣,剡公瑞.分形几何在岩体断裂损伤力学中的应用[C].//水电与矿业工程中的岩石力学问题——中国北方岩石力学与工程应用学术会议文集,郑州,1991:82-91
    121.周维垣,杨强编著.岩石力学数值计算方法[]M.北京市:中国电力出版社,2005:574-575.
    122.周维垣,剡公瑞.岩石、混凝土类材料断裂损伤过程区的细观力学研究[J].水电站设计,1997,13(1):1-9
    123.邵鹏,贺永年.脆性岩石细观损伤分析与临界破坏行为[J1.煤炭科学技术,2001,29(7):31-33
    124. S. C. Blair and N. G. W. Cook. Analysis of compressive fracture in rock using statistical techniques:Part Ⅱ. Effect of microscale heterogeneity on macroscopic deformationfJ]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):849-861
    125. A. K. Stepanov. Failure criterion of a solid with a hierarchy of defects of the same physical type[J]. Theoretical and Applied Fracture Mechanics,1998,29(3):219-222
    126.金乾坤,杨永琦.岩石爆破的逾渗模型[J].爆破,1996,13(2):7-11
    127.邵鹏,张勇,贺永年等.岩石爆破逾渗断裂行为与块度分布研究[J].中国矿业大学学报,2004,33(6):635-640
    128. C.J. Allegre, J. L. Le Mouel, and A. Provost, Scaling rules in rock fracture and possible implications for earthquake prediction[J], Nature,1982,297(5861):47-49
    129. T.L. Chelidze, Percolation theory as a tool for imitation of fracture process in rocks[J], Pure and Applied Geophy., 1986,124(4-5):731-748
    130. M.Y. Choi and B.A. huberman. A dynamical model for the stick-slip behavior of faults[J]. Journal of Physics C: Solid State Physics,1984,17(26):L673
    131. Lomnitz-Adler J. Asperity models and characteristic earthquakes [J]. Geophys. J. R. astron. Soc,1985,83(2): 435-450
    132. Trifu C I, Radulian M. Asperity distribution and percolation as fundamentals of an earthquake cycle[J]. Phys. Earth Planet. Interiors,1989,58(4):277-288
    133. Narbik Munukian. A Statistical Model of Fractures[D], University of California:Los Angeles,1990
    134. Bebbington M, Vere-Jones D, Zheng X. Percolation Theory:a model of rock fracture?[J]. geophys. J. Int,1990, 27(4):215-220
    135. Muhammad Sahimi, Michelle C. Robertson and Charles G. Sammis. Relation between the earthquake statistics and fault patterns, and fractals and percolation[J]. Physica A:Statistical and Theoretical Physics,1992,191(1-4):57-68
    136.吴忠良.逾渗模型的地震学含义[J].地球物理学进展,1992,7(4):38-45
    137. Sahimi M, Robertson M C, Sammis C G. Fractal distribution of earthquake hypocenters and its relation to fault patterns andpercolation[J]. Phys. Rev. Lett.,1993,70(14):2186-2189
    138. Robertson M C, Sammis C G, Sahimi M, et al. Fractal analysis of three-dimensional spatial distributions of earthquakes with a percolation interpretation[J]. J. Geophys. Res.,1995,100(Bl):609-620
    139.彭自正,于殚业,许云廷等.逾渗与岩石破裂的计算机模拟研究[J].西北地震学报,1996,18(1):22-28
    140. Wu Z L. Implications of a percolation model for earthquake'nucleation'[J]. Geophys. J. Int.,1998(1),133: 104-110
    141.彭自正,牛志仁.岩石破裂度MR及其在地震孕育演化研究中的应用[J].华南地震,1999,19(2):20-24
    142.柯善明,顾浩鼎,翟文杰.地震活动的逾渗模型及临界状态的研究[J].地震学报,1999,21(4):379-386
    143.柯善明,顾浩鼎,翟文杰.利用逾渗模型研究辽宁地区的地震活动[J].东北地震研究,2000,16(3):1-6
    144. S. G Abaimov, K. F. Tiampo, D. L. Turcotte,et al. Recurrent frequency-size distribution of characteristic eventsfJ]. Nonlin. Processes Geophys.,2009,16(2),333-350
    145. Dietrich Stauffer, Amnon Aharony. Introduction to Percolation Theory[M]. London, Taylor & Francis,1992
    146. Xing Zhang, David J. Sanderson. Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses[M]. Pergamon Press,2002:113-130
    147. Berkowitz B, Balberg Ⅰ. Percolation theory and its applications to groundwater hydrology[J]. Water Resour. Res., 1993,29(4):775-794.
    148. Sahimi M. Flow and Transport in Porous Media and Fractured Rocks[J]. Journal of Petroleum Science and Engineering,1996,16(1-3):181-182
    149. Xing Zhang, D. J. Sanderson. Numerical study of critical behaviour of deformation and permeability of fractured rock masses[J]. Marine and Petroleum Geology,1998,15(6):535-548.
    150. Mo H, Bai M, Lin D, Roegiers JC. Study of flow and transport in fracture networks using percolation theoryfJ]. Applied Mathematical Modelling,1998,22(4):277-291.
    151. Kimich R, Klemm A, Weber M. Flow, diffusion, and thermal convection in percolation clusters:NMR experiments and numerical FEM/FVM simulations[J]. Magn Reson Imaging,2001,19(3-4):353-61.
    152. Brian Berkowitz. Analysis of Fracture Network Connectivity Using Percolation Theory[J]. Mathematical Geology, 1995,27(4):467-483
    153. Muhammad Sahimi. Non-linear and non-local transport processes in heterogeneous media:from long-range correlated percolation to fracture and materials breakdown[J]. Physics Reports,1998,306(4):213-395
    154.韩冰,叶自桐,周创兵.单裂隙岩体非饱和临界状态渗流特性初步研究[J].水科学进展,2000,11(1):1-7
    155.胡雪蛟,刘翔,杜建华,王补宣.非固结多孔介质突破压力的逾渗模型[J].清华大学学报(自然科学版),2001,41(6):85-88
    156.冯增朝.低渗透煤层瓦斯抽放理论与应用研究[D].太原:太原理工大学博士论文,2005:14-29
    157.吕兆兴,冯增朝,赵阳升.孔隙介质中渗流团分形维数的模拟计算方法[J].地下空间与工程学报,2005,1(6):870-873
    158.冯增朝,赵阳升,文再明.煤岩体孔隙裂隙双重介质逾渗机理研究[J].岩石力学与工程学报.2005,24(2):236-240
    159.冯增朝,赵阳升,吕兆兴.强随机分布裂隙介质的二维逾渗规律研究[J].岩石力学与工程学报,2006,25(增2):3904-3908
    160.朱大勇,范鹏贤,郭志昆,钱七虎.裂隙岩体逾渗模型中渗透概率递推矩阵[J].岩石力学与工程学报.2007,26(2):262-267
    161. R.F. Smalley Jr., D.L. Turcotte, and S.A. Solla, A renormalization group approach to stick-slip behavior of faults[J], J. Geophys. Res.,1985,90(B2):1894-1900
    162.施泽进,涂涛.裂隙连通性研究的重正化群方法——以一个二维裂隙模式为例[J].成都理工学院学报,1997,24(3):58-63
    163. Hirata T. Fractal dimension of fault systems in Japan:Fractal structure in rock fracture geometry at various scales[J]. PAGEOPH,1989,131(1-2):157-170
    164. A. Sornette, D. Sornette. Earthquake rupture as a critical point:consequences for telluric precursors [J]. Tectonophysics,1990,179(3-4):327-334
    165. A.G. Tumarkin, M.G. Shnirman. Critical effects in hierarchical media[J], Computatinal Seismology,1992, (25): 63-71
    166. William Ⅰ. Newman; Andrei M. Gabrielov; Thomas A. Durand,et al. An exact renormalization model for earthquakes and material failure statics and dynamics[J]. Physica D,1994,77(1-3):200-216
    167. Hubert Saleur, Charles G. Sammis and Didier Sornette. Renormalization group theory of earthquakesfJ]. Nonlinear Processes in Geophysics.1996,3(2):102-109
    168. T. R. Madden. Microcrack connectivity in rocks:A renormalization group approach to the critical phenomena of conduction and failure in crystalline rocks[J]. J. Geophy. Res.,1983,88(B1):585-592
    169. W. I. Newman, L. Knopoff. Crack fusion dynamics:A model for large earthquakes[J]. Geophys Res. Lett.,1982, 9(7):735-738
    170. W. I. Newman, L. Knopoff. A model for repetitive cycles of large earthquakes[J], Geophys Res. Lett.,1983,10(4), 305-308
    171. Turcotte D L. Fractals and fragmentation[J]. J Geophys Res,1986,91(B2):1921-1926
    172. D. L. Turcotte, R. F. Smalley, Sara A. Solla. Collapse of loaded fractal trees[J]. Nature,1985,313(6004):671-672
    173.顾浩鼎,孙文福.地震活动的自组织和演化[J].地球物理学报,1992,35(1):25-36
    174.顾浩鼎,陈运泰.地震空区的物理意义和震源系统的无标度性[C].//陈运泰主编.中国地震学研究进展.北京:地震出版社,1997:37-40
    175.金龙.岩石强度的分形效应和岩石破裂的重正化群模型研究[D].成都:西南交通大学,1993
    176.金龙,王锡朝.岩石材料渐变破裂的重正化群方法研究[J].石家庄铁道学院学报,2001,14(4):47-50
    177.汤士杰,陈沅江,潘长良等.岩石蠕变破坏过程的自组织特征分析[J].勘察科学技术,2004,(1):15-20
    178. Dusan Krajcinovic, Antonio Rinaldi. Thermodynamics and statistical physics of damage processes in quasi-ductile solids[J]. Mechanics of Materials,2005,37(2-3):299-315
    179. MENG Xiang-rui, GAO Zhao-ning, WANG Xiang-qian. Study on critical conditions for rock failure by means of group renormalization[J]. Journal of Coal Science & Engineering(China).2009,15(1):50-54
    180. Shao Peng et al. Evolution of blast-induced rock damage and fragmentation prediction[C].//The 6th International Conference on Mining Science & Technology, Procedia Engineering.2009:585-591
    181.王浩,张东明,尹光志.重正化模型及其在岩石失稳破坏中的应用[J].重庆大学学报(自然科学版),2005,28(2):124-127
    182. Carpinteri A. Scaling laws and renormalization groups for strength and toughness of disordered materials[J]. International Journal of Solids and Structures,1994,31(3):291-302.
    183. A. Carpinteri, P. Cornetti, et al. Cohesive crack model description of ductile to brittle size-scale transition: dimensional analysis vs. renormalization group theory [J]. Engineering Fracture Mechanics,2003,70(14): 1809-1839
    184.陈忠辉,谭国焕,杨文柱.岩石脆性破裂的重正化研究及数值模拟[J].岩土工程学报,2002,24(2):184-187
    185.周宏伟,谢和平.岩土介质渗流的重正化群研究[J].西安矿业学院学报,1998,18(2):97-102.
    186.周宏伟,谢和平.孔隙介质渗透率的重正化群预计[J].中国矿业大学学报,2000,29(3):244-248
    187.王连国,宋扬.煤层底板突水自组织临界特性研究[J].岩石力学与工程学报.2002,21(8):1205-1208
    188.谢和平.深部资源开采诱发的工程灾害与基础科学问题[C].//谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践.北京:科学出版社,2006:3-14.
    189.姚建国.中国矿业可持续发展与煤矿开采环境问题—21世纪初矿山岩石力学面临的新机遇和挑战[J].岩士力学,2003,24(增刊):633-635.
    190.周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    191.李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1987.
    192.林韵梅.实验岩石力学[M].北京:煤炭工业出版社,1984.
    193.张建全,闫保金,廖国华.采动覆岩移动规律的相似模拟实验研究[J].金属矿山,2002,(8):10-12,39.
    194.康建荣,王金庄,胡海峰.相似材料模拟试验经纬仪观测方法分析[J].矿山测量,1999,(01):43-46
    195.王怀文,周宏伟,左建平等.光测方法在岩层移动相似模拟实验中的应用[J].煤炭学报,2006,31(3):278-281.
    196.王志国,周宏伟,谢和平等.深部开采覆岩破坏移动规律的试验研究[J].实验力学,2008,23(6):503-510.
    197.彭苏萍,孟召平,李玉林.断层对顶板稳定性影响相似模拟试验研究[J].煤田地质与勘探,2001,29(3):1-4.
    198.赵国旭.大条带综放开采引起的地表移动变形规律及控制研究[D].北京:中国矿业大学(北京校区),2000:18-25.
    199.张建全.煤矿采动覆岩离层发展时空规律及应用研究[D].北京:北京科技大学,2002:22-54
    200.谢和平.分形理论在采矿科学中的应用与展望[C].//谢和平等主编.跨世纪的矿业科学与新技术—中国科协第14次“青年科学家论坛”报告文集,1996:21-39。
    201.Takyuki Hirata日本断层系的分维[C].//地球科学中的分形研究,中国科学技术出版社,1989,89-94。
    202. Mandelbrot B B. Fractal:Form,Chance and Dimension[M]. San Francisco:Freeman,1977
    203. Mandelbrot B B.The Fractal Geometry of Nature[M]. San Francisco:Freeman,1983
    204. Falconer K. The Geometry of Fractal Sets[M]. Cambridge University Press.,1985
    205. Falconer K. Fractal Geometry-Mathematical Foundations and Applications[M].New York:Wiley,1990
    206. Feder J. Fractals[M].New York:Plenum Press,1988
    207.李翊神,汪克林,郭光灿等.非线性科学选讲M].合肥:中国科技大学出版社,1994
    208.董连科.分形理论及其应用[M].沈阳:辽宁科学技术出版社,1991
    209.彭瑞东,谢和平,鞠杨.二维数字图像分形维数的计算方法[J].中国矿业大学学报,2004,33(1):19-24
    210.许家林,钱鸣高,高红新.采动裂隙实验结果的量化方法研究[J].辽宁工程技术大学学报(自然科学版),1998,17(6):586-589
    211.许家林,钱鸣高.应用图像分析技术研究采动裂隙分布特征[J].煤矿开采,1997,(1):37-39
    212.刘子侠.基于数字近景摄影测量的岩体结构面信息快速采集的研究应用[D].吉林大学,2009
    213.吴志勇,聂德新,李雪峰,张景科.基于数码图像的岩体结构信息采集处理研究[J].岩石力学与工程学报,2003,22(增2):2568-2571
    214.渠文平.基于数字图像处理技术的岩石细观量化试验研究[D].河海大学,2006
    215.徐文杰,胡瑞林,岳中琦.基于数字图像处理的土石混合体细观结构[J].辽宁工程技术大学学报(自然科学版),2008,(01):51-53
    216.王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991:1-59,221-228
    217.王泳嘉,邢纪波.离散单元法同拉格朗日元法及其在岩土力学中的应用[J].岩土力学,1995,16(2):1-14
    218.麻凤海,范学理,王泳嘉.岩层移动动态过程的离散单元法分析[J].煤炭学报,1996,21(04):388-392
    219.麻凤海,杨帆.地层沉陷的数值模拟应用研究[J].辽宁工程技术大学学报(自然科学版),2001,20(03):257-261
    220.张建全,于友江.岩层移动动态过程的离散单元法分析[J].水文地质工程地质,2004,(2):9-13
    221.王树仁,王金安,戴涌.大倾角厚煤层综放开采顶煤移动规律与破坏机理的离散元分析[J].北京科技大学学报,2005,27(1):5-8
    222.方新秋等,离散元法在分析综放采场矿压中的应用[J].湘潭矿业学院学报,2003,18(4):11-14
    223.郝志勇等,基于UDEC的保护层开采中覆岩移动规律的数值模拟与分析[J].中国矿业,2007,16(7):81-84
    224.王旭锋等,河下采煤覆岩采动裂隙分布特征的数值分析[J].矿业研究与开发,2008,28(5):61-63
    225.赵洪亮,综放开采覆岩结构破坏与裂隙演化的数值分析[J].煤炭科学技术,2009,37(5):107-110
    226.王亮.巨厚火成岩下远程卸压煤岩体裂隙演化与渗流特征及在瓦斯抽采中的应用[D].中国矿业大学,2009:50-86
    227.冯锦艳.急倾斜煤层开采覆岩破坏机理与雨水渗流规律研究[D].北京科技大学,2006:100-133
    228.王金安等,急倾斜煤层开采覆岩裂隙演化与渗流的分形研究[J],煤炭学报,2008,33(2):162-165
    229. Cundall P A. A computer model for simulating progressive large scale movements in blocky systems[C]. //Proceedings of the Symposium of the International Society of Rock Mechanics, Nancy, France,1971, Vol.1, Paper No.II-8.
    230.谢和平,陈忠辉著.岩石力学[M],北京:科学出版社,2004:298-302
    231. Itasca Consulting Group, Inc. Universal Distinct Element Code User's Guide (UDEC3.1)[M]. Minnesota USA. 2000:1-2
    232.袁亮著.松软低透煤层群瓦斯抽采理论与技术[M].煤炭工业出版社,2004:82-87
    233.刘泉声.地应力测试及岩石物理力学性质试验研究报告[R].中国科学院武汉岩土力学研究所,2004,武汉
    234.粱正召.三维条件下的岩石破裂过程分析及其数值试验方法研究[D].沈阳:东北大学,2005:153-156
    235. Donald L. Turcotte. Fractals and Chaos in Geology and GeophysicsfM]. Cambridge University Press,1992:1-221
    236.吴忠良著.地震震源物理中的临界现象[M].北京市:地震出版社,2000:33-70
    237.邵鹏著.断续节理岩体中弹性波动力效应研究[M].徐州市:中国矿业大学出版社,2005:61-70
    238.谭云亮,刘传孝,赵同彬著.岩石非线性动力学初论[M].北京市:煤炭工业出版社,2008:234-253
    239.王志国,周宏伟,谢和平.深部开采上覆岩层采动裂隙网络演化的分形特征研究[J].岩土力学,2009,30(8):2403-2408.
    240.中国地震局监测预报司编著.实验场区地震预报新技术新方法[M].北京市:地震出版社,2002:142-159.
    241. Hudson J A, Fairhurst C. Tensile strength, Weibull's theory and a general statistical approach to rock failure [C]. //The Proceedings of the Southampton 1969 Civil Engineering Materials Conference.1969.901-914.
    242.郭贻诚,王震西主编.非晶态物理学[M].北京市:科学出版社,1984:53-231
    243. J. Hoshen, R. Kopelman and E. M. Monberg. Percolation and cluster distribution Ⅱ. layers, variable-range interactions, and exciton cluster model[J]. Journal of Statistical Physics,1978,19(3):219-242
    244.郭奉贤等.矿山压力观测与控制[M].北京:煤炭工业出版社,2005
    245.杨怀敏,崔景昆,刘惠德.大倾角煤层轻放工作面顶煤顶板运移量化分析[J].煤炭工程,2003,(04):
    246.李庶林.岩层移动监测及预测研究[J].矿业研究与开发,1998,18(2):16-18
    247.常来山,肖辉.眼前山露天矿北帮中上部滑体位移监测与治理对策研究[J].有色金属(矿山部分),2006,(03):28-29
    248.吴忠,庞俊勇.鹤壁六矿2501轨道岩中巷支护试验段位移监测分析[J].焦作工学院学报,1994,(04):47-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700