切纵流结构谷物脱粒分离理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱粒分离装置是联合收获机的核心部件,它的脱粒分离性能直接决定着联合收获机整机的工作性能,对谷物脱粒分离理论与试验进行研究是提高联合收获机作业性能的关键。本文针对切纵流脱粒分离装置的结构特点,研究谷物在切纵流脱粒分离空间中的运动模型,探索切纵流脱粒分离装置最优结构配置方案,提高脱粒分离装置的输送、脱粒、分离能力;通过试验探索切纵流脱粒分离装置性能与其影响因素之间的关系,建立切纵流结构的脱粒分离模型,得出切纵流脱粒分离装置在水稻和小麦高效、高性能收获时的最佳工作参数;这对于提高切纵流联合收获机的技术水平,加快产品的升级换代,推动我国收获机械行业的技术进步等均具有重要的科学意义和实用价值。本文在总结国内外相关研究现状的基础上,采用理论研究、数值计算与试验验证相结合的方法开展研究工作,本文的研究工作主要包括以下几个方面的内容:
     1、基于谷物特性设计结构可变的切流滚筒和纵轴流滚筒以及用于稻麦农作物脱粒的5种脱粒元件;通过对切纵流结构脱粒分离性能影响因素的分析,利用概率理论建立切流滚筒和纵轴流滚筒的脱粒分离概率模型,通过纵轴流滚筒复脱分离模型计算出滚筒上脱粒元件的最佳排列组合方式;通过建立切纵流脱粒分离过程的物料流模型,推导谷物从切流脱粒分离装置喂入纵轴流脱粒分离装置的运动模型;通过建立切纵流结构的变质量脱粒分离模型,对切纵流脱粒分离装置分别进行变质量和恒质量性能对比试验。
     2、选取脱粒间隙、滚筒转速、喂入螺旋头、脱粒元件及其排列组合方式等为试验因素,对切纵流脱粒分离装置开展多工况多因素的脱粒分离台架试验,建立主因素与未脱净损失率、夹带损失率、籽粒破碎率、脱粒分离功耗等性能指标之间的数学模型,分析其对性能指标影响的显著程度,推导切纵流脱粒装置的多目标多因素指标评价方法;在切纵流脱粒分离装置试验台上,通过自行设计的脱粒分离长度可调的纵轴流滚筒,进行水稻脱粒分离性能试验和籽粒分布试验研究,分析纵轴流滚筒下脱出籽粒的分布规律,建立纵轴流滚筒脱出籽粒的分布模型,计算纵轴流滚筒长度;通过计算纵轴流滚筒顶盖导流板的最佳导流角对纵轴流滚筒长度进行优化,确定纵轴流滚筒长度的最优值,为切纵流联合收获机脱粒分离装置工作参数的选择和结构设计提供依据。
     3、通过切纵流结构的脱粒分离性能试验确定纵轴流滚筒上脱粒元件的最佳结构参数,并对各切流滚筒和纵轴流滚筒组合方式进行喂入量为7kg/s的水稻脱粒分离性能检测;对影响纵轴流滚筒脱粒分离功耗和籽粒损失率的滚筒转速、脱粒间隙和齿间距等主要影响因素进行水稻台架试验,通过对单因素试验结果的脱粒分离功耗和籽粒总损失率进行归一化处理,并对影响脱粒分离性能的参数进行回归分析和回归效果的显著性检验,通过控制脱粒分离性能预测纵轴流滚筒的最佳参数以及最佳参数的置信区间。
     4、在一切纵流脱粒分离装置上进行喂入量为6kg/s~8kg/s的水稻脱粒分离性能试验,利用扭矩传感器和工控机对一切纵流脱粒分离装置的水稻脱粒分离功耗进行记录,提取纵轴流滚筒脱粒分离功耗;通过在切纵流脱粒分离装置试验台上进行小麦脱粒分离性能试验,获取脱粒分离功耗和籽粒总损失性能指标,借助复数幅值建立脱粒分离最佳性能指标可行域,将脱粒分离功耗和籽粒损失率转换成平面几何中的向量指标,通过计算脱粒分离性能向量指标方向角正切值进行分析比较,寻找最优的脱粒分离结构和运动参数。
     5、在切纵流脱粒分离装置试验台上进行喂入量为6kg/s~8kg/s的水稻和小麦脱粒分离性能试验,对切纵流脱粒分离装置脱出混合物分布特性和分布规律进行试验测定与分析,通过脱分系数矩阵建立籽粒未脱分率、脱分杂余率、脱分籽粒率之间的脱分矩阵方程,为预测切纵流脱粒分离装置的未脱净籽粒损失提供预测模型,为切纵流脱粒分离装置的设计提供依据;将研究所得结果移植到切纵流联合收获机上,通过田间试验验证该装置的脱粒分离性能参数,为其产业化应用提供依据。
A threshing and separation device is the core component of combine harvester. The threshing and separation performance of the device directly decide the work performance of the combine harvester. So, the study of threshing and separation performance is the key step to improve harvesting performance. In this paper, stalk motion model was researched when the threshed stalk was movement in the threshing and separation space, and the optimal structure scheme of tangential-longitudinal axial device was exploded to improve the conveying, threshing, separation performance of threshing and separation device, which based on the structure characteristics of tangential-longitudinal axial device. Threshing and separation model of the tangential-longitudinal axial device was established to learn the optimum working parameters of the device with high efficiency and high performance threshing for wheat and rice, by the experimental exploration of relations between threshing and separation device and the harvesting performance influence factors. These were of great scientific significance and practical value to improving the technical level of tangential-longitudinal axial combine harvester, to accelerate the upgrading of products, to promote China's harvest machinery industry technical progress. Based on summarizing the research status at home or abroad and the existing research work of project group, the related research works were carried out by the combined method of theoretical research, numerical simulation and experimental verification. The major research work is as follows:
     Based on the grain characteristic, the variable structure tangential axial drum and longitudinal axial drum were designed. Five thresher bars were designed for the tangential axial drum and longitudinal axial drum to thresh rice and wheat crops. The probabilistic model of threshing and separation with five thresher bars were estabilsed. The best combinations of thresher bars on the longitudinal axial drum were obtained by calculating the probabilistic model. The material flow model of tangential-longitudinal axial structure was established to derive the motion model of rice and wheat crops, which were from tangential axial drum to the longitudinal axial drum. The variable mass model of threshing and separation was established for the tangential-longitudinal axial structure, and the check experiment was executed on the constant mass and variable mass.
     Threshing and separation test with multiple factors and conditions were executed for the experimental factor of drum rotational speed, threshing clearance, thresher bar, arrangement of thresher, and the thresher bar tooth spacing. The mathematical models between main influence factors and performance index of unthreshing grain loss, unseparation grain loss, broke grain loss and threshing power, were executed for tangential-longitudinal axial structure. Significant level of influencing factors to the performance index was studied. The evaluation methodology of multiple factors and multiple targets were deviced based on the influencing factors. Rice threshing and separation performance test and grain distribution test were executed and studied by the adjustable length of longitudinal axial drum designed by ourselves, on the test bench of tangential-longitudinal axial device. The threshed grain distribution equation of longitudinal axial drum was established to calculate the length of longitudinal axial drum. The length of longitudinal axial drum was optimization to learn the optimal length value verified by the rice threshing and separation test, based on calculating the best guide angle of longitudinal axial drum cover plate. The above researches provide the design basis of longitudinal axial drum.
     The structure and working parameters of tangential-longitudinal axial device was optimization studied by the method of theoretical analysis and experimental verification. The combination mode of thresher bars on the tangential axial drum and longitudinal axial drum were verified by threshing and separation performance testing with7kg/s rice harvesting. Three main influence factors of drum threshing speed, threshing clearance, and the thresher bars tooth spacing were studied on the rice test with the feed rate of7kg/s. The threshing power and total grain loss rate were handled by the normalization method with the single factor test results. The parameters infecting the threshing and separation performance were studied by regression analysis and significance lest of regression effect. Optimum parameters and their confidence interval were forecast and test verified by controlling the threshing and separation performance.
     The threshing and separation torque values of longitudinal axial drum were collected with torque sensor, when the threshing and separation test was executed with the feed rate of6kg/s~8kg/s on the threshing and separation device. The performance index of threshing and separation power and grain total loss were learned by wheat bench test on the tangential-longitudinal axial device. The feasible regions of threshing and separation optimal performance index were studied by the plural amplitude calculation method. Vector index angle tangent value of threshing and separation performance were calculated to learn the best structure and motion parameters, by changing threshing and separation power and grain total loss into plane geometry vector index.
     Distribution characteristics and distribution regularity of separation mixture under longitudinal axial drum were determined and analysis, by the wheat threshing performance test with feed rate of6-8kg/s on the threshing and separation device. Threshing and separation matrix equation of unthreshing grain rate, threshing and separation impurity rate, and threshing and separation grain rate was established, based on distribution characteristics and distribution regularity of separation mixture. The above researches provide the selection of working parameters and design of drive structure for tangential-longitudinal axial combine harvester. The above optimized results were transferred to tangential-longitudinal axial combine harvester to test the harvesting performance of the threshing and separation device in the field rice harvesting.
引文
[1]周淼平,任丽娟,张旭,等.小麦产量性状的QTL分析[J].麦类作物学报,2006,26(4):35-40.
    [2]樊增强,我国粮食安全问题不容忽视[J].种业论坛,2011(12):6-7.
    [3]Seema, K., Vinay, D. and Suneeta, S. A Comparative Study on the Manual Beating of Paddy and Manually Operated Paddy Thresher on Farm Women[J]. J. Hum. Ecol.,2010,32(3):183-187.
    [4]Papademetriou, M. K., Dent, F. J. and Herath, E. M. Bridging the Rice Yield Gap in the Asia-Pacific Region [M]. FAO, Regional Office for Asia and the Pacific,2000.
    [5]姚玉林,吕金庆,邹振萍.国内外谷物联合收割机的发展预测[J].农机化研究,1999(3):10-13.
    [6]张成堂,商立今.脱粒机械[M].北京:中国农业机械出版社,1985.
    [7]尚书旗.农业机械应用技术[M].北京:高等教育出版社,2002.
    [8]李漫江,何军,冯欣.脱粒机械与脱粒装置[J].农机化研究,2004(3):124-125.
    [9]高焕文,李问盈,李洪文.我国农业机械化的跨世纪展望[J].农业工程学报,2003,16(2):9-12.
    [10]王岳,曹扬,夏晓东,等.双季稻区收获农艺及先进适用联合收割机型谱[J].农业工程学报,2002,18(2):68-71.
    [11]孟繁昌,庞风斌,叶耘,等.联合收获机水稻收获性能对比试验[J].农业机械学报,2005,36(5):141-143.
    [12]衣淑娟,陶桂香,毛欣.两种轴流脱粒分离装置脱出物分布规律对比试验研究[J].农业工程学报,2008,24(6):154-156.
    [13]陈霓,黄东明,陈德俊,等.风筛式清选装置非均布气流清选原理与试验[J].农业机械学报,2009,40(4):73-77.
    [14]Peter, W. and Heinz, D. K. State of the Art of Combine Harvesters for grain Harvesting [J]. Harvest Technology,2003,58(4):234-235.
    [15]Lamp, B. J. J. and Buchele, W. F. Centrifugal threshing of small grains [J]. Transactions of the ASAE, 1960,3(2):24-28.
    [16]Buchanan, J. C. and Johnson, W. H. Functional characteristics and analysis of a centrifugal threshing and separating mechanism[J]. Transactions of the ASAE,1964,7(4):460-468.
    [17]Vas, F. M. and Harison, H. P. The effect of selected mechanical threshing parameters on kernel damage and threshibility of wheat[J]. Canadian Agric. Eng.,1969(11):88-87.
    [18]Long, L. D., Handy, M. Y. and Johnson, W. H. A Study of the Effects of Centrifugal force Upon wheat Separation [M]. Ohio State University,1966.
    [19]Kawamura, N. and Hisashi, H. A basic study on harvesting of standing grain [J]. J. of the Society of Agr. Machinery.1971,33(2):156-162.
    [20]Singh, K. N. and Burkhardt, T. H. Rice plant properties in relation to lodging [J]. Transactions of the ASAE,1974,17(6):1169-1172.
    [21]Lee, S. W. and Huh, Y. K. Threshing and cutting forces for Korean rice [J]. Transactions of the ASAE, 1984(27):1954-1957.
    [22]Trollope, J. R. A mathematical model of the threshing process in a conventional combine-thresher[J]. Journal of Agricultural Engineering Research,1982,27(2):119-130.
    [24]Ichikawa, T. and Sujiyama, T. Development of a new combine equipped with screw type threshing and separating mechanism [J]. JARQ-Japan Agricultural Research,1986(20):31-37.
    [25]Rastogi, N. K., Rajesh, G. and Shamala, T. R. Optimization of enzymatic degradation of coconut residue [J]. Journal of Science and Food Agriculture,1998(76):129-134.
    [26]Szot, B., Ferrero, A. and Molenda, M. Binding force and mechanical strength of rice grain [J]. International Agrophysics,1998(12):227-230.
    [27]Ichikawa, T., Sugiyama, T., Takahashi, H. and Miyahara, S. Equipment for quantitative measurement of shattering habit of paddy [J]. JARQ-Japan Agricultural Research,1990(24):34-42.
    [28]Tsuneo, K., Koichi, S. and Masaru, T. Measurement of force for detaching single grain of rice[J]. Journal of the Japanese Society of Agricultural Machinery,2002(16):116-122.
    [29]Inoue, E., Ueka, I., Hirai, Y., Matui, M., Fukushima, T. and Mori, K. Evaluation of strength distribution on detachment force of paddy grain [J]. Science Bulletin of the Faculty of Agriculture Kyushu University, 2003(8):27-32.
    [30]Agha, S. K., Oad, F. C. and Siddiqui, M. H. Grain Losses of Wheat as Affected by Threshing Timings [J]. Int. J. Agri. Biol.,2004,6(6):1170-1171.
    [31]Hosoi, J., Ushiki, J., Sakai, N., Aokii, M. and Tezuka, M. Seed shattering habit of weedy rice (Oryza sativa) in Nagano prefecture, Japan, and germination ability of shattered seeds [J]. Japanese Journal of Crop Science,2008(77):321-325.
    [32]Azouma, O. Y, Porosi, M. and Yamaguchi, K. Design of throw-in type rice thresher for small scale farmers [J]. Indian Journal of Science and Technology,2009(9):10-14.
    [33]Alizadeh, M. R. and Allameh, A. Threshing force of paddy as affected by loading manner and grain position on the panicle [J]. Res. Agr. Eng.,2011(57):8-12.
    [34]吴叙田,陆庆惠.应用原子示踪技术作物在轴流滚筒内的运动规律[J].粮油加工与食品机械,1983(1):43-47.
    [35]王成芝.利用原子示踪技术测定谷物在纵置式轴流滚筒内部的运动规律[J].农业机械学报.1984(1):97-100.
    [36]邱高伟,郭玉明,郑德聪.新型小籽粒脱粒机机构的动力学分析[J].华中农业大学学报,2005(10):106-10)8.
    [37]董成茂,蒋亦元.立置轴流滚筒的理论研究(上&下)[J].农业机械学报,1989(3):29-37.
    [38]万金宝,赵学笃,纪春千等.传统脱粒装置的数学模型及应用[J].农业机械学报,1990,21(2):21-28.
    [39]张认成,桑正中.轴流脱粒空间谷物运动仿真研究[J].农业机械学报,2000,31(1):55-57.
    [40]张认成,桑正中.联合收割机轴流脱粒过程的动力学仿真[J].农业机械学报,2001,32(3):58-60.
    [41]杨方飞,阎楚良.谷物在纵向轴流滚筒脱粒空间中的运动状态分析[J].农业机械学报,2008,39(11):48-51.
    [42]杨方飞,阎楚良,杨炳南.联合收获机纵向轴流脱粒谷物运动仿真与试验[J].农业机械学报,2010,41(12):67-71.
    [43]衣淑娟,汪春,毛欣,等.轴流滚筒脱粒后自由籽粒空间运动规律的观察与分析[J].农业工程学报,2008,24(5):136-139.
    [44]衣淑娟,陶桂香,毛欣.组合式轴流脱分装置动力学仿真[J].农业工程学报,2009,25(7):94-97.
    [45]陶桂香,衣淑娟.组合式轴流装置稻谷运动仿真及高速摄像验证[J].农业机械学报,2009,40(2):84-86.
    [46]毛欣,衣淑娟.组合式轴流装置谷物流运动分析[J].农机化研究,2009(2):112-116.
    [47]陶桂香,衣淑娟.水稻轴流脱粒机理研究现状分析[J].农机化研究,2007(11):239-243.
    [48]Arnold, R. E. Experiments with rasp bars and threshing drums some factors affecting performance [J]. Journal of Agricultural Engineering Research,1964(9):99-134.
    [49]Bartsch, J. A., Haugh, C. G., Athow, K. L. and Peart, R. M. Impact damage to soybean seeds [J]. Transactions of the ASAE,1979,79(15):3037-3042.
    [50]Christian, O. and Osueke, C. O. Frictional Impact Modeling of a Cereal Thresher [J]. American J. of Engineering and Applied Sciences,2011,4 (3):405-412.
    [51]Have, H. T. Research and breeding for mechanical culture of rice in Surinam [J]. Agricultural Research Reports,1967:304-309.
    [52]Nangju, D. and Datta, D. S. K. Effect of time of harvest and nitrogen level on yield and grain breakage in transplanted rice [J]. Agron. J.,1970(62):468-478.
    [53]Bose, S. P. and Chattopadhyay, P. Harvesting and drying of high moisture paddy [J]. Rice Process Eng. Cent. Rep.,1976(2):33-37.
    [54]Biswas, S. K. and Choudhury, N. H. Properties of maturing rice grains [J]. Int. Rice. Com.,1984,33(2): 64-66.
    [55]Shulten, G. G. M. Determination of losses at harvesting and post-harvesting [J]. Int. Rice Com.,1985, 34(1):70-73.
    [56]Klenin, N. I., Popov, I. F. and Sakun, V. A. Agricultural Machines [M].1st Ed. American Publishing Co. Pvt. Ltd., New Delhi,1985, pp:400-418.
    [57]Pinar, Y. Grain losses at harvesting and threshing of paddy in Turkey [J]. Agricultural Mechanization in Asia, Africa and Latin America,1987,18(4):61-64.
    [58]Ichikawa, T., Sugiyama, T. Takahashi, H. and Miyahara, S. Equipment for quantitative measurement of shattering habit of paddy [J]. Jap. Agric. Res.,1990(24):34-42.
    [59]Olaoye, J. O. Evaluation of the physical characteristics of a castor nut in Nigeria [C]. In:Proceedings of the 2nd National Engineering conference. A conference organized by the School of Engineering, Kaduna Polytechnic, Kaduna, Nigeria,1998,5(1):13-22.
    [60]Ibupota, K. A., Bukhari, S. Jamro, G. H. and Rattar, F. M. Field grain losses to wheat by conventional harvest and post harvest methods [J]. Pakistan J. Agric. Res.,1991(12):3153-3158.
    [61]Buckingham, F. Looking at Combine Agricultural Engineering [J]. Compare rotaries and conventional models,1979,1(94):16-20,26.
    [62]Olaoye, J. O. and Oni, K. C. Some physical and mechanical properties of selected grain crops [C]. In: Proceedings of the 2nd International Conference & 23rd Annual General Meeting of the Nigerian Institution of Agricultural Engineers (A division of NSE),2001(23):315-329.
    [63]Feiffer, A., Spengler, A., Doscher, W., Meier, W. F. and Lange, M. Fehleranalyse beim Mahdrusch [J]. Getreide Magazi,2001(2):116-119.
    [64]Alizadeh, M. R. and Bagheri, I. Field performance evaluation of different rice threshing methods [J]. International Journal of Natural and Engineering Sciences,2009,3(3),139-143.
    [65]Bhashyam, M. K., Srinivast, T. and Khan, T. A. Evaluation of grain chalkincss in rice [J]. The Rice Journal,1985(5):13-15.
    [66]Govindaswami, S. and Ghosh, A. K. Studies on moisture, drying method, harvesting time and ripening temperature on the quality of rice varieties (milling and cooking). Central Rice Research Institute, Cuttack, India[C]. Techn. report for the year 1970:59-60.
    [67]Tahir, A. R., Khan, F. U. H. and Ejaz, K. Tcchno-Economic Feasibility of Combine Harvester (Class Denominator)-A Case Study [J]. Int. J. Agri. Biol.,2003,5(1):57-60.
    [68]Simonyan, K. J., Yiljep, Y. D., Oyatoyan, O. B., and Bawa, G. S. Effects of moisture content on some physical properties of Lablab purpureus sweet seeds [JJ. Agric. Eng. Int. CIGR J. Manuscript,2009(11): 1-13.
    [69]Maundc, F. A. Performance evaluation of manual cowpea thresher [J]. African Journal of Agricultural Research,2011,6(30):6412-6415.
    [70]Atis, I., Konuskan, O., Duru, M., Gozubenli, H. and Yilmaz, S. Effect of harvesting time on yield, composition and forage quality of some forage sorghum cultivars[J]. Int. J. Agric. Biol.,2012(14): 879-886.
    [71]王成芝,葛永久.轴流滚筒的试验研究[J].农业机械学报,1982(1):55-72.
    [72]许大兴,杨健明.卧式轴流脱粒分离装置研究[J].农业机械学报,1984(3):57-66.
    [73]王岳,马骥.轴流装置脱粒和茎叶破碎机理的研究[J].农业机械学报,1987(1):80-91.
    [74]王岳,王秀梅,苏迎晨.轴流脱粒装置湿脱缠堵的机理和实验研究[J].农业机械学报,1989(3):57-64.
    [75]丁怀东.轴流滚筒分离凹板的孔格理论设汁探讨[J].农业机械学报,1987(2):80-84.
    [76]唐厚君,赵学笃,黄向东.切流式谷物脱粒装置凹板的分离性能[J].农业机械学报,1989(4):49-56.
    [77]陆仲华.散粒农业物料孔口出流成拱机理分析[J].农业工程学报,1991,7(1):78-85.
    [78]张金海,都丽萍.脱粒部件数学模型的建立与模拟[J].农业机械学报,1994,25(3):56-611.
    [79]尹文庆,何瑞银,王耀华等.小麦脱粒特性的测量与表示[J].南京农业大学学报,1999,22(4):98-102.
    [80]王志.联合收割机可靠性问题的研究[J].农业机械学报,2002,33(2):44-46.
    [81]万霖,衣淑娟,马永财.纵置单轴流滚筒脱粒与分离装置功耗性能试验研究[J].黑龙江(?)农垦 大学学报,2005,17(02):56-58.
    [82]衣淑娟,蒋恩臣.轴流脱粒与分离装置脱粒过程的高速摄像分析[J].农业机械学报,2008,39(5):52-55.
    [83]谢方平,罗锡文等.柔性杆齿滚筒脱粒机理[J].农业工程学报,2009,25(8):110-114.
    [84]卡那沃依斯基.收获机械[M].曹崇文,吴春江,柯保康等译校.北京:中国农业机械出版社,1983.
    [85]A.B.卢里耶,A.A.格罗姆勃切夫斯基[苏].农业机械的设计和计算[M].袁仕平泽.北京:中国农业机械出版社,1983.
    [86]Kumar, R. and Goss, J. R. Analysis and modeling of alfalfa seed harvest losses [J]. Transactions of the ASAE,1979(22):237-242.
    [87]Huynh, M. V., Powell, T. and Siddal, N. J. Threshing and Separating Process-A mathematical Model [J]. Transactions of the ASAE,1982,25(1):65-73.
    [88]Long, L. D. Mathemation Model of the Threshing Process in a Conventional Combine-Threshing [J]. Journal of Agricultural Engineering Research,1982(2):119-130.
    [89]Ndirika, V. I. O. Development and performance evaluation of a millet thresher [J]. J. Agricult. Eng. Technol.,1994(2):83-88.
    [90]Nwuba, A. I. U. and Braide, F. G. Development of whole crop cowpea thresher as effected by grain and stalk properties [J]. J. Agric. Eng. Technol.,1994(2):67-69.
    [91]Maertens, K. and Baerdemaeker, J. D. Flow rate based prediction of threshing process in combine harvesters [J]. Applied Engineering in Agriculture,2003(4):383-388.
    [92]Valentin, V., Lucretia, P., Sorin, B., Sorin, B. and Aurel, D. Contributions to modeling the threshing and separating process within a threshing apparatus with axial flowr [J]. U. P. B. Sci. Bull.,2009,71(1): 150-158.
    [93]Osueke, E. C. O. Simulation and Optimization Modeling Of Performance of a Cereal Thresher [J]. International Journal of Engineering & Technology IJET-IJENS,2011,11(3):143-152.
    [94]吴叙田,施小伦,译自《农业工程师学会会志(美刊)》.脱粒分离过程的数学模型[J].粮油加工与食品机械,1983,25(1):48-56.
    [95]邵陆寿,魏雅鹛,钟成义.基于GA-Bp算法的收获机械脱粒性能建模与仿真[J].系统仿真学报,2003,15(9):1294-1296.
    [96]李杰,阎楚良,杨方飞.纵向轴流脱粒装置的理论模型与仿真[J].江苏大学学报(自然科学版),2006,27(4):299-302.
    [97]Ezaki, H. Threshing performance of Japanese type combine [J]. Jap. Agric. Res.,1963(7):22-29.
    [98]Choudhry, M. A. Wheat losses at the threshing and winnowing stages [J]. AMA Japan.,1979(10):67-70.
    [99]Sharma, K. D. and Devnani, R. S. Threshing studies on sunflower thresher [J]. Agricultural Mechanization in Asia, Africa and Latin America,1979,10(2),69-72.
    [100]Sharma, K. D. and Devananl, R. S. A. Threshing studies on soybean and cowpea [J]. Agricultural Mechanization in Asia, Africa and Latin America,1980,33 (2):65-68.
    [101]Hunynh, V. M., Powell, T. and Siddal, J. N. Threshing and separating process-A mathematical model [J]. Transactions of the ASAE,1982.25 (1):62-73.
    [102]Singh, K. N. and Singh, B. Effect of crop and machine parameters on threshing effectiveness and seed quality of soybean [J], Journal of Agricultural Engineers Research,1981(17):23-28.
    [103]Dosa, A. Mechanization of peanut harvesting in Malaysia [J]. Agricultural Mechanization in Asia, Africa and Latin America,1984,15 (2):44-48.
    [104]Ghaly, A. E. A stationary threshing machine:Design construction and performance evaluation[J]. Agricultural Mechanization in Asia, Africa and Latin America,1985,16(3):19-30.
    [105]Sarwar, J. G. and Khan, A. U. Comparative performance of rasp bar and wire-loop cylinder for threshing rice crop [J]. Agricultural Mechanization in Asia, Africa and Latin America,1987,18(2), 37-42.
    [106]Bossoi, E. S., Vcrniaev, O. V, Smirnov, I. I. and Sultan, S. E. Theory Construction and Calculation of Agricultural Machines [J]. New Delhi, Calcutta,1990(2):374-389.
    [107]Curruthers, I. and Rodriques, M. Tools for Agriculture:A guide to appropriate Equipment for Small Scale Farmers[C]. Fourth Edition, Intermediate Technology Publishers Ltd. Southampton Row, London,1992(1):115-118.
    [108]Srivastava, A. K., Mahoney, W. T. and West, N. L. The effect of crop properties on combine performance[J]. Transactions of the ASAE,1990(33):63-72.
    [109]Desta, K. and Mishra, T. N. Development and performance evaluation of a Sorghum thresher[J]. Agricultural Mechanization in Asia, Africa and Latin America.1990,21(3):33-37.
    [110]Gummcrt, H. D., Muhlbuar, W., Utzbach, M., Wacker, P. and Quick, G. R. Performance evaluation of IRRI axial-flow paddy thresher [J]. Agricultural Mechanization in Asia, Africa and Latin America, 1992,23(3):47-54.
    [111]Wacker, P. Einflussgrosscn auf die Arbeitsqualital von Axial- und Tangential Dreschwerken [J]. Agritechnik 1990(3):102-104.
    [112]Harrison, H. P. Rotor Power and Losses of an Axial Flow Combine [J]. Transactions of the ASAE. 1991,34(1):60-64.
    [113]Abo EL-kheir, M. M. Effect of some factor on threshing performance of soybean[J], Misr J.Ag. Eng., 1991,8(3):172-181.
    [114]Kalsirisilp, R. Performance Evaluation of a Thai- Made Rice Combine Harvester[J]. Asian Institute of Technology,1993, M.Eng.Thesis No. AE:93-46.
    [115]Andrews, S. B., Sicbcnmorgen, T. J., Vories, E. D. and Lower, D. H. Effects of combine operating parameters on harvest loss and quality in rice [J]. Transactions of the ASAE,1993(36):1599-1607.
    [116]Saeed, M. A., Khan, A. S., Rizvi, H. A. and Tanveer, T. Testing and evaluation of hold-on paddy thresher [J]. Agricultural Mechanization in Asia, Africa and Latin America,1995,26(2):47-51.
    [117]El-Behiry, A. A., Ward, M. I. and El-Sherbieny, A. M. Performance evaluation of some wheat thresher machines under different conditions [J]. Misr J. Ag. Eng.,1997,14 (4):149-160.
    [118]Helmy, M. A. Threshing parameters affecting the performabee of local and foreign wheat threshing machines [J]. Misr J. Ag. Eng.,1988,5(4):329-343.
    [119]Quick, G. R. Global Assessment of Power Threshers for Rice [J]. Agricultural Mechanization in Asia, Africa and Latin America,1998,29(3):47-58.
    [120]Dreszer, K. and Gieroba, J. Mechanical damage to grain in multi-drum threshing and separating sets [J]. Int. Agrophysics,1999(13):73-78.
    [121]Heinrich, S. and Heinze, D. K. Influence of Moisture Content on Threshing and Separating Process [J]. Proceeding of 99 International Conference on Agricultural Engineering,1999(1):242-245.
    [122]Bolufani, S. J. Performance evaluation of pedal operated cowpea thresher [J]. Proc. NIAE,2001(23): 65-70.
    [123]Sudajan, S., Salokhe, V. M. and Triratanasirichai, K. Some physical properties of sunflower seeds and head [J]. Agricultural Engineering Journal,2001,10(3&4),191-207.
    [124]Gill, R. S., Santokh, S. and Singh, S. Performance studies on plot thresher for wheat [J]. J. Res. Punjab Agric. University,2002(39):408-416.
    [125]Santokh, S., Sidhu, H. S. Ahuja, S. S. and Singh, S. Grain losses in combine harvesting of paddy [J]. J. Res. Punjab Agric. University,2002(39):395-398.
    [126]Badway, M. E. Modification and evaluation of paddy rice thresher to suit flax deseeding [J]. Misr J. Ag. Eng.,2002,19(4):881-900.
    [127]El-Ashry, A. S, El-Rayes, A. and Gamea, G. R. A comparative study of flax threshing systems and their effects on yield components quality [J]. Misr J. Ag. Eng.,2003,20(3):691-701.
    [128]Sudajana, S., Salokhea, V. M. and Triratanasirichai, K. Effect of Type of Drum, Drum Speed and Feed Rate on Sunflower Threshing [J]. Biosystems Engineering,2003,83 (4):413-421.
    [129]Abbass, O. M. Omermohamed, E. E. and Mohamed, H. I. Modification and Performance of multi Crop Thresher [J]. J. Sc. Tech.,2005,6 (2):1-19.
    [130]Spokas, L. and Steponavicius, D. Optimization of operating parameters of the threshing unit at spelt wheat harvesting [J]. In:Electronic Journal of Polish Agricultural Universities:Agricultural Engineering,2006,9(3):1-14.
    [131]Mohtasebi, S. S., Behroozilar, M., Alidadi, J. and Besharati, K. A New Design for Grain Combine Thresher [J]. Int. J. Agri. Biol.,2006,8 (5):680-683.
    [132]Rademacher, T. Beurteilung der Leistungsfahigkeit von Mahdreschern unter Berucksichtigung von verschiedenen Parametern, insbesondere der Arbeitsqualitat[M]. In:VDI-MEG Kolloquium Landtechnik. Mahdrescher. Tagung Dresden,22./23. Marz,2007, Dresden, pp.76-85.
    [133]Askari, A. E., Sabori, S. and Alizadeh, M. R. Effect of peripheral speed of cylinder and crop moisture on threshing losses of various rice varieties [J]. Iranian Journal of Agricultural and Natural Resources Sciences,2008,12(44),223-231.
    [134]Chimchana, D., Salokhe, V. M. and Soni, P. Development of an unequal speed co-axial split-rotor thresher for rice [J]. The CIGR Ejournal. Manuscript PM08017,2008(1):1-11.
    [135]Lashgari, M., Mobli, H., Omid, M., Alimardani, R. and Mohtasebi, S. S. Qualitative Analysis of Wheat Grain Damage during Harvesting with John Deere Combine Harvester [J]. Int. J. Agri. Biol.,2008, 10(2),201-204.
    [136]Spokas, L., Steponavicius, D. and Petkevicius, S. Impact of technological parameters of threshing apparatus on grain damage [J]. Agronomy Research,2008(6):367-376.
    [137]Chukwa, O. Performance evaluation of locally manufactured rice threshers in Niger State [J]. Journal of Engineering and Applied Sciences,2008,3(7):602-606.
    [138]Sohrabi, Y. and Heidari, G. Investigating the influence of withholding irrigation and harvest times on yield and quality of sugar beet [J]. Int. J. Agri. Biol.,2008(10):427-31.
    [139]Petkevicius, S., Spokas, L. and Steponavicius, D. Substantiation of technological parameters of wet maize ear threshing[J]. Agronomy Research,2008 (6):271-280.
    [140]Asli-Ardeh, E. A., Abbaspour-Gilandeh, Y. and Abbasi, S. Study of Performance Parameters of Threshing Unit in a Single Plant Thresher [J]. Am. J. Agric. Biol. Sci.,2009(4):92-96.
    [141]Joshua, O. O., Kayode, C. O. and Mary, M. O. Computer applications for selecting operating parameters of stationary grain crop thresher [J]. Int. J. Agric.& Biol. Eng.,2010,3(3):1-11.
    [142]Alizadeh, M. R. and Khodabakhshipour, M. Effect of Threshing Drum Speed and Crop Moisture on Paddy Grain Damage in Axial-Flow Thresher [J]. Cercetari Agronomice in Moldova,2010,4 (144):5-11.
    [143]高元恩.传统型脱粒装置的试验研究[J].农业机械学报, 1979(10): 93-11.
    [144]许大兴.纵向轴流滚筒的初步分析[J].河南科技大学学报(自然科学版),1980(1): 115-131.
    [145]蔺公振,张文成.脱粒装置对小麦短穗影响的研究[J].农机化研究,1988(2): 23-27.
    [146]万金保,赵学笃. 传统螺杆滚筒式脱粒装置的优化设计[J].吉林工业大学学报,1991(1): 7176.
    [147]李庆东,胡匡禾,叶进,等.立轴式脱粒机试验研究[J].农业工程学报,1998(4): 249-251.
    [148]薛方期,脱粒部件的试验研究[J].农机与食品机械,1998(4): 9-11.
    [149]王长宁,杨红新.改进的切流滚筒[P].中国,发明专利,01234380.3, 2002.
    [150]衣淑娟.钉齿式双滚筒轴流脱粒与分离装置的试验研究[J].机械设计与制造,2006(11): 88-89.
    [151]李耀明,李洪昌,徐立章.短纹杆-板齿钉齿脱粒滚筒的脱粒对比试验研究[J].农业工程学报,2008,24(3):139-142.
    [152]段国臣,唐古龙等.切流滚筒加纵向单轴流滚筒脱粒分离装置[P].中国,发明专利,200820090581.2,2009.
    [153]李耀明,贾毕清,徐立章,等.纵轴流联合收割机切流脱粒分离装置的研制与试验[J].农业工程学报,2009,25(12):93-96.
    [154]李耀明,乔明光,徐立章,等.纵轴流复脱分离装置设计与试验[J].农业机械学报,2009, 40(11):50-54.
    [155]陈霓.熊永森,陈德俊,等.联合收获机同轴差速轴流脱粒滚筒设计和试验[J].农业机械学报,2010,41(10):67-71.
    [156]戴飞,高爱民,孙伟.纵轴流锥型滚筒脱粒装置设计与试验[J].农业机械学报,2011,42(1):74-78.
    [157]唐忠,李耀明,徐立章,等.不同脱粒元件对切流与纵轴流水稻脱粒分离性能的影响[J].农业工程学报,2011,27(3):93-97.
    [158]谢方平.罗锡文,汤楚宙.水稻粒穗分离力的研究[J].湖南农业大学学报(自然科学版),2004,30(5):469-471.
    [159]李耀明,徐立章,孙夕龙.稻谷带柄的影响因素分析[J].农业工程学报,2007,23(12):131-134.
    [160]孙夕龙.水稻脱粒带柄率的试验研究与分析[D].镇江:江苏大学,2007年.
    [161]Miu, P. I. and Kutzbach, H. D. Simulation der Dresch-und Trennprozesse in Dreschwerken (Simulation of threshing and separation processes in threshing units) [J]. Agrartechnische Forschung Sonderheft, 2000(6):1-7.
    [162]周品,何正风,等MATLAB数值分析[M].北京:机械工业出版社,2009.
    [163]Miu, P. I. Mathematical models for the threshing and separating processes in axial threshing [J]. Harvest Technology,2000(55):86-87.
    [164]Miu, P. I. and Kutzbach, H. D. Mathematical model of material kinematics in an axial threshing unit [J]. Computers and Electronics in Agriculture,2007, (58):93-99.
    [165]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    [166]白钰,稻麦秸秆压缩规律研究及其仿真[D].山东:山东理工大学,2011年.
    [167]Yang, Z. D., Bai, Y. Dynamic Modeling of Tree Growth in a Nursery Greenhouse Using MATLAB and Simulink[J]. Advanced Materials Research,2010,121(122):507-511.
    [168]龚光鲁.概率论与数理统计[M].北京:清华大学出版社,2006.
    [169]赵匀.试论联合收获机的脱粒滚筒的动力平衡问题[J].农业机械学报,1984(4):34-45.
    [170]张认成,桑止中.轴流脱粒滚筒功耗模型的研究[J].农业工程学报,1999,15(4):121-125.
    [171]常庚哲,伍润生.复数与几何[M].北京:科学出版社,2002.
    [172]庄楚强,何春雄.应用数理统计基础[M].广州:华南理工大学出版社,2009.
    [173]潘静,邵陆寿,王轲.水稻联合收割机喂入密度检测方法[J].农业工程学报,2010,26(5):113-116.
    [174]李荣德,徐云云,倪长安.微型联合收割机夹带损火的试验研究[J].农业机械,2008(1):67-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700