光栅莫尔条纹电子学细分技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光栅测量技术具有高精度、高灵敏性、动态范围大、易于实现自动化等特点,可实现对位移、速度等机械量的测量。为提高测量精度和分辨力,有效控制测量成本,莫尔条纹电子学细分技术被广泛研究和应用。
     本文对莫尔条纹电子学细分技术进行了深入研究,提出了提高细分精度和分辨力的解决方案。
     从基本原理上归纳总结实际应用中各种细分方法的实现途径和特点。重点对正切法细分技术进行研究并对细分精度影响因素进行理论分析;在常规信号调理的基础上,通过算法对莫尔条纹信号进行噪声控制和相位校正,可极大提高细分精度。
     为获得高质量信号,将神经网络自适应算法应用于莫尔条纹信号降噪。神经网络层实现信号的非线性映射,使线性和非线性噪声均能得到有效抑制;将滤波步长与信号频率构成函数关系,步长的动态调整和算法的自适应性保证了宽频带滤波效果。滤波后的莫尔条纹信号质量明显改善。
     基于正切法细分,提出了一种新的相位误差补偿算法,通过信号区间的分段处理,使短周期信号的各相角均可得到实时校正,有效降低了由于信号相位不正交引起的细分误差,并详细分析了算法的实现条件。
     仿真及实验表明,本文提出的算法可显著改善莫尔条纹信号质量;相关研究内容对于提高莫尔条纹电子学细分精度和倍数具有实际参考价值。
Grating MoiréFringe technique is used to measure the mechanical position and velocity at present for its high precision, perfect sensitivity, wide dynamic range, automatization and so on. In order to improve the measurement distinguishment and precision and depress the application cost, the subdivision of MoiréFringe is studied and applied widely.
     The electric subdivision technique of MoiréFringe is studied perfectly and how to improve the subdivision precision and distinguishment are put forward in this thesis.
     The realizations and the characteristics of various subdivision methods according to the principle are summarized first. The tangent subdivision method of MoiréFringe is studied with emphasis and the factors which influence the subdivision precision are analyzed theoretically. To improve the subdivision precision, the signal noises should be restrained and the phase should be adjusted through algorithm.
     In order to obtain the signals with fine quality, the adaptive filtering algorithm based on neural network is used to restrain noises of MoiréFringe. The nonlinear mapping fuction is achieved by using the neural network layer. The step size of the algorithm can be adjusted dynamicly according to the signal’s frequency to meet the filtering request of signal with diversified frequency and make the algorithm self-adaptive. The signal quality is improved obviously by filtering.
     A new phase error compensation algorithm is worked out in allusion to the tangent method. The angle of a certain signal period can be emended by detaching the sections. The application of this algorithm can depress the subdivision error caused by signals not in phase quadrature. The realization of the algorithm is analyzed detailedly at the same time.
     Based on experiments, it is indicated that the signal quality improves obviously by using these algorithms introduced in this thesis. The study contents have reference value to improve the MoiréFringe subdivision recision.
引文
[1]张善钟等主编,计量光栅技术,机械工业出版社,1993年.
    [2]戴立安,光栅位移测量技术在精密线束加工中的应用,电子器件,2007,30(5):1604-1607.
    [3]节德刚,刘延杰,孙立宁,陈智超,蔡鹤皋,基于双光栅尺的高速高精度位移测量方法,光学精密工程,2007,15(7):1077-1082.
    [4]欧阳航空,陆林海,侯彦丽,基于DSP的光栅莫尔条纹信号辨向与细分电路研究,制造业自动化,2005,27(5):5-8.
    [5]张世轶,艾华,韩旭东,新型光电轴角编码器的发展与应用,长春理工大学学报,2005,28(4):43-50.
    [6]李建良,李淑清,光栅数字检波器的原理及其信号处理方法的研究,物探装备,2007,17(1):28-32.
    [7]宋刚,张蕾,胡德金,基于普通编码器的高精度位置检测方法上海交通大学学报,2003,37(5):699-702.
    [8]樊亚东,陈雪丰,莫尔条纹数字化细分方法,武汉化工学院学报,1998,20(6):53-55.
    [9]蔺小军,史耀耀,汪文虎,刘维伟,光栅信号软件细分技术及其误差分析,工具技术,2006,40:72-74.
    [10]吴爽新,田原嫄,基于莫尔条纹的新型细分方法的研究,微计算机信息,2007,23(4):214-216.
    [11]冯法军,耿小丕,莫尔条纹的观察与测量,承德石油高等专科学校学报,2007,9(1):28-29.
    [12]张金龙,刘京南,莫尔条纹信号在精密检测与定位中的应用,测控技术,2003,22(6):8-10.
    [13]徐海英,缪长宗,陈慧琴,莫尔条纹应用的初探,南京工程学院学报,2006,4(1):60-65.
    [14]海涛,曹家年,张鹏程,数字式干涉型光纤传感器条纹细分辨向电路的实现,应用科技,2005,32(10):16-18.
    [15]董莉莉,熊经武,采用Matlab图形系统分析乘法倍频后莫尔条纹信号的波形,仪表技术与传感器,2000,7(7):30-34.
    [16]董莉莉,熊经武,万秋华,乘法倍频后的莫尔条纹信号质量的分析,计量技术2000,4(4):10-13.
    [17]王君立,隗海林,刘琳,改善莫尔条纹细分精度的硬件实现,传感技术学报,2005,18(1):209-211.
    [18]王小兵,金锋,一种改进的全数字化锁相环在光栅位置检测中的应用,仪器仪表学报,2004,25(4增),641-643.
    [19]郭雨梅,崔晋玲,刘雪艳,金喜平,锁相式莫尔条纹信号细分方法,哈尔滨工业大学学报,2007,39(9):1496-1512.
    [20] Takashi Emura, Lei Wang, A High-Resolution Interpolator for Incremental Encoders Based on the Quadrature PLL Method, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 47, NO. 1, FEBRUARY 2000.
    [21] Lei Wang, Takashi Emura, High-Precision Interpolation Using Two-Phase Type PLL for Encoders That Have Distorted Waveforms, 1997 IEEE International Conference on Intelligent Processing Systems, October 28-31, Beijing.
    [22]纪刚,叶军,莫尔条纹计算细分法的研究,青岛大学学报,1995,8(2):62-67.
    [23]李怀琼,陈钱,王钰,新型光栅信号数字细分技术及其误差分析,计量学报,2001,22(4):281-283
    [24]王君立,李大一,刘琳,莫尔条纹快速细分在光电轴角编码器中的应用,微细加工技术,2005,12(4):16-20.
    [25]闫丽,段发阶,方志强,基于CPLD芯片的光栅信号细分模块的设计,计量技术,2005,10(10):5-8.
    [26]唐晖,叶险峰,李向军,一种基于FPGA的光栅莫尔条纹数字细分技术,计量技术,2006,10(10):14-17.
    [27]武佳贺,郑玮,马建立,李洪祚,基于CPLD的光栅信号快速细分技术的研究,长春理工大学学报,2007,30(1):57-59.
    [28] P. L. M. Heydemann, Determination and correction of quadrature fringe measurement errors in interferometers, Appl. Opt., vol. 20, no. 19, Oct. 1981.
    [29] K. P. Birch, Optical fringe subdivision with nanometric accuracy, Precision Eng., vol. 12, no. 4, Oct. 1990.
    [30] K. Watanabe, H. Yokote, A microstep controller of a DC servomotor, IEEE Trans. Instrum. Meas, vol. 39, pp. 60–62, Dec. 1990.
    [31] N. Hagiwara,H. Murase, A method of improving the resolution and accuracy of rotary encoders using a code compensation technique, IEEE Trans. Instrum. Meas., vol. 41, pp. 98–101, Feb. 1992.
    [32] H. Yokote,K. Watanabe, A hybrid digital and analog controller for DC and brushless servomotors, IEEE Trans. Instrum. Meas., vol. 39, pp. 259–263, Apr. 1989.
    [33] G. C. Goodwin, R. L. Payne, Dynamic System Identification: Experiment Design and Data Analysis. New York: Academic, 1977.
    [34]唐小琦,刘世峰,王平江,唐玉枝,罗春槐,正切法莫尔条纹信号幅值分割细分的误差分析,计量学报,2007,28(3):220-223.
    [35]朱应时,杨进堂,圆光栅的高精度高质量莫尔条纹信号的研究,计量学报,1995,16(4):280-285.
    [36]喻洪麟,黄良明,王远干,莫尔条纹信号的DSP滤波及细分技术研究,光电工程,2004,31(9):61-65.
    [37]罗华,高山,李翔龙,粗光栅信号全数字化处理法实现高倍数细分,光学精密工程,2007,15(2):283-288.
    [38] Kok Kiong Tan, Kok-Zuea Tang, Adaptive Online Correction and Interpolation of Quadrature Encoder Signals Using Radial Basis Functions, IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 13, NO. 3, MAY 2005.
    [39] K. K. Tan, Huixing X. Zhou, Tong Heng Lee, New Interpolation Method for Quadrature Encoder Signals, IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 51, NO. 5, OCTOBER 2002.
    [40]李永刚,李锦萍,有限长单位冲激响应FIR数字滤波器线性相位分析和结构图,首都师范大学学报(自然科学版),2002,23(2):25-28.
    [41]王永杰,用DSP快速实现自适应滤波器算法,现代电子技术,2007,3(3):74-76.
    [42]张会生,闫学斌,秦勇,黄鹤,LMS算法自适应滤波器的DSP实现,通信技术,2007,1(1):72-73.
    [43]罗小东,贾振红,王强,一种新的变步长LMS自适应滤波算法,电子学报,2006,34(6):1123-1126.
    [44]伦淑娴,张化光,冯健,基于神经网络的多传感器自适应滤波及其应用,东北大学学报(自然科学版)2003,24(8):727-730.
    [45]杨冠鲁,曹瑞,裴勃生,官俊杰,黄小彬,一种神经网络非线性噪声消除方法,系统工程与电子技术,2006,28(6):900-902.
    [46]郭业才,韩迎鸽,赵俊渭,饶伟,基于相干累积算法的多级自适应谱线增强器,仪器仪表学报,2006,27(8):855-859.
    [47]张艳喜,张伯珩,边川平,张鸣芸,许哲,杨涛,基于LMS算法的自适应滤波器在水声信号处理中的应用,科学技术与工程,2007,7(12):2830-2833.
    [48]洪志全,神经网络自适应数字滤波器技术,物探化探计算技术,2000,22(2):137-139.
    [49]杨克己,基于神经网络的自适应滤波技术及其在超声检测中的应用,仪器仪表学报,2005,26(8):813-817.
    [50]楚兴春,吕海宝,杜列波,周卫红,任意相位差条纹信号细分方法的研究,光学学报,2005,25(4):497-500.
    [51]李江国,宣明,莫尔条纹细分中相位误差的软件补偿算法,光学精密工程,1995,3(1):69-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700