CO_2捕集能耗最小化机理及煤制天然气动力多联产系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
解决能源利用与环境协调相容的难题是二十一世纪能源科学研究的重要课题。为解决传统煤制天然气系统的能量利用难点以及目前能源动力系统CO2捕集能耗高、成本高的普遍难题,本学位论文在工程热物理与化工学科交叉层面,开展了能源系统化学能梯级利用和CO2分离的耦合机理研究,煤制天然气动力多联产系统集成研究以及成本潜力分析。
     在机理层面,从燃料转化过程中吉布斯自由能利用思路出发,探索了燃料转化过程中吉布斯自由能损失规律与C02的富集机制,建立并阐明了吉布斯自由能利用和CO2分离能耗之间的耦合关系,进而揭示了利用吉布斯自由能实现CO2捕集能耗最小化的机理。研究表明,通过燃料的适度转化,可避免燃料转化过程过高的吉布斯自由能损失,并且能够富集C02,实现燃料化学能梯级利用和降低CO2分离功的双重目的。
     基于CO2捕集能耗最小化机理,提出了回收CO2的化工未反应气适度循环型煤制天然气化工动力联产系统,分析了联产系统的热力性能、节能机理以及特性规律。结果表明,相对于IGCC+CC和SNG分产系统,回收CO2的天然气动力联产系统具有良好的节能效果,在设计条件下系统能源利用效率59.7%,相对节能率19.5%;系统最佳效率可达62.0%,相对节能率最高达21.5%。通过适度循环,回收CO2的联产系统能够避免SNG化工合成能耗随转化率急剧上升的现象,并能够实现C02的富集,在燃料化学能梯级利用的同时能够低能耗的捕集CO2,且存在最佳化工循环倍率,使得联产系统热力性能最佳。联产系统相对于IGCC和SNG分产系统的吉布斯自由能收益可弥补C02的分离功,甚至负能耗代价捕集CO2。与回收C02的甲醇电力多联产系统相比,回收CO2的天然气动力多联产系统C02分离前浓度约高5个百分点,CO2的单位捕集能耗更小。
     围绕多联产系统,分析了回收CO2联产系统的成本下降潜力,揭示了国产化、效率提升、装机规模对成本下降潜力的贡献。目前,联产系统的比投资约为1700$/kW,空分系统、煤气化系统和联合循环系统的投资成本占联产系统总投资的60%以上,尤其是煤气化系统的投资,超过系统总投资的30%。联产系统的折合SNG生产成本为0.18~0.36$/Nm3。与IGCC+CC系统和SNG单产系统相比,在产品输出相同的情况下,联产系统的总投资比分产系统略高,年总成本比分产系统约低3.8%;与IGCC和SNG单产系统比,联产系统CO2捕集成本约为7.9$/t,能够实现低成本的CO2捕集。当前,通过国产化措施,联产系统的比投资可下降约29.4%,大型气化技术、SNG合成技术和高性能燃气轮机技术的国产化程度相对偏低,是未来国产化的关键。联产系统总规模、技术进一步国产化和系统效率的提升将对联产系统成本下降起重要作用,通过成本学习,联产系统的比投资可下降到700~1100$/kW,低于IGCC+CC系统,甚至能够低于PC+CC系统。
It is an important issue to coordinate the energy utilization and evironment protection. To solve the the energy utilizaion problem in the traditional coal to SNG sytem and to explore the low energy penalty and low cost for CO2capture, this essay studied the coupling mechanism the cascade utilization of chemical energy in fuel and CO2separation, then proposed a polygeneration system with CO2capture which produces SNG and power, and also analyzed the cost reduction potential of the polygeneration system.
     First, the law of Gibbs free energy loss and the mechanism of CO2enrichment during fuel conversion were explored, the relationship between the utilization of Gibbs free energy and CO2separation work was built and illustrated, and the mechanism of minimal energy penalty for CO2capture by utilizing Gibbs free energy was disclosed.
     Based on the mechanism for minimal energy penalty for CO2capture, this work proposed a new polygneration system (PG) for SNG and power, simulated the thermal performance of this system, analyzed its energy-saving mechanism and made performance sensitivities. Results show that, at designed condition, the thermal efficiency of the new polygeneration system with CO2capture is as high as59.7%, and the energy saving ratio is19.5%compared with IGCC+CC and traditional coal to SNG systems. The optimal thermal efficiency can be62%, and optimal energy saving ratio is21.5%. Through moderate recycle of the off gas in the new polygeneration system, the sharp increase of the energy consumption for unit SNG production can be avoided and the CO2can be enriched during chemical synthesis. The optimal recycle ratio of the off gas, which yields best system thermal efficiency and ESR, is observed. Compared to IGCC and traditional coal to SNG system, the benefit from Gibbs free energy utilization can make up or even can be greater than the work for CO2separation in the polygeneration system, which makes the zero or even negative energy penalty for CO2capture possible. Compared to the polygeneration system which recover CO2and produces methanol and power, the CO2concentration before separation in the proposed system can be5percentage higher, and the unit energy penalty for CO2capture is less.
     Also, the cost reduction potential of the polygeneration system is analyzed, and the roles of localization, efficiency improvement and capacity scale in cost reduction are disclosed. Currently, the unit investment of this PG system with CO2capture is around1700$/kW. The investment of air separation unit, coal gasification unit and the combined cycle unit takes over60%portion of the whole investment, and especially the investment of gasification unit takes over30%portion. The SNG production cost varies from0.18-0.36$/Nm3with different coal price. Compared with IGCC+CC and traditional coal to SNG system, when the product outputs are the same, the total investment of the polygeneration system is slightly higher but the total annual cost is around3.8%lower. Compared to IGCC and SNG system, the CO2capture cost of the PG is around7.9$/t. Through localization, the unit investment of the polygeneration system can be decreased by29.4%currently. The current localization levels of coal gasification, SNG synthesis and gas turbine technologies are relatively low, and these technologies are the key of further localization. The installed capacity, technology further localization and efficiency upgrade will take an important role in cost reduction, which will make the unit investment of the PG decrease to700~1100$/kW that is possibly lower than IGCC+CC or even than PC+CC system.
引文
[1].魏一鸣,中国能源报告:战略与政策研究.2006:科学出版社.
    [2].王家诚,煤炭清洁利用和结构调整—中国煤炭可持续发展的必然选择.煤炭经济研究,2003(004):p.6-12.
    [3].金碚,资源与环境约束下的中国工业发展.中国工业经济,2005.4(5):p.5-14.
    [4].国家发展和改革委员会物资储备局,中国石油资源储量仍处于增长期.http://cbi.ndrc.gov.cn/xgxx/t20051122_50640.html, 2005.
    [5].李干生,焦大庆,苏玉山,中国油气资源勘查前景展望.当代石油石化,2004.12(8):p.4-8.
    [6].国家统计局,国家统计年鉴年报.2010.
    [7].国家电力监管委员会,电力监管年度报告.2011.
    [8].谭忠富,于超,我国高耗能产业出口对能源价值的影响分析.中国能源,2007.29(10):p.14-18.
    [9]. Fan, Y., Q.M. Liang, Y.M. Wei, et al., A model for China's energy requirements and CO2 emissions analysis. Environmental Modelling & Software,2007.22(3): p. 378-393.
    [10]. Zhang, M., H. MuY. Ning, Accounting for energy-related CO2 emission in China,1991-2006. Energy Policy,2009.37(3): p.767-773.
    [11]. Liang, Q.M., Y. Fan Y.M. Wei, Multi-regional input-output model for regional energy requirements and CO2 emissions in China Energy Policy,2007.35(3):p.1685-1700.
    [12]. IEA, Technology roadmap-Carbon Capture and Storage.2009.
    [13]. Adeyemo, A., R. Kumar, P. Linga, et al., Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column. International journal of greenhouse gas control, 2010.4(3):p. 478-485.
    [14]. Liu, Y., Q. Ye, M. Shen, et al., Carbon Dioxide Capture by Functionalized Solid Amine Sorbents with Simulated Flue Gas Conditions. Environmental science & technology, 2011.
    [15]. Rochelle, G.T., Amine scrubbing for CO2 capture. Science, 2009. 325(5948): p.1652-1654.
    [16]金红光,林汝谋,能的综合梯级利用与燃气轮机总能系统.2008:科学出版社.
    [17].Figueroa, J.D., T. Fout, S. Plasynski, et al., Advances in CO2 capture technology--The US Department of Energy's carbon sequestration program. International journal of greenhouse gas control,2008.2(1):p. 9-20.
    [18]. Ziaii, S., G.T. Rochelle, T.F. Edgar, Dynamic modeling to minimize energy use for CO2 capture in power plants by aqueous monoethanolamine. Industrial & Engineering Chemistry Research, 2009. 48(13): p. 6105-6111.
    [19].Merkel, T.C., H. Lin, X. Wei, et al., Power plant post-combustion carbon dioxide capture: An opportunity for membranes. Journal of membrane science, 2010.359(1-2):p. 126-139.
    [20]. Yang, H., Z. Xu, M. Fan, et al., Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences,2008.20(1):p. 14-27.
    [21].Pachauri, R.K., Climate Change 2007:Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 446. 2007:IPCC.
    [22]. Naucler, T., W. CampbellJ. Ruijs, Carbon capture and storage: assessing the economics. McKinsey & Company, s1,2008.
    [23].Thambimuthu K, Soltanieh M, Abanades JC. The IPCC Special Report on Carbon dioxide Capture and Storage. 2005.
    [24]. IEA/OECD, CO2 capture and storage:A key carbon abatement option. 2008.
    [25]. Descamps, C., C. BouallouM. Kanniche, Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal. Energy,2008.33(6):p. 874-881.
    [26]. Kanniche, M., R. Gros-Bonnivard, P. Jaud, et al., Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering,2010.30(1): p. 53-62.
    [27]. Merkel, T.C., M. ZhouR.W. Baker, Carbon dioxide capture with membranes at an IGCC power plant. Journal of membrane science,2011.
    [28]. Xiao, P., S. Wilson, G. Xiao, et al., Novel adsorption processes for carbon dioxide capture within a IGCC process. Energy Procedia,2009.1(1):p. 631-638.
    [29]. Grainger, D.M.B. Hagg, Techno-economic evaluation of a PVAm CO2-selective membrane in an IGCC power plant with CO2 capture. Fuel,2008.87(1):p. 14-24.
    [30]. Huang, Y., S. Rezvani, D. McIlveen-Wright, et al., Techno-economic assessment of ultra-supercritical coal fired pulverised fuel boilers and IGCC power plants with CO2 capture: A comparative analysis. Tianjin Key Laboratory of Catalysis Science & Technology, 2009:p. 51.
    [31].Mondol, J.D., D. McIlveen-Wright, S. Rezvani, et al., Techno-economic evaluation of advanced IGCC lignite coal fuelled power plants with CO2 capture. Fuel, 2009.88(12):p. 2495-2506.
    [32]. Kvamsdal, H.M., K. JordalO. Bolland, A quantitative comparison of gas turbine cycles with CO2 capture. Energy, 2007.32(1):p. 10-24.
    [33].Hoefnagels, R., E.S. RubinM. Berkenpas, Effects of technological learning on future cost and performance of power plants with CO2 capture. 2008, Master Thesis for Sustainable Development, Energy & Resources, Utrecht University, Internal Report: NWS-S-2008-10.
    [34]. Tanaka, N., Energy Technology Perspectives 2008-Scenarios and Strategies to 2050. International Energy Agency (IEA), Paris, 2008.
    [35]. Ishida, M.H. G. Jin, A New Advanced Power-Generation System Using Chemical-Looping Combustion. Energy,1994.19(4):p.415-422.
    [36]. Ishida, M.H. Jin, Chemical-looping combustion power generation plant system.1995, Google Patents.
    [37].金红光,洪慧,韩涛,化学链燃烧的能源环境系统研究进展.中国科学,2008.53(24):p.2994-3005.
    [38].Chuang, S. Y., J. S. Dennis, A. N. Hayhurst, et al., Development and performance of Cu-based oxygen carriers for chemical-looping combustion. Combustion and Flame,2008.154(1-2):p. 109-121.
    [39]. Corbella, B. M.J. M. Palacios, Titania-supported iron oxide as oxygen carrier for chemical-looping combustion of methane. Fuel,2007.86(1-2): p. 113-122.
    [40].Erri, P.A. Varma, Solution combustion synthesized oxygen carriers for chemical looping combustion. Chemical Engineering Science,2007. 62(18-20):p. 5682-5687.
    [41]. Jin, H., T. OkamotoM. Ishida, Development of a novel chemical-looping combustion:Synthesis of a looping material with a double metal oxide of CoO-NiO. Energy & Fuels, 1998.12(6):p. 1272-1277.
    [42]. Berguerand, N.A. Lyngfelt, Design and operation of a 10 kW(th) chemical-looping combustor for solid fuels - Testing with South African coal. Fuel,2008.87(12):p.2713-2726.
    [43]. Berquerand, N.A. Lyngfelt, The use of petroleum coke as fuel in a 10 kW(th) chemical-looping combustor. International journal of greenhouse gas control,2008.2(2):p.169-179.
    [44].Jung, J. W.I. K. Gamwo, Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling. Powder Technology,2008.183(3):p.401-409.
    [45]. Hong, H., H. G. JinB. Q. Liu, A novel solar-hybrid gas turbine combined cycle with inherent CO2 separation using chemical-looping combustion by solar heat source. Journal of Solar Energy Engineering-Transactions of the Asme,2006.128(3):p.275-284.
    [46]. GCCSI.2011,April; Available from: http://www.globalccsinstitute.com/resources/data/dataset/status-ccs-project-database.
    [47].气候组织,CCUS在中国:18个热点问题.2011.
    [48].科学技术部社会发展科技司、中国21世纪议程管理中心,碳捕集、利用与封存技术在中国.2010,北京.
    [49].殷亚宁,燃煤电站富氧燃烧及二氧化碳捕集技术研究现状及发展.锅炉制造,2010(006):p.41-44.
    [50]. IPCC, Renewable Energy Sources and Climate Change Mitigation.2012.
    [51].Takamura, Y., J. Aoki, S. Uchida, et al., Application of high - pressure swing adsorption process for improvement of CO2 recovery system from flue gas. The Canadian Journal of Chemical Engineering,2001.79(5):p.812-816.
    [52].韩永嘉,王树立,张鹏宇等,CO2分离捕集技术的现状与进展.天然气工业,2009.29(12):p.79-82.
    [53].李新春,孙永斌,二氧化碳捕集现状和展望.能源技术经济,2010.22(004):p.21-26.
    [54].朱春英,马友光,高习群等,单乙醇胺水溶液化学吸收C02的研究.化学工程,2009.37(005):p.1-4.
    [55].李庆领,李太星,刘炳成等,化学吸收法回收低浓度C02工艺流程改进与模拟.化学工业与工程,2010.27(3):p.347-352.
    [56].晏水平,方梦祥,张卫风等,烟气中CO2化学吸收法脱除技术分析与进展.化工进展,2006.25(9):p.1018-1024.
    [57]. Lee, S., H. J. Song, S. Maken, et al., Kinetics of CO2 absorption in aqueous sodium glycinate solutions. Industrial & Engineering Chemistry Research,2007.46(5):p.1578-1583.
    [58]. Alcerreca-Corte, I., E. Fregoso-IsraelH. Pfeiffer, CO2 absorption on Na2ZrO3:A kinetic analysis of the chemisorption and diffusion processes. Journal of Physical Chemistry C, 2008.112(16): p. 6520-6525.
    [59].Benamor, A., B. S. AliM. K. Aroua, Kinetic of CO2 absorption and carbamate formation in aqueous solutions of diethanolamine. Korean Journal of Chemical Engineering,2008.25(3):p. 451-460.
    [60]. Ghaemi, A., M. Torab-Mostaedi, M. G. Maragheh, et al., Kinetics and Absorption Rate of CO2 into Partially Carbonated Ammonia Solutions. Chemical Engineering Communications,2011.198(10):p. 1169-1181.
    [61]. Cousins, A., L. T. WardhaughP. H. M. Feron, Analysis of combined process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption.10th International Conference on Greenhouse Gas Control Technologies,2011.4:p.1331-1338.
    [62]. Harun, N., P. L. Douglas, L. Ricardez-Sandoval, et al., Dynamic Simulation of MEA Absorption Processes for CO2 Capture from Fossil Fuel Power Plant 10th International Conference on Greenhouse Gas Control Technologies,2011.4:p.1478-1485.
    [63].Kladkaew, N., R. Idem, P. Tontiwachwuthikul, et al., Studies on Corrosion and Corrosion Inhibitors for Amine Based Solvents for CO2 Absorption from Power Plant Flue Gases Containing CO2, O2 and SO2. 10th International Conference on Greenhouse Gas Control Technologies, 2011.4:p. 1761-1768.
    [64]. Shen, J. F., Y. M. YangJ. R. Maa, Chemical enhancement for CO2 absorption into dilute aqueous amine solutions. Journal of the Chinese Institute of Chemical Engineers, 2000.31(1):p.11-18.
    [65]. Wang, F., T. KuzuyaS. Hirai, Improvement of CO2 Absorption Properties of Limestone Ore by the Addition of Reagent Grade-SiO2 and Natural Diatomite. Materials Transactions, 2011.52(12):p. 2211-2215.
    [66]. Vaidya, P.D.E.Y. Kenig, CO2-Alkanolamine Reaction Kinetics:A Review of Recent Studies. Chemical Engineering & Technology, 2007.30(11):p.1467-1474.
    [67].国立清华大学(台湾),以吸收法回收二氧化碳之技术手册.2002,经济部工业局:台湾.
    [68]毛松柏,MEA法脱碳新技术.气体净化,2004.4(1):p.10-12.
    [69]. Mandal, BPSS Bandyopadhyay, Simultaneous absorption of carbon dioxide and hydrogen sulfide into aqueous blends of 2-amino-2-methyl-l-propanol and diethanolamine. Chemical Engineering Science, 2005.60(22): p. 6438-6451.
    [70]. Cho, S. H., J. H. Park, H. T. Beum, et al., A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption. Carbon Dioxide Utilization for Global Sustainability, 2004.153:p. 405-410.
    [71]. Esteves, I. A. A. C.J. P. B. Mota, Hybrid membrane/PSA processes for CO2/N2 separation. Adsorption Science & Technology,2007.25(9): p. 693-715.
    [72]. Reynolds, S. P., A. D. EbnerJ. A. Ritter, Stripping PSA cycles for CO2 recovery from flue gas at high temperature using a hydrotalcite-like adsorbent Industrial & Engineering Chemistry Research, 2006.45(12):p. 4278-4294.
    [73]. Reynolds, S. P., A. Mehrotra, A. D. Ebner, et al., Heavy reflux PSA cycles for CO2 recovery from flue gas:Part I. Performance evaluation. Adsorption-Journal of the International Adsorption Society, 2008.14(2-3):p.399-413.
    [74]. Yogo, K., T. Watabe, Y. Fujioka, et al., Development of an Energy-Saving CO2-PSA Process Using Hydrophobic Adsorbents. 10th International Conference on Greenhouse Gas Control Technologies, 2011.4:p.803-808.
    [75].Korre, A., Z. NieS. Durucan, Life cycle modelling of fossil fuel power generation with post-combustion CO2 capture. International journal of greenhouse gas control,2010.4(2):p. 289-300.
    [76].Yeh, A.C.H. Bai, Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions. The Science of the total Environment,1999.228(2-3):p.121-133.
    [77]. Gambini M, Vellini MI, CO2 emission abatement from fossil fuel power plants by exhaust gas treatment, in Proceedings of 2000 International Joint Power Generation Conference.2000:Miami Beach,Florida.
    [78]. Yeh, J.T., K.P. Resnik, K. Rygle, et al., Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Processing Technology,2005.86(14):p.1533-1546.
    [79]. Scoa M Klara, Jose D Figueroa, Edward J Maginn, Design and evaluation of ionic hquids as novel absorbents.
    [80].Chakravarti, S.A. Gupta, System for recovering carbon dioxide from a lean feed.2000, Google Patents.
    [81]. Kevin S Fisher, Cartier Beider, Curtis Rueter,et al, Integrating MEA regeneration with CO2 compression and peaking to reduce CO2 capture costs.2005, US:FinalReport ofWorkPerformedUnderGrant No. DE-FG02. o4ER84111.
    [82]. Govind, R.D. Atnoor, Development of a Composite Palladium Membrane for Selective Hydrogen Separation at High-Temperature. Industrial & Engineering Chemistry Research,1991.30(3):p. 591-594.
    [83]. Sander, F.S. Foeste, Model of an oxygen transport membrane for coal fired power cycles with CO2 capture. Proceedings of the Asme Turbo Expo, Vol 3,2007:p. 345-352.
    [84]. Wang, B., D. C. Zhu, M. C. Zhan, et al., Combustion of coal-derived CO with membrane-supplied oxygen enabling CO2 capture. Aiche Journal,2007.53(9):p. 2481-2484.
    [85].Dijkstra, J. W., J. A. Z. Pieterse, H. Li, et al., Development of membrane reactor technology for power production with pre-combustion CO2 capture. 10th International Conference on Greenhouse Gas Control Technologies,2011.4:p. 715-722.
    [86]. Yan, S. P., M. X. Fang, Z. Wang, et al., Economic Analysis of CO2 Separation from Coal-fired Flue Gas by Chemical Absorption and Membrane absorption Technologies in China 10th International Conference on Greenhouse Gas Control Technologies,2011.4:p. 1878-1885.
    [87]. Hwang, H. Y., S. Y. Nam, H. C. Koh, et al., The effect of operating conditions on the performance of hollow fiber membrane modules for CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2012.18(1):p.205-211.
    [88]. Bracht, M., P. T. Alderliesten, R. Kloster, et al., Water gas shift membrane reactor for CO2 control in IGCC systems:Techno-economic feasibility study. Energy Conversion and Management,1997. 38: p. S159-S164.
    [89]. Takamura, Y., S. Narita, J. Aoki, et al., Application of high-pressure swing adsorption process for improvement of CO2 recovery system from flue gas. Canadian Journal of Chemical Engineering, 2001.79(5):p.812-816.
    [90]. Chang, H. M., M. J. ChungS. B. Park, Integrated Cryogenic System for CO2 Separation and Lng Production from Landfill Gas. Advances in Cryogenic Engineering, Vols 55a and 55b, 2010. 1218: p. 278-285.
    [91]. McGlashan, N. R.A. I. Marquis, Simultaneous removal of CO2, SO2, and NOX from flue gas by liquid phase dehumidification at cryogenic temperatures and low pressure. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy,2008.222(A1):p. 31-45.
    [92]. De Chiffre, L., J. L. Andreasen, S. Lagerberg, et al., Performance testing of cryogenic CO2 as cutting fluid in parting/grooving and threading austenitic stainless steel. Cirp Annals-Manufacturing Technology,2007.56(1):p.101-104.
    [93]. Zhang, N.N. Lior, Proposal and analysis of a novel zero CO2 emission cycle with liquid natural gas cryogenic exergy utilization. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme,2006.128(1):p.81-91.
    [94].Beecy, D. J.S. Klara, The US department of energy carbon sequestration research, development and demonstration program. Greenhouse Gas Control Technologies, Vols I and Ii, Proceedings,2003: p. 297-302.
    [95]. Rubin, E. S., C. ChenA. B. Rao, Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy, 2007.35(9):p. 4444-4454.
    [96].金红光,张希良,高林等,控制CO2排放的能源科技战略综合研究.中国科学:E辑,2009.38(9):p.1495-1506.
    [97].石天宝,国外煤气甲烷化工艺的开发概况.国外煤气,1992(4):p.1-13.
    [98].吴浩,潘智勇,宗保宁等,非晶态Ni合金催化剂用于低温甲烷化反应的研究化工进展,2005.24(3):p.299-302.
    [99].Habazaki, H., M. Yamasaki, B.P. Zhang, et al., Co-methanation of carbon monoxide and carbon dioxide on supported nickel and cobalt catalysts prepared from amorphous alloys. Applied Catalysis A:General, 1998.172(1):p.131-140.
    [100].张成,CO与CO2甲烷化反应研究进展.化工进展,2007.26(9):p.1269-1273.
    [101].江琦,Ru/ZrO2作用下的二氧化碳甲烷化催化反应机理[J].燃料化学学报,2001.29(1):p.87-90.
    [102].陈光文,李淑莲,袁权等,钾助剂对Rh/Al2O3催化富氢条件下CO选择氧化反应性能的影响.催化学报,2005.26(9):p.809-814.
    [103].晏双华,双建永,胡四斌,煤制合成天然气工艺中甲烷化合成技术.化肥设计,2010(2):p.19-21.
    [104].Antonenko, AN, SA Baranov, VS Larin, et al., Rapidly quenched & metastable materials. supplements to "Materials science and engineering" A, 1997.248.
    [105].王宁,孙自瑾,王永钊等,Ni-Fe/γ-Al2O3双金属催化剂的制备及其CO甲烷化性能研究.燃料化学学报,2011.39(3):p.219-223.
    [106].Kopyscinski, J., T. J. SchildhauerS. M. A. Biollaz, Production of synthetic natural gas (SNG) from coal and dry biomass - A technology review from 1950 to 2009. Fuel, 2010.89(8): p. 1763-1783.
    [107].江琦,邓国才,二氧化碳甲烷催化剂研究:Ⅱ.制备条件及助剂对催化剂性能的影响.催化学报,1997.18(001):p.42-45.
    [108].刘文燕,赵安民,张海涛等,制备条件对Ni/ZrO2-SiO2催化剂煤气甲烷化的影响.燃料化学学报,2012.40(1).
    [109].莫欣满,董新法,刘其海等,纳米ZrO2负载Ni催化剂催化CO选择性甲烷化.石油化工,2009.37(7):p.656-661.
    [110].张荣斌,徐校燕,王亮等,酸化及碱化膨润土负载镍催化CO2甲烷化反应.应用化学,2011.28(2):p.203-208.
    [111].王宁,焙烧温度对Ni-Fe/γ-A1203催化剂一氧化碳甲烷化性能的影响.科技情报开发与经济,2010(018):p.158-160.
    [112].李丽波,徐国林,二氧化碳甲烷化催化剂制备方法的研究.哈尔滨师范大学自然科学学报,2003.19(3):p.53-56.
    [113].Takenaka, S., T. ShimizuK. Otsuka, Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts. International Journal of Hydrogen Energy, 2004. 29(10): p. 1065-1073.
    [114].李懿桐,魏树权,田英,稀土改性的非晶态镍基催化剂对CO2甲烷化反应的研究.化学工程师,2010(004):p.10-12.
    [115].王芳,吕功煊,助剂改性对贵金属催化剂CO选择氧化活性中心的影响.化学进展,2010.22(8):p.1538-1549.
    [116].张海滨,浅析我国发展煤制天然气的必要性及其风险.中国高新技术企业,2009.6:p.92-93.
    [117].张文辉,以煤为原料合成天然气技术发展前景分析.煤,2009.18(009):p.61-63.
    [118].赵钢炜,肖云汉,王钰,煤制天然气工艺技术和催化剂影响因素的分析探讨.陶瓷,2009.11:p.21-25.
    [119]. Department of Energy, Cost and Performance Baseline for Fossil Energy Plants Volume 2:Coal to Synthetic Natural Gas and Ammonia. July 5,2011.
    [120].工明华,李政,麻林巍,坑口煤制代用天然气的技术经济性分析及发展路线构思.现代化工,2008.28(3):p.13-16.
    [121].张运东,赵东星,国际煤制合成天然气技术的专利格局.石油科技论坛,2009(4).
    [122]. DOE, Practical experience gained during the first twenty years of operation of the great plains gasification plant and implications for future projects. 2006, April.
    [123].毕家立,我国首个煤制天然气工程将开工.煤炭工程,2008(11):p.106-106.
    [124].大唐集团,内蒙古大唐国际克旗日产1200万m3煤制天然气项目http://wenku.baidu.com/view/815e060ebal aa8114431 d98b.html?from=rec&pos=0&weight=6&lastw eight=3&count=5.
    [125].Gassner, M.F. Marechal, Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass. Biomass and bioenergy,2009.33(11):p. 1587-1604.
    [126].van der Meijden, C.M., H.J. VeringaL.P.L.M. Rabou, The production of synthetic natural gas (SNG): A comparison of three wood gasification systems for energy balance and overall efficiency. Biomass and bioenergy,2010.34(3):p. 302-311.
    [127].Jaramillo, P., W.M. GriffinH.S. Matthews, Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Environmental Science & Technology, 2007. 41(17): p.6290-6296.
    [128].Zwart, R.W.R.H. Boerrigter, High efficiency co-production of synthetic natural gas (SNG) and Fischer-Tropsch (FT) transportation fuels from biomass. Energy & fuels,2005.19(2):p.591-597.
    [129].Duret, A., C. FriedliF. Marechal, Process design of Synthetic Natural Gas (SNG) production using wood gasification. Journal of cleaner production,2005.13(15):p. 1434-1446.
    [130].Schulz, T.F., L. Barreto, S. Kypreos, et al., Assessing wood-based synthetic natural gas technologies using the SWISS-MARKAL model. Energy,2007.32(10): p.1948-1959.
    [131].Heyne, S., H. ThunmanS. Harvey. Integration aspects for synthetic natural gas production from biomass based on a novel indirect gasification concept. 2008.
    [132].Nagase, S., S. Takami, A. Hirayama, et al., Development of a high efficiency substitute natural gas production process. Catalysis today,1998.45(1-4):p.393-397.
    [133].Duret, A., C. FriedliF. Marechal, Process design of Synthetic Natural Gas (SNG) production using wood gasification. Journal of Cleaner Production,2005.13(15): p. 1434-1446.
    [134].Gray, D., S. SalernoG Tomlinson, Polygeneration of SNG, hydrogen, power, and carbon dioxide from Texas Lignite. NETL Contract No. DE-AM26-99FT40465,2004.
    [135].步学朋,王鹏,忻仕河等,煤炭气化多联产生产代用天然气分析.煤化工,2007.35(006):p.4-7.
    [136].林汝谋,金红光,高林,化工动力多联产系统及其集成优化机理.热能动力工程,2006.4.
    [137].Jin, H. GL. Gao, Polygeneration System for Power and Liquid Fuel with Sequential Connection and Partial Conversion Scheme. Proceedings of Asme Turbo Expo 2009, Vol 4, 2009:p. 363-373.
    [138].Jin, H. G, L. Gao, W. Han, et al., A new approach integrating CO2 capture into a coal-based polygeneration system of power and liquid fuel. Proceedings of the Asme Turbo Expo, Vol 3,2007:p. 311-321.
    [139].金红光,洪慧,王宝群等,化学能与物理能综合梯级利用原理.中国科学:E辑,2005.35(3):p.299-313.
    [140].许世森,张东亮,任永强,大规模煤气化技术.2006:化学工业出版社.
    [141].Nikoo, M.B.N. Mahinpey, Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass and bioenergy,2008.32(12): p.1245-1254.
    [142]. Aspen Technology, Aspen Plus 12.1 user guide.2003:Cambridge, MA.
    [143].Perez-Fortes, M., A. D. Bojarski, E. Velo, et al., Conceptual model and evaluation of generated power and emissions in an IGCC plant. Energy,2009.34(10): p.1721-1732.
    [144].Watkinson, A. P., J. P. LucasC. J. Lim, A Prediction of Performance of Commercial Coal Gasifiers. Fuel,1991.70(4):p. 519-527.
    [145].ZHANG, Z., L. TANG, Q. LU, et al., Pulverized Coal Gasification Simulation Based on Aspen Plus Software [J]. Chemical Fertilizer Design,2008.3.
    [146].代正华,龚欣,王辅臣等,气流床粉煤气化的Gibbs自由能最小化模拟.燃料化学学报,2005.33(2):p.129-133.
    [147].张宗飞,汤连英,吕庆元等,基于Aspen Plus的粉煤气化模拟.化肥设计,2009.46(3):p.14-18.
    [148].汪洋,于广锁,于遵宏,运用Gibbs自由能最小化方法模拟气流床煤气化炉.煤炭转化,2004.27(4):p.27-33.
    [149].徐越,吴一宁,危师让,基于ASPEN PLUS平台的十煤粉加压气流床气化性能模拟.西安交通大学学报,2003.37(7):p.692-694.
    [150].焦树建,论IGCC电站中气化炉型的选择.燃气轮机技术,2002.15(2):p.4-14.
    [151].王松岭,张学镭,陈海平等,基于深冷技术的空气分离系统仿真研究.华北电力大学学报,2006.33(1).
    [152].陈健,刘有智,用ASPENPLUS软件模拟旋转填料床精馏操作的探讨.当代化工,2009.38(001):p.17-20.
    [153].Dakota gasification company, Great Plains. Great Plains Synfuels Plant. 2012.
    [154].Gao, L., H. Jin, Z. Liu, et al., Exergy analysis of coal-based polygeneration system for power and chemical production. Energy, 2004.29(12): p.2359-2371.
    [155].Jin, H.G., L. Gao, D. Zheng, et al., Investigation of Coal-Based Polygeneration System for Power and Chemical Production. Journal of Engineering Thermophysics,2001.22(4):p.397-400.
    [156].Jin, H., L. Gao, W. Han, et al. A New Approach Integrating CO Capture Into a Coal-Based Polygeneration System of Power and Liquid Fuel.2007:ASME.
    [157].Lin, H., H. Jin, L. Gao, et al., Economic analysis of coal-based polygeneration system for methanol and power production. Energy,2010.35(2):p.858-863.
    [158].Lin, R., H. JinL. Gao, Chemical Engineering Power Polygeneration System and Its Integrated Optimization Mechanism. Journal of Engineering for Thermal Energy and Power,2006.21(4): p. 331.
    [159].Remer, D. S.L. H. Chai, Design Cost Factors for Scaling-up Engineering Equipment Chemical Engineering Progress,1990.86(8):p.77-82.
    [160].Joskow, P.L.N.L. Rose, The effects of technological change, experience, and environmental regulation on the construction cost of coal-burning generating units. The RAND Journal of Economics, 1985:p. 1-27.
    [161].Faaij APC, Meuleman B, Van Ree R, Long Term Perspectives of Biomass Integrated Gasification/Combined Cycle (BIG/CC) Technology; Costs and Electrical Efficiency. 1998, Utrecht University, Department of Science, Technology and Society, Utrecht, the Netherlands.
    [162].Lin, H., H. Jin, L. Gao, et al., Techno-economic evaluation of coal-based polygeneration systems of synthetic fuel and power with CO2 recovery. Energy Conversion and Management, 2011.52(1):p. 274-283.
    [163].H. Lin, H. Jin, L. Gao, et al., Thermodynamic and economic analysis of the coal-based polygeneration system with CO2 capture. Energy Procedia, 2009.1(1):p. 4193-4199.
    [164].Hu LIN, JIN Hong-guang, GAO Lin, et al., Thermo-economic Analysis of Coal-based Polygeneration System [J]. Proceedings of the CSEE,2009.8.
    [165].Lin, H., H. G. Jin, L. Gao, et al., Economic analysis of coal-based polygeneration system for methanol and power production. Energy,2010.35(2):p.858-863.
    [166].如何估算贴现率.Available from: http://wenku.baidu.com/view/5f77366627d3240c8447efD3.html.
    [167].麻林巍,以煤气化为核心的多联产系统研究[D].2005,北京:清华大学.
    [168].Larson, E.D.R. Tingjin, Synthetic fuel production by indirect coal liquefaction. Energy for Sustainable Development,2003.7(4):p. 79-102.
    [169].Celik, F., E.D. LarsonR.H. Williams. Transportation fuel from coal with low CO2 emissions. 2004.
    [170].Engineering, Chemical. Chemical Engineering Plant Cost Index. 2012.
    [171].Yan J, Jin H, Hetland J, Jiang KJ, Zeng RS, Shen PP etc., Carbon Dioxide Capture and Storage Demonstration- Strategic Analysis and Capacity Strengthening. April, 2011:China, People's Rep. of.
    [172].国家电力监管委员会.煤价对电厂的影响.2011.
    [173].CCB (China Construction Bank). [cited 2012; Available from: http://www.ccb.com/en/personalloans/20090616_1245116234.html.
    [174].SERC PRC (State Electricity Regulatory Commission). The impact of coal price on the electric power plants. [cited 2011; Available from: http://www.serc.gov.cn/igyi/ztbg/200807/t200807029710.htm.
    [175].李正西,秦旭东,宋洪强等,低温甲醇洗和NHD工艺技术经济指标对比.中氮肥,2007(1):p.1-6.
    [176].秦旭东,李正西,宋洪强等,浅谈低温甲醇洗和NHD工艺技术经济指标对比.化工技术与开发,2007.36(4):p.35-42.
    [177].李正西,秦旭东,宋洪强等,浅谈MDEA和NHD工艺的技术经济指标对比.石油化工设计,2009.25(3):p.23-25.
    [178].Junginger, M., E. de Visser, K. Hjort-Gregersen, et al., Technological learning in bioenergy systems. Energy Policy, 2006.34(18): p. 4024-4041.
    [179].Nakata, T., T. Sato, H. Wang, et al., Modeling technological learning and its application for clean coal technologies in Japan. Applied Energy, 2011.88(1):p.330-336.
    [180].Schoots, K., F. Ferioli, G. J. Kramer, et al., Learning curves for hydrogen production technology: An assessment of observed cost reductions. International Journal of Hydrogen Energy, 2008.33(11): p.2630-2645.
    [181].van der Zwaan, B.A. Rabl, The learning potential of photovoltaics: implications for energy policy. Energy Policy, 2004.32(13):p. 1545-1554.
    [182].Rubin, E.S., S. Yeh, M. Antes, et al., Use of experience curves to estimate the future cost of power plants with CO2 capture. International journal of greenhouse gas control, 2007. 1(2): p. 188-197.
    [183].Rubin, E.S., S. Yeh, M. Antes, et al., Estimating future costs of CO2 capture systems using historical experience curves. 2006.
    [184].Neij, L., Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology. Energy Policy, 1997. 25(13):p. 1099-1107.
    [185].Sheng Li, Xiaosong Zhang, Lin Gao, Hongguang Jin, Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: methodology and case studies. Applied Energy,2012.93: p.348-356.
    [186].McDonald, A.L. Schrattenholzer, Learning rates for energy technologies. Energy Policy,2001. 29(4):p.255-261.
    [187].Yeh, S., E.S. Rubin, D.A. Hounshell, et al., Uncertainties in technology experience curves for integrated assessment models.2007.
    [188].H, Lin, Study on polygeneration system CCS life cycle-assessment and system integration [dissertation].2010, Graduate school of Chinese Academy of Sciences. p.70-72.
    [189].Gas Turbine World,2009 Gas Turbine World Handbook.2009.
    [190].Gray, D., S. SalernoG. Tomlinson, Current and future IGCC technologies: bituminous coal to power. Falls Church (VA), USA:Mitretek (MTK),2004.
    [191].Clean Coal Cycle Study Group, "Japan's New Coal Policy Towards 2030"-C3 Initiative Towards the Establishment of the Clean Coal Cycle.2004:Tokoyo.
    [192].Lako, P., Coal-fired power technologies. Coal-fired power options on the brink of climate policies. Policy Studies,2012.2011:p.2010.
    [193].国家电力监管委员会,2010年电力年鉴.2010.
    [194].国家统计局.2001-2010年统计年鉴.2011; Available from: http://www.stats.gov.cn/english/statisticaldata/yearlydata/#.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700