卫星总体多学科设计优化理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星总体设计属于典型的多学科问题。以多学科设计优化(MultidisciplinaryDesign Optimization,MDO)方法为核心实现设计优化与过程集成,对于提高卫星总体设计水平,实现卫星研制“快、好、省”的目标具有重要意义。论文以探索MDO方法与卫星总体设计过程相结合为目的,在系统研究MDO理论的基础上,建立了以分解、协调、搜索策略和MDO优化过程为核心的MDO理论研究主线,并将其应用于月球探测卫星和InSAR(Interferometric Synthetic Aperture Radar)卫星编队两类典型卫星总体优化设计问题。
     在MDO理论研究方面:
     首先,研究了基于图论的函数关系矩阵(Functional Dependency Table,FDT)与设计结构矩阵(Design Structure Matrix,DSM)分解策略,分析了基于超图的FDT分解模型和基于图论的DSM分解模型。算例测试结果表明:合理的学科分解有助于MDO问题快速准确地求解。
     其次,提出了基于改进Kriging模型的响应面协调策略。该策略遵循变复杂度建模思想,结合了二次多项式模型和Kriging模型的优势。三个不同复杂度的算例测试结果表明:该策略可明显提高响应面的近似精度和计算效率,并改善基于响应面方法的MDO优化过程的收敛性能。
     然后,研究了基于微粒群算法的设计空间搜索策略,提出了改进的微粒群算法(Improved Particle Swarm Optimization,IPSO)以及集成Powell法、模式搜索法与IPSO的混合微粒群算法。典型全局优化函数测试结果表明:两种改进算法在全局收敛性能和计算效率方面均有明显优势。
     最后,提出了针对BLISS 2000(Bi-Level Integrated System Synthesis 2000)优化过程的改进形式——HBLISS(Hybrid BLISS 2000)。HBLISS集成了基于改进Kriging模型的响应面协调策略和基于混合微粒群算法的搜索策略,并利用HLA/RTI(High Level Architecture/Runtime Infrastructure)实现了并行。算例测试结果表明:HBLISS在学科自治性和收敛性能方面较有优势,其并行实现可显著缩短计算时间。
     在MDO应用方面:
     首先,探讨了基于MDO的卫星总体设计过程的建模问题,深入分析了卫星总体设计过程中的总体技术流程、总体方案流程及其模型体系,提出了模型树与方案树的概念,建立了卫星总体MDO的基本框架。
     其次,综合上述研究成果,研究了月球探测卫星的MDO问题。针对此类以继承性设计为主的卫星总体设计问题,以单位信息量的成本最小为优化目标建立了总体参数优化模型,经合理学科分解后采用HBLISS进行集成和求解。优化结果较好地验证了HBLISS的可行性与有效性,并给出了较优的总体设计方案。
     然后,研究了InSAR卫星编队的MDO问题。针对此类以创新性设计为主的卫星总体设计问题,以全球高程测量为背景,分析了编队构形、SAR天线及卫星平台总体参数间的耦合关系,以系统成本最小为目标构建总体参数优化模型,在合理学科分解的基础上利用并行HBLISS进行集成和求解。结果较好地体现了MDO方法的优越性,并为进一步的设计奠定了较好基础。
     最后,在以上应用实例的基础上,建立了面向卫星总体的多学科集成设计系统,用于概念设计和初步设计阶段的卫星总体多学科设计、分析与优化。针对数字化设计系统的发展需求,提出了基于本软件系统构建卫星数字化集成设计系统的构想。
     总之,论文研究初步形成了比较完整的MDO理论研究主线,并将其应用于月球探测卫星和InSAR卫星编队的总体优化设计,为探索MDO方法在卫星总体设计中的应用进行了有益的尝试,也为进一步的MDO理论与应用研究奠定了良好的基础。
Satellite System Design is a typical multidisciplinary problem. Multidisciplinary Design Optimization (MDO) is an effective method to resolve the design optimization and process integration, which is significant to improve the level of Satellite System Design and fulfill the object of "faster, better and cheaper" in satellites development. This paper aims at exploring the combination of MDO with the satellite system design process. After investigating MDO theories systematically, a MDO theoretical framework including the decomposition strategy, the coordination strategy, the search strategy and the MDO procedure has been established and applied in the system design of Lunar Explorer and InSAR Satellite Formation.
     Some MDO theories are discussed as follows:
     Firstly, two decomposition strategies------Functional Dependency Table (FDT) andDesign Structure Matrix (DSM) based on the graph theory are studied. The FDT decomposition model based on hypergraph and DSM decomposition model based on graph are analyzed. The testing results show that a reasonable disciplinary decomposition is beneficial to resolve some MDO problems quickly and exactly.
     Secondly, a coordination strategy of Response Surface Methodology (RSM) is brought forward on the basis of an improved Kriging model (VKRG-RS). It carries out the variable complexity modeling method and takes full advantages of the quadratic polynomial RSM and Kriging model. The testing results in three examples with different complexity show that this strategy can improve the approximation precision and computation efficiency of response surfaces and can also enhance the convergence of MDO procedures using RSM.
     Thirdly, as a search strategy of the design space, Particle Swarm Optimization (PSO) is discussed. An improved PSO (IPSO) and a hybrid PSO (HPSO) are presented respectively. The latter algorithm is a combination of Powell, Pattern Search and IPSO. The results of four global optimization functions show that two kinds of the new PSO do better in the global convergence and computation efficiency.
     Finally, an improved MDO procedure for BLISS 2000 (Bi-Level Integrated System Synthesis 2000) is proposed and named HBLISS (Hybrid BLISS 2000). VKRG-RS and HPSO are both integrated into HBLISS. The parallel computation of HBLISS is also implemented under HLA/RTI. The results show that HBLISS has the superiority in the disciplinary autonomy and convergence, and its parallel implementation can decrease the computation time greatly.
     Some MDO applications are discussed as follows:
     Firstly, for the satellite system design process, the pertinent problems about modeling are investigated. The system design flow, scheme forming flow and their model architectures are all analyzed deeply, the concept of model trees and scheme trees are brought forward, and then a basic structure of the satellite system MDO is built, as well.
     Secondly, the MDO of Lunar Explorer is studied in accordance with the above investigations. This kind of Satellite System Design mainly belongs to the inheriting design. A parametric optimization model of Lunar Explorer is set up with the cost per information as its objective. After a reasonable disciplinary decomposition, the MDO problem is integrated and resolved by HBLISS. Then, the results confirm the feasibility and validity of HBLISS and offer a better system design.
     Thirdly, the MDO of InSAR Satellite Formation with the mission of global elevation measurement is discussed. This kind of Satellite System Design mainly belongs to the innovative design. The couplings between parameters of the formation configuration, SAR antenna and satellite bus are analyzed. Then, an optimization model with the system cost as its objective is established and decomposed. Its integration and resolution are both implemented using parallel HBLISS. The corresponding results testify the superiority of MDO and lay the foundation for the further design.
     Finally, a multidisciplinary integrated design system is built for Satellite System Design. It can be applied in the multidisciplinary design, analysis and optimization of the concept and preliminary design phase. Then, on the basis of it, a preliminary architecture is conceived for the development of the enterprise-oriented digital integrated design system.
     To sum up, a relatively complete framework of MDO theories is formulated and used to resolve the system optimization design problems of Lunar Explorer and InSAR Satellite Formation. All of these are beneficial tries to explore the application of MDO in Satellite System Design and good foundations to further research on the theories and applications of MDO.
引文
[1]王希季.20世纪中国航天器技术的进展[M].北京:宇航出版社,2002
    [2]徐福祥,林华宝,侯深渊.卫星工程概论[M].第2版.北京:中国宇航出版社,2004
    [3]吴伟仁.军工制造业数字化[M].北京:原子能出版社,2005
    [4]王希季,李大耀.卫星设计学[M].上海:上海科学技术出版社,1997
    [5]李明.遥感卫星总体参数分析与优化设计方法研究[D].北京:中国空间技术研究院,1996
    [6]张帆.光学遥感小卫星星座总体优化设计与系统分析[D].哈尔滨:哈尔滨工业大学,2001
    [7]AIAA Multidisciplinary Design Optimization Technical Committee.Current State of the Art on Multidisciplinary Design Optimization(MDO)[R].An AIAA White Paper,ISBN 1-56347-021-7,1991
    [8]王振国,陈小前,罗文彩,等.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社,2006
    [9]Sobieszcanski-sobieski J,haftka R T.Multidisciplinary Aerospace Design Optimization:Survey of Recent Development[R].AIAA 96-0711,1996
    [10]Giesing J P,Barthelemy J M.A Summary of Industry MDO Applications and Needs[R].AIAA 98-4737,1998
    [11]胡凌云.多学科设计优化技术在卫星总体设计中的应用[J].中国制造业信息化,2004,1(1):17-21
    [12]Taylor E R.Evaluation of Multidisciplinary Design Optimization Techiniques as Applied to Spacecraft Design[R].IEEE 0-7803-5846-5,2000
    [13]Sobieszczanski-sobieski J.A Linear Decomposition Method for Optimization Problems-Blueprint for Development[R].NASA Technical Memorandum 83248,1982
    [14]Sobieszczanski-sobieski J.Optimization by Decomposition:A Step from Hierarchic to Non-Hierachic Systems[R].NASA-TM- 101494,NASA-CP-3031,1988
    [15]Sobieszczanski-sobieski J.The Sensitivity of Complex,Internally Coupled Systems[J].AIAA Journal,1990,28(1):153-160
    [16]http://www.rpi.edu/~messac/mao-2004/history.htm
    [17]http://aemes.aero.ufl.edu/~issmo/whatis.htm
    [18]http://www.issmo.org/menu_page.html
    [19]http://mdob.larc.nasa.gov
    [20]Egorov I N,kretinin G V,leshchenko I A,et al.IOSO Optimization Toolkit-Novel Software to Create Better Design[R].AIAA 2002-4329,2002
    [21]Egorov I N,kretinin G V,leshchenko I A,et al.The Main Features of IOSO Technology Usage for Multi-objective Design Optimization[R].AIAA 2004-4610,2004
    [22]http://www.ssdl.gatech.edu
    [23]http://www.asdl.gatech.edu
    [24]http://adg.stanford.edu
    [25]http://www.aoe.vt.edu/research/groups/mad
    [26]http://www.aero.ufl.edu/~mdo
    [27]http://www.eng.buffalo.edu/Research/MODEL
    [28]http://www.nd.edu/~nddal
    [29]http://www.soton.ac.uk/~cedc
    [30]2004赛特达科技有限公司技术文集[C].北京:赛特达科技有限公司,2004
    [31]第三届军工产品多学科设计优化技术研讨会资料[C].北京:2004
    [32]余雄庆.多学科设计优化算法及其在飞机设计中的应用研究[D].南京:南京航空航天大学,1999
    [33]陈小前.飞行器总体优化设计理论与应用研究[D].长沙:国防科学技术大学,2001
    [34]胡峪.飞机多学科设计优化及其应用研究[D].西安:西北工业大学,2001
    [35]陈琪锋.飞行器分布式协同进化多学科设计优化方法研究[D].长沙:国防科学技术大学,2003
    [36]罗世彬.高超声速分析器机体/发动机一体化及总体多学科设计优化方法研究[D].长沙:国防科学技术大学,2004
    [37]韩明红.复杂工程系统多学科设计优化方法及技术研究[D].北京:北京航空航天大学,2004
    [38]陈建江.面向飞航导弹的多学科稳健优化设计方法及应用[D].武汉:华中科技大学,2004
    [39]Kodiyalam S,Sobieszczanski-sobieski J.Multidisciplinary Design Optimization - Some Formal Methods,Framework Requirements,and Application to Vehicle Design[J].Int.J.Vehicle Design(Special Issue),2001:3-22
    [40]Bailing R J,Sobieszczanski-sobieski J.Optimization of Coupled Systems:A Ccritical Overview of Approaches[R].AIAA 1994-4330-CP,1994
    [41]Alexandrov N M,Kodiyalam S.Initial Results of an MDO Method Evaluation Study[R].AIAA 1998-4884,1998
    [42]Alexandrov N M,Lewis R M.Analytical and Computational Properties of Distributed Approaches to MDO[R].AIAA 2000-4718,2000
    [43]李响,李为吉.飞行器多学科设计优化的三种基本类型及协同设计方法[J].宇航学报,2005,26(6):693-697
    [44]周盛强.一类基于分解协调机制的多学科优化算法[J].航空计算技术,2006,36(1):117-122
    [45]Wang D,Naterer G F,Wang G G.Boundary Search and Simplex Decomposition Method for MDO Problems with a Convex or Convex-like State Parameter Region[R].AIAA 2005-128,2005
    [46]http://ocw.mit.edu/OcwWeb/Aeronautics-and-Astronautics/16-888Spring-2004/C ourseHome/index.htm,2005/2005-12-18
    [47]Blouin V Y,Summers J D,Fadel G M.Intrinsic Analysis of Decomposition and Coordination Strategies for Complex Design Problems[R].AIAA 2004-4466,2004
    [48]黎水平.机械多级设计原理及其非自由超图映射方法研究[D].武汉:华中科技大学,2002
    [49]Eason E D,Wright J E.Implementation of non-hierarchic decomposition for multidisciplinary system optimization[R].AIAA 92-4822-CP,1992
    [50]Xie S,Milthorpe J,Smith W F,et al.A Contribution-based Decomposition Method for Multidisciplinary Engineering Optimization[R].AIAA 2004-4550,2004
    [51]Parashar S,Bloebaum C L.Decision Support Tool for Multidisciplinary Design Optimization(MDO) using Multi-Domain Decomposition[R].AIAA 2005-2200,2005
    [52]Wagner T C.A General Decomposition methodology for Optimal System Design [D].USA:The University of Michigan,1993
    [53]Browning T R.Applying the Design Structure Matrix to System Decomposition and Integration Problems:A Review and New Directions[J].IEEE Transactions on Engineering Management,2001,48(3):292-306
    [54]Michelena N F,Papalambros P Y.A Network Reliability Approach to Optimal Decomposition of Design Problems[J].Journal of Mechanical Design,1995,117:433-440
    [55]Michelena N F,Papalambros P Y.A Hypergraph Framework for Optimal Model-Based Decomposition of Design[J].Computational Optimization and Applications,1997,8(2):173-196
    [56]Rogers J L.DeMAID/GA an Enhanced Design Manager's Aid for Intelligent Decomposition[R].NASA-AIAA 96-4157,1996
    [57]Park H,Kim M,Choi D,et al.Optimizing the Parallel Process Flow for the Individual Discipline Feasible Method[R].AIAA 2002-5411,2002
    [58]Renaud J E,Gabriele G A.Improved Coordination in Non-Hierarchic System Optimization[R].AIAA 92-2497,1992
    [59]Sobieszczanski-sobieski J,Altus T D,Phillips M,et al.Bi-Level Integrated System Synthesis(BLISS) for Concurrent and Distributed Processing[R].AIAA 2002-5409,2002
    [60]Kroo I,Altus S,Braun R,et al.Multidisciplinary Optimization Methods for Aircraft Preliminary Design[R].AIAA 94-4325-CP,1994
    [61]Tappeta R V,Renaund J E.A Comparison of Equality Constraint Formulations for Concurrent Design Optimization[A].In:Proceedings of the 1996 ASME Design Engineering Technical Conference and Computers in Engineering Conference[C].Irvine,California:96-DETC/EIM-1423,1996
    [62]Renaud J E,Gabriele G A.Approximation in Non-Hierarchic System Optimization[R].AIAA 1992-4826-CP,1992
    [63]Sellar R S,Stelmack M A,Batill S M,et al.Response Surface Approximations for Discipline Coordination in Multidisciplinary Design Optimization[R].AIAA 96-1383,1996
    [64]陈建江,孙建勋,常伯浚,等.基于人工神经网络的多学科优化设计研究[J].计算机集成制造系统-CIMS,2005,11(10):1351-1356
    [65]Chen W,Lewis K.A Robust Design Approach for Achieving Flexibility in Multidisciplinary Design[R].AIAA 98-4945,1998
    [66]穆雪峰,姚卫星,余雄庆,等.多学科设计优化中常用代理模型的研究[J].计算力学学报,2005,22(05):608-612
    [67]Queipo N V,Haftka R T,Shyy W,et al.Surrogate-based Analysis and Optimization[J].Progress in Aerospace Sciences,2005,41:1-28
    [68]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001
    [69]罗文彩.飞行器总体多方法协作优化设计理论与应用研究[D].长沙:国防科技大学,2003
    [70]李晓斌,陈小前,张为华.多学科设计优化中搜索策略研究[J].战术导弹技术,2004(2):1-6
    [71]王冬梅.群集智能优化算法的研究[D].武汉:武汉科技大学,2004
    [72]康琦.微粒群优化算法的研究与应用[D].上海:同济大学,2005
    [73]凌海峰,杨善林,刘业政.基于群体智能的蚁群算法研究[J].合肥工业大学学报(自然科学版),2005,28(6):682-685
    [74]李晓磊,钱积新.基于分解协调的人工鱼群优化算法研究[J].电路与系统学报,2003,8(1):1-6
    [75]Venter G,Sobieszczanski-sobieski J.Particle Swarm Optimization[R].AIAA 2002-1235,2002
    [76]Tayal M,Wang B P.Particle Swarm Optimization for Mixed Discrete,Integer and Continuous Variables[R].AIAA 2004-4500,2004
    [77]Hassan R,Cohanim B,De Weck O.A Comparison of Particle Swarm Optimization and the Genetic Algorithm[R].AIAA 2005-1897,2005
    [78]陈国初,俞金寿.单纯形微粒群优化算法及其应用[J].系统仿真学报,2006,18(4):862-865
    [79]Cramer E J,Frank P D,Shubin G R,et al.On Alternative Problem Formulations for Multidisciplinary Design Optimization[R].AIAA 1992-4752-CP,1992
    [80]Cramer E J,Dennis J E,Frank P D,et al.Problem Formulation for Multidisciplinary Optimization[J].SIAM Journal of Optimization,1994,4(4):754-776
    [81]Arian E.Convergence Estimates for Multidisciplinary Analysis and Optimization [R].NASA/CR-1997-201752,1997
    [82]Hulme K F,Bloebaum C L.A Comparison of Solution Strategies for Simulation-Based Multidisciplinary Design Optimization[R].AIAA 1998-4977,1998
    [83]郭健.多学科设计优化技术研究[D].西安:西北工业大学,2001
    [84]王奕首,史彦军,滕弘飞.多学科设计优化研究进展[J].计算机集成制造系统,2005,11(6):751-756
    [85]Sellar R S,Batill S M,Renaud J E.Response Surface Based,Concurrent Subspace Optimization for Multidisciplinary System Design[R].AIAA 96-0714,1996
    [86]Huang C.Development of Multi-objective Concurrent Subspace Optimization and Visualization Methods for Multidisciplinary Design[D].Buffalo:State University of New York,2003
    [87]Huang C,Bloebaum C L.Incorporation of Preferences in Multi-Objective Concurrent Subspace Optimization for Multidisciplinary Design[R].AIAA 2004-4548,2004
    [88]Huang C,Bloebaum C L.Multi-Objective Pareto Concurrent Subspace Optimization for Multidisciplinary Design[R].AIAA 2004-278,2004
    [89]Braun R D,Moore A A,Kroo I M.Use of the Collaborative Optimization Architecture for Launch Vehicle Design[R].NASA-AIAA 96-4018,1996
    [90]Sobieski I P,Manning V M,Kroo I M.Response surface estimation and refinement in collaborative optimization[R].AIAA 98-4753,1998
    [91]Jun S,Jeon Y,Rho J,et al.Application of Collaborative Optimization Using Response Surface Methodology to an Aircraft Wing Design[R].AIAA 2004-4442,2004
    [92]De Miguel A,Murray W.An Analysis of Collaborative Optimization Methods [R].AIAA 2000-4720,2000
    [93]De Miguel A.Two Decomposition Algorithms for Nonconvex Optimization Problems with Global Variables[D].USA:Stanford University,2001
    [94]Brown N F,Dr.Olds J R.Evaluation of Multidisciplinary Optimization(MDO)Techniques Applied to a Reusable Launch Vehicle[R].AIAA 2005-707,2005
    [95]李响,李为吉.基于序列响应面方法的协同优化算法[J].西北工业大学学报,2003,21(1):79-82
    [96]李响,李为吉.基于超球近似子空间的协同优化方法及应用研究[J].西北工业大学学报,2003,21(4):461-464
    [97]Kodiyalam S.Evaluation of Methods for Multidisciplinary Design Optimization (MDO),Phase I[R].NASA/CR-1998-208716,1998
    [98]Alexandrov N M,Lewis R M.Algorithmic Perspectives on Problem Formulations in MDO[R].AIAA 2000-4719,2000
    [99]Alexandrov N M,Lewis R M.Analytical and Computational Aspects of Collaborative Optimization[R].NASA/TM-2000-210104,2000
    [100]Sobieszczanski-sobieski J,Agte J S,Sandusky R R.Bi-Level Integrated System Synthesis(BLISS)[R].NASA/TM-1998-208715,1998
    [101]Sobieszczanski-sobieski J,Kodiyalam S.BLISS/S:A New Method for Two-level Structural Optimization[R].AIAA 99-1345,1999
    [102]Kodiyalam S,Sobieszczanski-sobieski J.Bi-Level Integrated System Synthesis with Response Surfaces[R].AIAA 99-1306-wip,1999
    [103]Kim H,Ragon S,Soremekun G,et al.Flexible Approximation Model Approach for Bi-Level Integrated System Synthesis[R].AIAA 2004-4545,2004
    [104]Kodiyalam S,Yuan C.Evaluation of Methods for Multidisciplinary Design Optimization(MDO),PartⅡ[R].NASA/CR-2000-210313,2000
    [105]George J,Peterson J,Southard S.Multidisciplinary Integrated Design Assistant for Spacecraft(MIDAS)[R].AIAA-95-1372-CP,1995
    [106]Ferebee M J,Troutman P A,Monell D W.Satellite Systems Design/Simulation Environment - A Systems Approach to Pre-phase A Design[R].AIAA-1997-231,1997
    [107]余雄庆,姚卫星,薛飞,等.关于多学科设计优化计算框架的探讨[J].西安:机械科学与技术,2004,23(3):286-289
    [108]De O.AML:An Object Oriented Modeling Framework for Collaborative Knowledge-Based Engineering[EB/OL].2004/2005-10
    [109]Baker M L,Munson M J,Hoppus G W,et al.The Integrated Hypersonic Aeromechanics Tool(IHAT),Build 4[R].AIAA 2004-4565,2004
    [110]Monell D,Verhage M,Kam J V,et al.The Advanced Engineering Environment (AEE) Project for NASA's Next Generation Launch Technologies(NGLT)Program[R].AIAA 2004-0202,2004
    [111] Kroo I, Manning V. Collaborative Optimization: Status and Directions [R].AIAA 2000-4721, 2000
    
    [112] 何芝仙,桂长林.复杂机械系统优化设计研究[ J].机械科学与技术, 2006,25(2): 158-162
    [113] Cedar R. The Intelligent Master Model Process for Achieving Functional Design [EB/OL]. http:// www.ugs.com/products/nx/docs/ wp_intelligent_master_model.pdf, 2004-5/2005-6-20
    [114] Wertz J R, Larson W J. Space Mission Analysis and Design [M]. Third Edition ed. Torrance, California: Microcosm Press and Kluwer Academic Publishers,1999
    [115] Mosher T, Barrera M. Integration of Small Satellite Cost and Design Models for Improved Conceptual Design-to-cost [R]. IEEE, 0-7803-4311-5/98, 1998
    [116] Varatharajoo R, Kahle R, Fasoulas S. Approach for Combing Spacecraft Attitude and Thermal Control Systems [J]. Journal of Spacecraft and Rocket, 2003, 40(5):657-664
    [117] Cullimore B, Panczak T, Baumann J, et al. Automated Multidisciplinary Optimization of a Space-based Telescope [R]. SAE 2002-01-2445, 2002
    [118] Shaw G B. The Generalized Information Network Analysis Methodology for Distributed Satellite Systems [D]. USA: Massachusetts Institute of Technology,1998
    [119] Jilla C D. A Multiobjective, Multidisciplinary Design Optimization Methodology for the Conceptual Design of Distributed Satellite Systems [D]. USA:Massachusetts Institute of Technology, 2002
    [120] Wilke M, Quirmbach O, Schiffner M, et al. MuSSat - A Tool for Satellite Design in Concept Design Centers [A]. In: Proceedings of EuSEC[C]. 2000: 337-344
    [121] Michael N A. Conceptual Design Tools for the NPS Spacecraft Design Center [D]. USA: Naval Postgraduate School, 2001
    [122] Space M M. SYSTEMA: Analysis Tool for Concurrent Engineering of Spacecraft [R]. 1990
    [123] Hu Z, You Z, Guo J, et al. A New System Engineering Method for Spacecraft Design [R]. AIAA 2003-6335, 2003
    [124] Zhaowei S, Guodong X, Xiaohui L, et al. The Integrated System for Design,Analysis, System Simulation and Evaluation of the Small Satellite [J]. Advancesin Engineering Software, 2000,(31): 437-443
    [125] Vidal G A, Kataoka-filho M, Takahashi W K, et al. Application of Sensitivity Analysis for Optimization of a Satellite Structure [R]. AIAA-98-1820, 1998
    [126] Riddle E. Use of Optimization Methods in Small Satellite Systems Analysis [R].SSC98-X-1, 1998
    
    [127] Mosher T. Improving Spacecraft Design Using a Multidisciplinary Design Optimization Methodology[D].USA:University of Colorado,2000
    [128]Howell D J,De Weck O.Multidisciplinary System Optimization of a Spacecraft Interferometer Testbed[R].AIAA 2004-4551,2004
    [129]Mosier G,Parrish K,Femiano M,et al.Performance Analysis Using Integrated Modeling[R].Next Generation Space Telescope Project Study Office,Goddard Space Flight Center,NGST Monograph No.6,2000
    [130]Budianto I,Olds J.A Collaborative Optimization Approach to Design and Deployment of a Space Based Infrared System Constellation[A].In:Proceedings of 2000 IEEE Aerospace Conference[C].USA:Big Sky Montana,2000
    [131]Irene A B,John R O.Design and Development of a Satellite Constellation Using Collaborative Optimization[J].Journal of Spacecraft and Rockets,2004,41(6):956-963
    [132]Myles A W,Daniel E H.Applications of Uncertainty Analysis to Architecture Selection of Satellite Systems[J].Journal of Spacecraft and Rocket,2004,41(4):75-84
    [133]Bailing R J,Gale D L.Collaborative Optimization of Systems Involving Discrete Design at the Discipline Level[A].In:Proceedings of DETC' 97 1997 ASME Design Engineering Technical Conferences[C].Sacramento,California,DETC97/DAC-3964,1997
    [134]范丽.卫星星座一体化优化设计研究[D].长沙:国防科技大学,2006
    [135]陈柏鸿.机械产品多学科综合优化设计中的建模、规划及求解策略[D].武汉:华中科技大学,2001
    [136]殷剑宏,吴开亚.图论及其算法[M].合肥:中国科学技术大学出版社,2004
    [137]王树禾.图论[M].北京:科学出版社,2004
    [138]傅彦,顾小丰.离散数学及其应用[M].北京:电子工业出版社,1997
    [139]http://mdob.larc.nasa.gov/mdo.test/index.html,
    [140]http://mdob.larc.nasa.gov/mdo.test/class2prob4/equations/HOWTO.html,1998-03-26/2002-11-01
    [141]Padula S L,Alexandrov N,Green L L.MDO Test Suite at NASA Langley Research Center[R].AIAA 96-4028,1996
    [142]Papalambros P Y,Michelena N F.Trends and Challenges in System Design Optimization[A].In:Proceedings of the Intemational Workshop on Multidisciplinary Design Optimization[C].Pretoria,S.Africa,2000
    [143]The Design Structure Matrix - DSM[EB/OL].http://www.dsmweb.org/Tutorial /tutorial.htm,2005-1-26
    [144]Renaud J E.Sequential Approximation in Non-hierarchic System Decomposition and Optimization:A Multidisciplinary Design Tool[D].New York:Rensselaer Polytechnic Insitute,1992
    [145]雷树棵.动态大系统方法[M].西安:西北工业大学出版社,1994
    [146]苏财茂,柯映林.面向协同设计的任务规划与解耦策略[J].计算机集成制造系统,2006,12(1):21-26
    [147]王玉,邢渊,等.设计过程信息建模及重组[J].计算机集成制造系统,2002,8(2):111-114
    [148]Arakawa M,Nakayama H,Ishikawa H.Approximate Optimization Using Radial Basis Function Networks and Genetic Range Genetic Algorithms[R].AIAA 2004-4503,2004
    [149]Krishnamurthy T.Comparison of Response Surface Construction Methods for Derivative Estimation Using Moving Least Squares,Kriging and Radial Basis Functions[R].AIAA 2005-1821,2005
    [150]Wang L,Beeson D,Wiggs G,et al.A Comparison Of Meta-modeling Methods Using Practical Industry Requirements[R].AIAA 2006-1811,2006
    [151]张健,李为吉.飞机多学科设计优化中的近似方法分析[J].航空计算技术,2005,35(3):5-8
    [152]Giunta A A.Aircraft Multidisciplinary Design Optimization Using Design Of Experiments Theory and Response Surface Modeling Methods[D].Blacksburg,Virginia:Virginia Polytechnic Institute and State University,1997
    [153]王晓峰,席光.基于Kriging模型的翼形气动性能优化设计[J].航空学报,2005,26(5):545-549
    [154]Jones D R,Schonlau M,Welch W J.Efficient Global Optimization of Expensive Black-box Functions[J].Journal of Global Optimization,1998,13:455-492
    [155]Krishnamurty S,Wilmes G C.Preference-Based Updating of Kriging Surrogate Models[R].AIAA 2004-4484,2004
    [156]王晓峰,席光,王尚锦.Kriging与响应面方法在气动优化设计中的应用[J].工程热物理学报,2005,26(3):423-425
    [157]曹鸿钧,段宝岩.基于Kriging模型的后优化近似研究[J].机械设计与研究,2004,20(5):10-14
    [158]张崎.基于Kriging方法的结构可靠性分析及优化设计[D].大连:大连理工大学,2005
    [159]Schonlau M.Computer Experiments and Global Optimization[D].Waterloo,Ontario,Canada:The University of Waterloo,1997
    [160]Ku Y,Jeon Y,Kim J,et al.Improvement of Feasibility of Design Space Using Response Surface and Kriging Method[R].AIAA 2004-4516,2004
    [161]Lophaven S N,Nielsen H B,Sondergaard J.DACE A MATLAB Kriging Toolbox Version 2.0[R].Technical University of Denmark,Technical Report IMM-TR-2002-12,2002
    [162]Sellar R S,Batill S M,Renaud J E.Response Surface Based,Concurrent Subspace Optimization for Multidisciplinary System Design[R].AIAA 96-0714,1996
    [163]Lin W,Renaud J E.A Comparative Study of Trust Region Managed Approximate Optimization[R].AIAA 2001-1499,2001
    [164]Kennedy J,Eberhart R C.Particle Swarm Optimization[A].In:Proc.IEEE International Conference on Neural Netoworks[C].Perth,Australia:1995:1942-1948
    [165]Shi Y,Krohling R A.Co-evolutionary particle swarm optimization to solve min-max problems[A].In:Proceeding of the 2002 Congress on Evolutionary Computation[C].Hawaii,USA:2002:1682-1687
    [166]Eberhart R C.Comparing Inertia Weights and constriction factors in particle swarm optimization[A].In:Proceeding of the 2000 Congress on Evolutionary Computation[C].La Jolla,CA,USA:2000:84-88
    [167]Al-kazemi B,Mohan C K.Training feed forward neural networks using multi-phase particle swarm optimization[A].In:Proceedings of the 9th International Conference on Neural Information Proceedings[C].Singapore:2002:2616-2619
    [168]Yoshida H,Kawata K,Fukuyama Y.A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J].IEEE Transaction on Power Systems,2000,15(4):1232-1239
    [169]苏成利,徐志成,王树青.PSO算法在非线性系统模型参数估计中的应用[J].信息与控制,2005,34(1):123-125
    [170]原萍,王光兴,张洋洋.求解通信优化问题的一种微粒群优化方法[J].东北大学学报:自然科学版,2004,25(10):934-937
    [171]Shi Y,Eberhart R.Parameter Selection in Particle Swarm Optimization[A].In:Proc of the 7th Annual conf on Evolutionary Programming[C].Washington DC:1998:591-600
    [172]Shi Y,Eberhart R.Fuzzy Adaptive Particle Swarm Optimization[A].In:The IEEE Congress on Evolutionary Computation[C].San Francisco,USA:2001:101-106
    [173]《现代应用数学手册》编委会.运筹学与最优化理论卷[M].北京:清华大学出版社,2005
    [174]Sobieszczanski-sobieski J,Agte J S,Sandusky R R.Bi-Level Integrated System Synthesis(BLISS)[R].AIAA 98-4916,1998
    [175]De Baets P W G,Mavris D N,Sobieszczanski-sobieski J.Aeroelastic Design by Combining Conventional Practice with Bi-Level Integrated System Synthesis (BLISS)[R].AIAA 2004-4431,2004
    [176]Sobieszczanski-sobieski J,Emiley M S,Agte J S,et al.Advancement of Bi-Level Integrated System Synthesis(BLISS)[R].AIAA 2000-0421,2000
    [177]Kim H,Malone B,Sobieszczanski-sobieski J.A Distributed,Parallel,and Collaborative Environment for Design of Complex Systems[R].AIAA 2004-1848,2004
    [178]Kobayashi T,Kroo I.The New Effective MDO Method Based on Collaborative Optimization[R].AIAA 2005-4799,2005
    [179]都志辉.高性能计算并行编程技术——MPI并行程序设计[M].北京:清华大学出版社,2001
    [180]周彦,戴剑伟.HLA仿真程序设计[M].北京:电子工业出版社,2002
    [181]IEEE.IEEE Standard for Modeling and Simulation(M&S) High Level Architecture(HLA)-Framework and Rules[S].IEEE STD 1516-2000.Committee S I S,2000
    [182]IEEE.IEEE Standard for Modeling and Simulation(M&S) High Level Architecture(HLA)-Federate Interface Specification[S].IEEE STD 1516.1-2000.Committee S I S,2000
    [183]IEEE.IEEE Standard for Modeling and Simulation(M&S) High Level Architecture(HLA)-Object Model Template(OMT) Specification IS].IEEE STD 1516.2-2000.Committee S I S,2000
    [184]From J,Kramer S,Pohl E.A Small Satellite System Design Process[A].In:Proceedings of the IEEE 1997 National Aerospace and Electronics Conference [C].OH,USA:1997:423-429
    [185]Carty A.An Approach to Multidisciplinary Design,Analysis & Optimization for Rapid Conceptual Design[R].AIAA 2002-5438,2002
    [186]欧阳自远.我国月球探测的总体科学目标与发展战略[J].地球科学进展,2004,19(3):351-358
    [187]张文祥,林胜勇,赵金才.月球探测技术——发展历程和特点[J].上海航天,2003(3):57-62
    [188]陈新民,余梦伦.中国发射月球探测器的运载火箭方案研究[J].中国航天,2002(11):29-32
    [189]彭成荣.满足航天任务需求 致力整体功能最优——中国航天器总体设计技术的进展[A].见:王希季.20世纪中国航天器技术的进展[C].北京.中国宇航出版社,2002:05-119
    [190]张熇.中国月球探测卫星飞行程序[J].太空探索,2003(10):9
    [191]郗晓宁,曾国强,任萱,等.月球探测器轨道设计[M].北京:国防工业出版社,2001
    [192]林胜勇,李珠基,康志宇.月球探测技术——轨道设计和计算[J].上海航天, 2003(4):57-62
    [193]郗晓宁,王威,高玉东.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003
    [194]周文艳,杨维廉.月球探测器转移轨道的中途修正[J].宇航学报,2004,25(1):89-92
    [195]Carranza E,Konopliv A,Ryne M.Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models[R].AAS 99-325,1999
    [196]任萱.人造地球卫星轨道力学[M].长沙:国防科技大学出版社,1988
    [197]常凌颖,杨建峰,赵葆常等.一种新型面阵CCD航天立体摄影测量光学系统[J].光子学报,2005,34(8):1165-1168
    [198]李立涛,杨涤,崔祜涛.现代小型月球探测器总体方案设计[J].高技术通讯,2001(5):80-84
    [199]王寨,李铁寿,王大轶.探月卫星变轨时的姿态控制研究[J].航天控制,2005,23(1):11-14
    [200]Wickert D P.Space Based Radar - System Architecture Design and Optimization for a Space Based Replacement to AWACS[D].Massachusetts:Massachusetts Institute of Technology,1997
    [201]Burns R,McLaughlin C A.TechSat 21:Formation Design,Control and Simulation[A].In:Aerospace Conference Proceedings[C].IEEE,7,2000:19-25
    [202]Massonnet D.The Interferometric Cartwheel:A Constellation of Passive Satellites to Produce Radar Images to be Coherently Combined[J].Int J Remote Sensing,2001,22(12):2413-2430
    [203]Alfriend N G,Ralph G.Orbit Selection for Radarsat Interferometric Tandem Mission[A].In:International Symposium Formation Flying Mission &Technologies[C].Toulouse,France:2002:29-31
    [204]陈杰,周荫清,李春升.分布式SAR小卫星编队轨道设计方法研究[J].中国科学(信息科学版),2004,34(6):654-662
    [205]黄海风,邓泳,梁甸农.基于测高精度最优值的星载分布式InSAR编队构形设计方法[J].国防科技大学学报,2005,27(4):85-90
    [206]孟云鹤.近地轨道航天器编队飞行控制与应用研究[D].长沙:国防科技大学,2006
    [207]王继学.星载合成孔径雷达天线的工程设计[J].上海航天,2003,(2):7-13
    [208]何峰,梁甸农,刘建平.星载双基地SAR干涉测高误差分析[J].系统工程与电子技术,2005,27(9):1519-1523
    [209]Krieger G,Wendler M.Comparison of the Interferometric Performance for Spaceborne Parasitic SAR Configurations[A].In:4th European Conference on Synthetic Aperture Radar[C].Germany:VDE VERLAG GMBH:2002:467-470
    [210]Massonnet D.Capabilities and Limitations of the Interferometric Cartwheel[J].IEEE Trans.on Geoscience and Remote Sensing,2001,39(3):506-520
    [211]Curlander J C.Synthetic Aperture Radar Systems and Signal Processing[M].New York:Wiley,565-591,1991
    [212]Mrstik V,Vanblaricum G.Terrain Height Measurement Accuracy of Interferometric Synthetic Aperture Radars[J].IEEE Trans.On Geoscience and Remote Sensing,1996,34(1):219-228
    [213]Sabol C,Bums R,Mclaughlin C A.Formation Flying Design and Evolution[R].ASS 99-2121,1999
    [214]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2003
    [215]杨嘉墀.航天器轨道动力学与控制[M].北京:宇航出版社,1995
    [216]Schaub H,Alfriend K T.Impulsive Feedback Control to Establish Specific Mean Orbit Elements of Spacecraft Formations[J].Journal of Guidance,Navigation and Control,2001,24(4):739-745
    [217]Schaub H.Incorporating Secular Drifts into the Orbit Element Difference Description of Relative Orbits[R].AAS 03-115,2003
    [218]Alfriend K T,Schaub H,Gim D.Gravitational Perturbations,Nonlinearity and Circular Orbit Assumption Effects on Formation Flying Control Strategies[R].AAS 00-012,2000
    [219]袁家军.卫星结构设计与分析[M].北京:中国宇航出版社,2004
    [220]Brown C D.Elements of Spacecraft Design[M].Eston,VA:American Institute of Aeonautics and Astronautics,Inc.,AIAA Education Series,2002
    [221]Massonnet D,Thouvenot E,Ramongassie S,et al.A Wheel of Passive Radar Microsats for Upgrading Existing SAR Projects[A].In:Proceedings of IGARSS 2000[C].Honolulu,Hawaii,USA,2000:
    [222]黄卫东,张育林.分布式小卫星合成孔径雷达的空间编队构形研究[J].电波科学学报,2005,20(2):207-211
    [223]Salas A O,Townsend J C.Framework Requirements for MDO Application Development[R].AIAA 98-4740,1998
    [224]Ferebee M J,Troutman J P A,Monell D W.Satellite Systems Design/Simulation Environment:A Systems Approach to Pre-Phase A Design[R].AIAA 97-0231,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700