超高频射频识别系统性能的分析与测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近几年“物联网”技术的飞速发展,作为物联网关键技术之一的射频识别技术(Radio Frequency Identification, RFID)技术也迎来了一个新的飞速发展时期,开始大量应用于工业生产自动化、交通、身份识别和物流等领域,并且在不断扩大其应用范围。同时,RFID技术标准的多样性及应用的特殊性给相应的RFID测试和RFID性能评估也带来新的要求和挑战。基于以上现状,应用电磁场、天线、测试和统计分析等相关理论,本文研究了无源超高频RFID系统中的雷达散射截面差值、误码率和反向散射调制性能以及RFID系统性能评估模型,主要内容及工作包括:
     首先阐述了RFID系统工作原理、组成及RFID相关标准。从RFID测试原理、测试技术和测试内容出发,根据应用测试现状研究了RFID系统性能测试方法及测试设备;介绍了虚拟仪器技术、软件无线电技术和射频测试技术,基于此设计了一套基于虚拟仪器技术和软件无线电技术的RFID系统测试平台,重点介绍了测试系统的架构形式、硬件选型及软件设计,并给出了一些具体参数的测试方法和测试结果。结果表明,该测试平台具备可靠性、兼容性、稳定性等性能测试能力,可以完成RFID空中接口一致性、电气性能、第三方监测、系统性能及应用场景性能等测试,具备性能指标分析和可视化性能评估功能,并且支持多协议标准的测试,具备客户自定义标准测试的扩展能力。可以满足RFID术研究测试、硬件产品认证测试、应用测试等公共服务需求。
     其次基于RFID技术通信原理和天线反向散射理论,导出了无源标签的雷达散射截面的三维表现形式,并给出了反向散射信号在“0”“1”状态下的雷达散射截面差值与反向散射链路通信误码率的关系,提出了一种适合于反向散射RFID通信链路的误码率分析及测试方法。使用研发的RFID测试系统,运用矢量相减法消除收发天线间直接路径泄漏信号产生的误差,测量了不同参数设置情况下标签的雷达截面差值和通信误码率。得出在满足阅读器和标签灵敏度要求条件下,发射功率越大,标签反向散射链路通信BER越大。
     第三,分析了无源超高频射频识别系统阅读器接收机取得最大有效吸收功率值的条件,讨论阻抗失配对标签反向散射链路调制系数的影响,导出阅读器接收机标准化有效吸收功率、解调输出信号信噪比(SNR)下边界和接收端误码率(BER)三者的反向散射调制系数表达式。在开阔的室内环境下,完成了不同参数条件下的反向散射调制系数测试。采用研发的RFID测试系统对采用ASK调制方式的标签调制系数进行了测试,得出:调制系数位于5%~10%区间时,标签可以被正确识别;调制系数大于10%时,芯片吸收功率过低而无法正常工作,标签反向调制信号不能被正确解调和解码;调制系数小于5%时,阅读器接收机有效吸收功率过低,接收端BER过高,标签无法被识别。
     最后,基于实验设计方法理论,设计了一个RFID系统性能测试实验,利用统计分析方法给出了影响RFID系统性能的主要因素,并建立了RFID系统性能评估回归模型。基于OPC技术的Lab VIEW与PLC实时通讯控制技术,构建了一个仿真RFID系统应用场景,提高了测试效率,减少了测试成本。结合LVQ算法和GA算法,提出了一种改进的GA-LVQ算法,并将其引入RFID系统标签识别率预测,一方面利用LVQ神经网络强大的学习、联想、计算简单和分类识别的功能,并引入学习速度修正规则,保证算法的学习稳定性,另一方面利用GA算法较强的全局搜索功能、求解能力和鲁棒性,并引入交叉率和变异率算子动态调整方法,避免“优秀基因丢失”和“种群单调”问题,提高算法的学习效率。实验结果表明,该算法具有较好的预测精度、学习效率和鲁棒性。
In recent years, with the rapid development of internet of things (IOT), radio frequency identification (RFID) as one of the key technologies also achieved a new rapid development. RFID has a comprehensive application in many fields, such as industrial automation, transportation, identification and logistics etc, and expands its application scope continually. Meanwhile, the diversity of RFID standards and the particularity of the application also bring new demands and challenges to the test and the performance evaluation of RFID systems. Based on these, the delta radar cross section (delta RCS), bit error rate (BER), backscattered modulation and performance evaluation model of passive ultra high frequency (UHF) RFID systems are researched in this paper, which applies with electromagnetic fields, microwave and antennas testing and statistical analysis method. The main content and work are as follows:
     Firstly, this paper describes the basic theory, compositions and relevant standards of RFID systems. From the RFID testing principles, technologies and contents, the test methods and equipment of RFID system are researched. Then a test platform is built based on the virtual instrument technology, software defined radio (SDR) and RF test technologies. This paper introduces the key of the architectural form, the selection of hardware and the design of software, and gives some measuring methods and results for specific parameters. The results show that the platform has ability for test of reliability, compatibility and stability, which can complete the test of protocol and conformance, electrical properties, sniffer, and performance of system and application scenarios. It possesses the function of performance index analysis and visualization of performance evaluations, which supports multi-protocol and user-defined standards. It meets demand of public services such as RFID technology research and test, hardware product certification test, application test.
     Secondly, based on theory of RFID technology and backscatter, a relationship is derived between BER of backscatter link and the passive tag's delta RCS of state "0" and state "1". Therefore, this paper presents a new method which is adapted to analysis and test for BER of RFID communication link. A measurement system based on virtual instruments is built, and introduces vector subtraction methods to eliminate the errors brought by direct path leakage signal between transmit and receive antennas. Furthermore delta RCS and the BER of backscattered signal under different parameters are measured and analyzed. Experimental results show that the greater the transmitted power, the bigger the BER of backscatter link when the received power meet required sensitivity of readers and tags.
     Thirdly, optimal conditions for maximizing the effective received power of reader receiver for passive UHF RFID system are analyzed in this paper. The modulation index of tag backscatter link which affectied by mismatched impendence is discussed. Representations based on backscattered modulation index are derived, which are used for calculating normalized effective received power of reader receiver, lower boundary of signal noise ratio (SNR) for demodulated output signal and BER. Modulation index of backscatter link under different parameters is measured in open indoor environment. The measurement results show that the tag can be detected successfully when the modulation index of backscatter link is in 5% to 10%. When the modulation index of backscatter link is greater than 10 percent, the power absorbed by chip of tags is too low to work normally; the modulated signal of backscatter link cannot be demodulated and decoded correctly. When the modulation index is less than 5 percent, the effective power received by the receiver of readers is too low and the BER is too high, so the tags cannot be identified successfully.
     Finally, an experiment is designed to test the performance of RFID systems based on the theory of design of experiment (DOE). The RFID systems performance evaluation regression model is established with the key influence factors affecting the performance of RFID system which provided by statistical analysis method. The simulated applications scenarios are built to enhance the test efficiency and reduce the cost, which is based on the OPC technology of LabVIEW and real time control technology of PLC. An improved algorithm based on learning vector quantization (LVQ) and genetic algorithm (GA) is introduced in the prediction of the identification rate of RFID systems. The GA-LVQ algorithm takes advantage of the powerful learning, association, simple calculation and classification of LVQ and strong global search function, solving ability and robustness of GA. Meanwhile, a modified learning speed rule is introduced to guarantee the stability of learning algorithm; on the other hand, a dynamic adjustment method of crossover and mutation is introduced to avoid loss of excellent gene and population drab problems, and improve the learning efficiency. Experimental results show that the GA-LVQ algorithm has better precision, learning efficiency and robustness.
引文
[1]谭民,刘禹,曾隽芳.RFID技术系统工程及应用指南.北京:机械工业出版社,2007,1-20
    [2]Landt T. The history of RFID.IEEE Potentials,2005,24(4):8-11
    [3]边红丽,姜华RFID系统测试平台建设内容研究.射频快报,2007,2:50-52
    [4]耿力,冯敬.RFID产品的测试问题.信息技术与标准化,2006,4:30-33
    [5]张小孟.射频识别(RFID)测试技木的应用研究.中国集成电路,2003,50(7):76-83
    [6]中国科技部等十五部委.中国射频识别(RFID)技术政策白皮书.第1版,2006-6-9
    [7]洪博,孙倩.UHF频段RFID设备的技术要求及测试.现代电信科技,2007,1:44-51
    [8]周军.中国射频识别(RFID)蓝皮书的主要内容.www.rfidworld.com.cn, 2009-11-6
    [9]Klaus Finkenzeller,吴晓峰,陈大才译.射频识别技术.北京:电子工业出版社,2006,10-16
    [10]慈新新,王苏滨,王硕.无线射频识别(RFID)系统技术与应用.北京:人民邮电出版社,2007,3-21
    [11]ISO/IEC 18000-6.Information technology automatic identification and data capture techniques — Radio frequency identification for item management air interface — Part 6:Parameters for air interface communications at 860 to 960 MHz.USA:ISO and IEC 2003
    [12]陈柯,邵晖.采用模块化仪器构建RFID测试系统.电子产品世界,2007(1):53-57
    [13]江建军,杨彪.近高频射频识别阅读器虚拟仪器系统设计与实现.仪器仪表学报,2007,(6):1024-1028
    [14]Yen C C, Gutierrez A E, Veeramani D, et al. Radar cross-section analysis of backscattering RFID tag. IEEE Antennas and Wireless Propagation Letters,2007, (6):279-281
    [15]侯周国,何怡刚,李兵.基于软件无线电的无源超高频RFID标签性能测试.物理学报,2010,59(08)5606-5612
    [16]唐志军,何怡刚.无源射频识别系统中的雷达截面分析与计算.物理学 报,2009,58(7):757-763
    [17]Nikitin P V, Rao K V S. LabVIEW-based UHF RFID tags test and measurement system. IEEE Transactions on Industrial Electronics,2009,56(7):2374-2381
    [18]Nikitin P V, Rao K V S, Martinez R D.Differential RCS of RFID tag. Electronics Letters,2007,43(8):431-432
    [19]Nikitin P V, Rao K V S. Theory and measurement of backscattering from RFID tags.IEEE Antennas and Propagation Magazine,2006,48(6):212-218
    [20]Skali S,Chantepy C,Tedjini S. On the measurement of the delta Radar Cross Section for UHF tags.2009 IEEE International Conference on RFID. Orlando,2009:346-351
    [21]Fuschini F, Piersanti C, Paolazzi F, et al.On the efficiency of load modulation in RFID systems operation in real environment. IEEE Antennas and Wireless Propagation Letters,2008, (7):243-246
    [22]Fuschini F, Piersanti C, Paolazzi F, et al. Analytical approach to the backscattering from UHF RFID transponder.IEEE Antennas and Wireless Propagation Letters.2008, (7):33-35
    [23]Vita G D, Iannaccone G.Design criteria for the RF section of UHF and microwave passive RFID transponder. IEEE Transaction on Microwave Theory and Technology,2005,53 (9):2978
    [24]Curty J P, Declercq M, Dehollain C, et al. Design and Optimization of Passive UHF RFID Systems. New York:Springer,2009.20-30
    [25]Jo M, Lim C G, Zimmer E W.RFID tag detection on a water content using a back-propagation learning machine.KSII Transaction on Internet and Information System,2007,1(1):19-32
    [26]Jo M, Youn H Y. Intelligent recognition of RFID tag position. Electronics Letters,2008,44(4):308-310
    [27]ISO/IEC 18047-6.Information technology-Radio frequency identification device conformance test methods—Part 6:Test methods for air interface communications at 860 to 960 MHz.USA:ISO and IEC,2003
    [28]张重雄.虚拟仪器技术分析与设计.北京:电子工业出版社,2007,8-102
    [29]钮心沂,杨义先.软件无线电技术与应用.北京:北京邮电大学出版社,2001:128-131
    [30]邵辉.软件无线电在射频检测仪器和射频检测方法中的应用.www.article.ednchina.com,2008-05-10
    [31]李学军.一种软件无线接收机的研究与设计:[西安电子科技大学硕士学位论文].西安:西安电子科技大学,2005,10-40
    [32]褚振勇FPGA设计及应用.西安:西安电子科技大学出版社,2002:79-83
    [33]Uwe Meyer-baese著.数字信号处理的FPGA实现.刘凌,胡永生(译).北京:清华大学出版社,2003:6-15
    [34]李兵,何怡刚,佘开.基于雷达截面差值的标签通信误码率分析和测量.仪器仪表学报,2010,31(12):2815-2820
    [35]李弼程,罗建书.小波分析及其应用.北京:电子工业出版社,2003,84-85
    [36]董长虹,高志,余啸海Matlab小波分析工具箱原理与应用.北京:国防工业出版社,2004,28-79
    [37]Donoho D L.Denoising by Soft-Thresholding.IEEE Transactions on Information Theory,1995,41(5):613-627
    [38]孔祥维,王敬,宫平.基于小波变换的船舰雷达信号去噪方法.大连理工大学学报,2000,40(3):371-374
    [39]Collin R E. Limitations of the Thevenin and Norton Equivalent Circuit for a Receiving Antenna. IEEE Antennas and Propagation Magazine,2003,2:119-124
    [40]Lowe A W. Comment on limitations of the Thevenin and Norton Equivalent Circuit for Receiving Antenna. IEEE Antennas and Propagation Magazine, 2003,8:20-25
    [41]Dobkin D M. The RF in RFID:Passive UHF RFID in practice. UK:Newnes Press,2007,125-203
    [42]Rami K, Vincent B.UHF RFID tag-antenna matching optimization using VHDL-AMS behavioral modeling. Analog Integrated Circuits and Signal Processing, Mixed Signal Letter,2007,50(2):151-158
    [43]Vojtech D, Christian S, Suad K. Behavioral Model of UHF RFID Tag for System and Application Level Simulation. Proceedings of the 2005 IEEE International Behavioral Modeling and Simulation Workshop.2005,60-63.
    [44]Henry L. Bertoni. Radio propagation for Modern Wireless Systems. Beijing: House of Electronics Industry,2002,20-52
    [45]韩益峰.射频识别阅读器的研究与设计:[复旦大学博士学位论文].上海:复旦大学微电子学系,2005,23-39
    [46]王佳,罗雪松,李勇祯.天线空域极化特性的表征及分析.电波科学学报,2008,(23)4:620-627
    [47]Kim D, Ingram M A, Smith W W. Measurements of small-scale fading and path loss for long range RF tags. IEEE Transactions on Antennas and Propagation,2003,51 (8):1740-1749
    [48]佘开,何怡刚,李兵.无源超高频RFID系统链路预算分析.仪器仪表学报,2010,31(5):974-979
    [49]Mayer L W, Wrulich M, Caban S. Measurements and channel modeling for short range indoor UHF applications. Proceedings of The European Conference on Antennas and Propagation, Nice,2006,1-5
    [50]Hodges S, Mallinson H, Thorne A. Assessing and optimizing the range of UHF RFID to enable real-world pervasive computing applications. Proceedings of International Conference on Pervasive Computing,2007,280-297
    [51]Nikitin P V, Rao K V S. Performance limitations of passive UHF RFID systems. IEEE Antennas and Propagation Symposium,2006,1011-1014
    [52]Banerjee S R, Jesme R, Sainati R A. Performance analysis of short range UHF propagation as applicable to passive RFID.IEEE RFID Conference,2007,30-36
    [53]Fletcher R, Marti U P, Redemske R. Study of UHF RFID signal propagation through complex media. IEEE Antennas and Propagation Society International Symposium,2005,747-750
    [54]钟顺时.电磁场基础.北京:清华大学出版社,2007:46-79
    [55]Kraus J. Antennas(International Editions).New York:McGraw-Hill,1988,32-50
    [56]Warren L.Stutzman.朱守正,安同一译.天线理论与设计(Antenna Theory and Design)北京:人民邮电出版社,2006:11-46,197-202
    [57]John D K, Ronald J M.章文勋译.天线(第三版).北京:电子工业出版社,2006:8-17
    [58]卢万铮.天线理论与技术.西安:西安电子科技大学出版社,2004,22-31,228-242
    [59]Balanis C A. Antenna Theory and Design (2nd edition). New York, John Wiley & Sons Inc.,1997,20-86
    [60]Chau T, Welt B, Eisentadt W. Analysis and characterization of transponder antennae for RFID systems. Packaging Technology and Science,2006,19(1): 33-44
    [61]赖晓铮.UHF频段射频识别系统与天线研究:[华南理工大学博士学位论文].广州:华南理工大学信息与电子学院,2006,11-12
    [62]胡汝刚.UHF频段射频识别系统天线研究:[北京交通大学硕士学位论文].北京:北京交通大学电子信息工程学院,2008,11-13,23-25
    [63]White O. Radar cross-section:measurement, prediction, control. Electronics and Communication Engineering Journal,1998,10(4):169-180
    [64]Knott E F, Shaeffer J, Tuley M. Radar cross section. New York:Artech House,1993,61-72
    [65]刘少斌,张光甫,袁乃昌.等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析.物理学报,2004,53(8):2633-2637
    [66]阮颖铮.雷达截面与隐身技术.北京:国防工业出版社,1998,26-35
    [67]Dobkin D, Weigand S. UHF RFID and tag antenna scattering. Part I: experimental results, Part II:Theory. Microwave Journal,2006,49(5):170-190
    [68]Hu S, Chen H, Law C L, et al. Backscattering cross section of ultra wide band antennas. IEEE Antennas and Wireless Propagation Letters,2007,6:70-73
    [69]Theodore S. Rappaport周文安等译.无线通信原理与应用(第二版).北京:电子工业出版社,2007,68-113
    [70]Karthaus U. Fully integrated passive UHF RFID transponder IC with 16.7μW minimum RF input power. IEEE Journal of Solid-State Circuits.2003,38(10): 1602-1608
    [71]Liang Q, Cressler J D, Niu G, et al. A simple four-port parasitic de-embedding methodology for high-frequency scattering parameter and noise characterization of SiGe HBTs. IEEE Transactions on Microwave Theory and Techniques 2003,51(11):2165-2174
    [72]Mangan A M, Voinigescu S P, Yang M T, et al. De-embedding transmission line measurements for accurate modeling of IC designs. IEEE Transactions on Electronic Devices,2006,53(2):235-241
    [73]骊舟剑,王冬进.毫米波连续波雷达载波泄露对消理论分析与系统仿真.现代雷达,1998,20(2):1-11
    [74]庄钊文,袁乃昌.雷达散射截面测量——紧凑场理论与技术.长沙:国防科技大学出版社,2000:20-40
    [75]Hansen R C. Relationships between antennas as scatters and as radiators. Proceedings of the IEEE,1989,77(5):659-662
    [76]Pozar D M. Microwave Engineering. USA:John Wiley,2005,45-86
    [77]刘英,龚书喜,傅德民.天线散射理论研究.电子学报,2005,33(9):1611-1613
    [78]李秀萍,高建军.微波射频测量技术基础.北京:机械工业出版社,2007,73-80
    [79]Misra D K.Radio frequency and microwave communication circuits analysis and design. New York, John Wiley & Sons Inc.,2001,45-78
    [80]范志广.超高频射频识别中的若干应用问题研究:[浙江大学博士学位论文]. 杭州:浙江大学,2007,36-65
    [81]Yao X, Sungwook K, Hyungchul K, et al. Optimum ASK Modulation Scheme for Passive RFID Tags Under Antenna Mismatch Conditions. IEEE Transactions on Microwave theory and Techniques,2009,57(10):2337-2343
    [82]Rao K V S, Nikitin P V, Lam S F. Impedance matching concepts in RFID transponder design. Automatic Identification Advanced Technologies,2005,4: 39-42
    [83]Clarke R, Twede D, Tazelaar J. Radio frequency identification (RFID) performance:the effect of tag orientation and package contents. Packaging Technology and Science,2006,19(1):45-54
    [84]Bianchi C H, Sivaprasad K. A channel model for multipath interference on terrestrial line-of-sight digital radio. IEEE Transactions on Antennas and Propagation,1998,46(6):891-901
    [85]Aroor S R, Deavours D D. Evaluation of the state of passive UHF RFID:an experimental approach. IEEE Systems Journal,2007,1 (2):168-176
    [86]Arumugam D D, Engels D W. Characterizations of RF propagation in metal pipes for passive RFID systems. International Journal of RFID Technology and Applications,2007,1(3):303-343
    [87]Marrocco G, Giampaolo E D, Aliberti R. Estimation of UHF RFID Reading Regions in Real Environments. IEEE Antennas and Propagation Magazine,2009, 51(6),44-57
    [88]Montgomery D C. Design and Analysis of Experiments (Sixth Edition). New Jersey:John Wiley & Sons Inc.,2005,20-68
    [89]沈邦兴,文昌俊.实验设计与工程应用.北京:中国计量出版社,2005,25-105
    [90]Mitsugi J, Hada H. Experimental study on UHF passive RFID readability degradation. Proceedings of the International Symposium on Applications and the Internet Workshops. Arizona, USA:IEEE,2006.52-55
    [91]Li T B, Wang D. Experimental studying measurement metrics of RFID system performance. In:Proceedings of the 3rd International Conference on Anti-counterfeiting, Security, and Identication in Communication. Hong Kong, China:IEEE,2009.233-237
    [92]Murfett D. The challenge of testing RFID integrated circuits. In:Proceedings of the 2nd IEEE International Workshop on Electronic Design, Test and Applications. Perth, Australia:IEEE,2004.410-412
    [93]Wu Y C, Chung K K, Qu H M, Yuan X R, Cheung S C.Interactive visual optimization and analysis for RFID benchmarking. IEEE Transactions on Visualization and Computer Graphics,2009,15(6):1335-1342
    [94]Jarwala M, Le D, Heutmaker M S. End-to-end test strategy for wireless systems. In:Proceedings of the Inter-national Test Conference. Washington D. C., USA: IEEE,1995,940-946
    [95]刘禹,朱智源,关强.基于试验设计的RFID应用组合测试优化研究.自动化学报,2010,36(12):1674-1680
    [96]张德丰MATLAB概率与数理统计分析.北京:机械工业出版社,2010,270-315
    [97]Mohamad H. Fundamentals of artificial Neural Networks. Prentice Hall India:2002,103-112
    [98]Hariadi M, Takafumi A H, Higuchi T. An LVQ-based Technique for Human Motion Segmentation.7th International Conference on Control, Automation, Robotics and Vision, ACM Press,2002,171-175
    [99]Rajasekaran S, Vijayalakshmi G A. Neural Networks, Fuzzy Logic, and Genetic Algorithm-Synthesis and Applications. Prentice Hall India,2003,225-327
    [100]Shieh C S, Lin C T.A Vector Neural Network for Emitter Identification. IEEE Transactions on Antennas and Propagation,2002,50(8):1121-1125
    [101]Man K M, Tung K S, Kung S. Genetic Algorithms.London:Springer Verlag, 1999,15-50
    [102]Schwefel H P. Evolution and Optimum Seeking. New York:John Wiley and Sons,1995,20-80
    [103]Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithm. IEEE Transactions on System, Man and Cybernetics, 1994,24(4):656-667
    [104]Li B, He Y G, Guo F M, et al. Prediction of Passive UHF RFID's Discrimination Based on LVQ Neural Network Method. The 6th International Conference on Wireless Communications, Network and Mobile Computing,23-25 Septemper, Chengdu, China,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700