氯化钙溶液中亚硫酸钙和硫酸钙相变与结晶转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙基脱硫剂脱除烟气中的SO2时,生成亚硫酸钙(calcium sulfite, SH),经强制氧化,则转化为二水硫酸钙(calcium sulfate dihydrate, DH).以亚硫酸钙和二水硫酸钙为主要成分的脱硫副产物称为脱硫石膏。在过去的十五年中,我国脱硫石膏成为著名的大宗工业固体废物,目前年排放量大约为6900万吨,从环境保护和资源利用角度而言,急需规模化消纳和资源化利用。本课题针对脱硫石膏高附加值资源化利用,研究亚硫酸钙和二水硫酸钙制备α-半水石膏(a-calcium sulfate hemihydrate, a-HH)以及它们之间的相变关系和结晶规律。
     在合理配制的Ca-Mg-Mn氯化物溶液中,亚硫酸钙氧化和α-半水石膏结晶同时发生,亚硫酸钙氧化是反应限速步骤。在确定的温度和其他条件下,α-半水石膏的结晶路径随CaCl2浓度变化而变化。在2.50-3.50m CaCl2体系中,亚硫酸钙经由DH向α-半水石膏转化(亚硫酸钙→二水石膏→α-半水石膏),二水石膏的存在时间随着氯化钙浓度的升高而缩短;在4.00m CaCl2体系中,没有发生亚硫酸钙向二水石膏转化的现象,即二水石膏的存在时间缩短为零,实现亚硫酸钙→α-半水石膏的直接转化。据此,提出了亚硫酸钙在常压盐介质中直接制备α-半水石膏的工艺。
     为了阐明在CaCl2溶液中亚硫酸钙制备α-半水石膏结晶路径的变化规律,研究了均相CaCl2体系中硫酸钙多相的竞争成核,依据经典成核理论(classical nucleation theory, CNT)模拟α-半水石膏的相对成核速率。在α-半水石膏亚稳定相区和二水石膏亚稳定相区,自发成核初始结晶中的优势相随着过饱和度增加的顺序分别为:①不稳定二水石膏→亚稳定α-半水石膏→不稳定二水石膏和②亚稳定二水石膏→不稳定α-半水石膏→亚稳定二水石膏。α-半水石膏和二水石膏分子的体积(v0)、界面能(γ)和过饱和度(S)对成核影响力的消长导致二者竞争成核,从而出现选择性结晶;当二者成核速率相当时,产生共结晶。低过饱和度条件下在α-半水石膏亚稳定区生成二水石膏,在二水石膏亚稳定区生成α-半水石膏,都是由非均相成核造成;高过饱和度条件下,生成热力学稳定性低的相态符合多相结晶的Ostwald规则。初始结晶相中α-半水石膏的含量随着CaCl2浓度和温度的升高而增大,主要是因为α-半水石膏和二水石膏成核过饱和度之比(SHH/SDH)随着CaCl2浓度和温度的升高而增加,α-半水石膏成核竞争力随之增强。
     二水石膏向α-半水石膏的转化速率随着体系温度和CaCl2浓度的升高和二水石膏粒径的减小而加快,该转化是成核-生长控制过程,符合加速反应分散动力学方程。提高温度和CaCl2浓度,则增大了二水石膏和α-半水石膏二者的溶度积比值(Ksp,DH/Ksp,HH)、降低了水活度(aw),使得α-半水石膏成核-生长的过饱和度增大,这是熵增过程,加快了α-半水石膏的成核和平均生长速率。减小二水石膏粒径,则增大比表面积和晶格缺陷数目,这是焓降、熵增过程,通过表面成核促进了α-半水石膏的成核速率,但是对平均生长速率没有显著影响。
     研究表明,亚硫酸钙在CaCl2溶液中向α-半水石膏转化,二水石膏和α-半水石膏的竞争成核导致了亚硫酸钙到α-半水石膏相变路径的变化,α-半水石膏的成核及生长是影响二水石膏向α-半水石膏转化的关键步骤。研究结果为脱硫石膏高附加值资源化利用提供理论指导、工艺路线和重要的参数,也深化了对硫酸钙多相结晶的认识,为溶液中的无机矿物相变热力学和动力学控制提供了研究方法。
During the flue gas desulfurization (FGD) process, calcium based agent produces calcium sulfite (SH), which converts to calcium sulfate dihydrate (DH) after forced oxidation. The FGD byproduct mainly composed of SH and DH is termed as FGD gypsum. In the past15years, FGD gypsum has become a famous bulk industrial solid waste and the current discharge is about69,000,000ton. It demands urgent consumption as a useful resource in large quantities from the point of environmental protection and untilization. To make high value added use of FGD gypsum, this paper investigates the preparation of α-calcium sulfate hemihydrate (α-HH) from SH and DH and the corresponding phase transition and crystallization rules.
     In certain Ca-Mg-Mn chloride solution, SH oxidation and α-HH crystallization can be accomplished at the same time, the former of which turns to be the rate limiting step. Crystallization route of α-HH during the oxidation of SH depends heavily on the CaCl2concentration provided temperature and other factors are fixed. In2.50-3.50m CaCl2solutions, α-HH precipitated via intermediate phase DH, namely SH→DH→α-HH, and the existing time of DH shortened with the increase in CaCl2concentration. In a4.00m CaCl2solution, the transformation from SH to DH was not observed, namely, the existing time of DH was reduced to zero, presenting a direct SH→α-HH transformation. Hence, it proposes a direct a-HH preparation method from SH in the salt medium under atmospheric pressure.
     To interpret the crystallization route evolution during SH-a-HH conversion in CaCl2solution, nucleation competition of calcium sulfate phases in homogenous solutions was investigated and the relative nucleation rate of a-HH (RHH) on the basis of classical nucleation theory (CNT) was simulated. Dominant calcium sulfate initially precipitated presents①unstable DH→metastable α-HH→unstable DH and②metastable DH→unstable α-HH→metastable DH evolution orders depending upon supersaturation in a-HH and DH metastable zones, respectively. The comprehensive effect of molecular volume (v0), interfacial energy (y) and supersaturation (S) of DH and a-HH leads to their competitive nucleation and hence selective crystallization. Concomitant nucleation occurs when the nucleation rates are comparable. The formation of DH at lower supersaturations in α-HH metastable zone and the formation of α-HH in DH metastable zone are attributed to their repsective heterogeneous nucleation. The occurrence of thermodynamically less stable phase at higher supersaturations conforms to the Ostwald's rule of stages. The mole fraction of α-HH in the initial precipitate increases with the CaCl2concentration and temperature increasing. This is due to the larger supersaturation ratio of α-HH to DH (SHH/SSDH), which makes α-HH nucleation more competitive at higher CaCl2molality and temperature.
     The transformation accelerates with the temperature and CaCl2molality increment and DH particle size reduction. The transformation is a nucleation-growth limited process, which well fits to the dispersive kinetic model. Increment in temperature and CaCl2molality enlarges the solubility product ratio of DH to α-HH (KsP,DH/Ksp,HH) and lowers down the water activity, respectively, which both enlarges the supersaturation and activationentropy change, expediting the α-HH nucleation and growth. Reduction in DH particle size increases the specific surface area and the lattice deformity number, which lowers down the activation enthalpy and enlarges the activation entropy, and boosts α-HH surface nucleation, but has no evident effect on the growth rate.
     The study demonstrates SH can be transformed into α-HH in CaCl2solution, and the nucleation competition between DH and α-HH accounts for the transition route variation. Nucleation and growth of α-HH is the key step affecting the DH transformation to α-HH. The results provide theoretical guidance, processing method and important factors for the high value added utilization of FGD gypsum. Also, it deepens the understanding of calcium sulfate multi-phase crystallization and offers a method to investigate the phase-transition thermodynamics and kinetics control of inorganic minerals in aqueous solutions.
引文
[1]X. L. Guo, H. S. Shi. Thermal treatment and utilization of flue gas desulphurization gypsum as an admixture in cement and concrete. Construction and Building Materials 2008,22 (7):1471-1476.
    [2]G. Tzouvalas, G. Rantis, S. Tsimas. Alternative calcium-sulfate-bearing materials as cement retarders:Part II. FGD gypsum. Cement and Concrete Research 2004, 34 (11):2119-2125.
    [3]M. Hua, B. Wang, L. Chen, Y. Wang, V. M. Quynh, B. He, X. Li. Verification of lime and water glass stabilized FGD gypsum as road sub-base. Fuel 2010,89 (8): 1812-1817.
    [4]N. B. Singh, B. Middendorf. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials 2007,53(1):57-77.
    [5]Y. Ling, G. P. Demopoulos. Preparation of a-Calcium Sulfate Hemihydrate by Reaction of Sulfuric Acid with Lime. Industrial & Engineering Chemistry Research 2005,44 (4):715-724.
    [6]M. V. Thomas, D. A. Puleo. Calcium sulfate:Properties and clinical applications. Journal of Biomedical Materials Research Part B:Applied Biomaterials 2009,88 (2):597-610.
    [7]P. Wang, E. J. Lee, C. S. Park, B. H. Yoon, D. S. Shin, H. E. Kim, Y. H. Koh, S. H. Park. Calcium sulfate hemihydrate powders with a controlled morphology for use as bone cement. Journal of the American Ceramic Society 2008,91 (6): 2039-2042.
    [8]D. W. Kirk, S. Tong. Process for the production of alpha hemihydrate calcium sulfate from flue gas sludge. US 5562892 1996.
    [9]H. H. Matsui, Genzo; Adachi, Gin-ya; Shiokawa, Jiro. Formation of prismatic a-calcium sulfate hemihydrate during oxidation of calcium sulfite hemihydrate in suspension. Nippon Kagaku Kaishi 1988,6:892-898.
    [10]A. Ziirz, I. Odler, F. Thiemann, K. Berghofer. Autoclave-free formation of a-hemihydrate gypsum. Journal of the American Ceramic Society 1991,74 (5): 1117-1124.
    [11]桂苗苗,丛钢.脱硫石膏蒸压法制α半水石膏的研究.重庆建筑大学学报2001,23(1):5.
    [12]姜洪义,曹宇.高强石膏的制备及性能影响因素研究.武汉理工大学学报2006,(04):35-37.
    [13]J. Bold, F. Fink, J. Umlauf. Process for the conversion of calcium sulfate dihydrate into alpha-hemihydrate. US 5248487 1993.
    [14]T. Matsuno, H. Takayanagi, K. Furuhata, M. Koishi, H. Ogura. The crystal structure of calcium sulfite hemihydrate. Bulletin Of The Chemical Society Of Japan 1984,57 (4):1155-1156.
    [15]王志,邹爱红,李国忠,岳文海.高强石膏材料研究最新进展.新型建筑材料1999,(09):47-48.
    [16]吴晓琴,孔艳萍.K-Ca-Mg-Cl-H2O体系中硫酸钙结晶介稳区的研究.环境工程学报2011,(6):1431-1434.
    [17]林敏,万体智,彭家惠,瞿金东,刘红霞,邹辰阳.盐溶液水热法制备α-半水脱硫石膏工艺条件研究.新型建筑材料2009,(06):1-3.
    [18]X. Wu, Z. Wu. Modification of FGD gypsum in hydrothermal mixed salt solution. Journal of Environmental Sciences 2006,18 (1):170-175.
    [19]B. Guan, G. Jiang, H. Fu, L. Yang, Z. Wu. Thermodynamic preparation window of alpha calcium sulfate hemihydrate from calcium sulfate dihydrate in non-electrolyte glycerol-water solution under mild conditions. Industrial & Engineering Chemistry Research 2011,50 (23):13561-13567.
    [20]B. Guan, L. Yang, Z. Wu, Z. Shen, X. Ma, Q. Ye. Preparation of a-calcium sulfate hemihydrate from FGD gypsum in K, Mg-containing concentrated CaCl2 solution under mild conditions. Fuel 2009,88 (7):1286-1293.
    [21]Z. Shen, B. Guan, H. Fu, L. Yang. Effect of potassium sodium tartrate and sodium citrate on the preparation of alpha calcium sulfate hemihydrate from flue gas desulfurization gypsum in a concentrated electrolyte solution. Journal of the American Ceramic Society 2009,92 (12):2894-2899.
    [22]B. Guan, L. Yang, Z. Wu. Effect of Mg2+ Ions on the nucleation kinetics of calcium sulfate in concentrated calcium chloride solutions. Industrial & Engineering Chemistry Research 2010,49 (12):5569-5574.
    [23]L. Yang, Z. Wu, B. Guan, H. Fu, Q. Ye. Growth rate of a-calcium sulfate hemihydrate in K-Ca-Mg-Cl-H2O systems at elevated temperature. Journal of Crystal Growth 2009,311 (20):4518-4524.
    [24]B. Guan, B. Kong, H. Fu, J. Yu, G. Jiang, L. Yang. Pilot scale preparation of a-calcium sulfate hemihydrate from FGD gypsum in Ca-K-Mg aqueous solution under atmospheric pressure. Fuel 2012,98:48-54.
    [25]B. Guan, L. Yang, H. Fu, B. Kong, T. Li, L. Yang.α-calcium sulfate hemihydrate preparation from FGD gypsum in recycling mixed salt solutions. Chemical Engineering Journal 2011,174 (1):296-303.
    [26]Z. Li, G. P. Demopoulos. Development of an improved chemical model for the estimation of CaSO4 solubilities in the HCl-CaCl2-H2O system up to 100℃. Industrial & Engineering Chemistry Research 2006,45 (9):2914-2922.
    [27]Z. Li, G. P. Demopoulos. Solubility of CaSO4 phases in aqueous HC1+ CaCl2 solutions from 283 K to 353 K. Journal of Chemical & Engineering Data 2005, 50(6):1971-1982.
    [28]Z. Li, G. P. Demopoulos. Model-based construction of calcium sulfate phase-transition diagrams in the HCl-CaCl2-H2O system between 0 and 100℃. Industrial & Engineering Chemistry Research 2006,45 (13):4517-4524.
    [29]Y. Ling, G. P. Demopoulos. Solubility of calcium sulfate hydrates in (0 to 3.5) mol·kg-1 sulfuric acid solutions at 100℃. Journal of Chemical & Engineering Data 2004,49 (5):1263-1268.
    [30]G. Jiang, J. Mao, H. Fu, X. Zhou, B. Guan. Insight into Metastable Lifetime of a-Calcium Sulfate Hemihydrate in CaCl2 Solution. Journal of the American Ceramic Society 2013,1-7.
    [31]A. V. Bui, H. M. Nguyen, M. Joachim. Prediction of water activity of glucose and calcium chloride solutions. Journal of Food Engineering 2003,57 (3): 243-248.
    [32]J. A. Rard, S. L. Clegg. Critical evaluation of the thermodynamic properties of aqueous calcium chloride.1. osmotic and activity coefficients of 0-10.77 mol kg-1 aqueous calcium chloride solutions at 298.15 K and correlation with extended Pitzer ion-interaction models. Journal of Chemical & Engineering Data 1997,42 (5):819-849.
    [33]T. Feldmann, G. P. Demopoulos. Phase transformation kinetics of calcium sulfate phases in strong CaCl2-HCl solutions. Hydrometallurgy 2012,129-130: 126-134.
    [34]B. Guan, Z. Shen, Z. Wu, L. Yang, X. Ma. Effect of pH on the preparation of a-calcium sulfate hemihydrate from FGD gypsum with the hydrothermal method. Journal of the American Ceramic Society 2008,91 (12):3835-3840.
    [35]M. A. O'Mahony, A. Maher, D. M. Croker, A. C. Rasmuson, B. K. Hodnett. Examining solution and solid state composition for the solution-mediated polymorphic transformation of carbamazepine and piracetam. Crystal Growth & Design 2012,12 (4):1925-1932.
    [36]H. Qu, M. Louhi-Kultanen, J. Rantanen, J. Kallas. Solvent-mediated phase transformation kinetics of an anhydrate/hydrate system. Crystal Growth & Design 2006,6 (9):2053-2060.
    [37]S. Thirunahari, P. S. Chow, R. B. H. Tan. Quality by design (QbD)-based crystallization process development for the polymorphic drug tolbutamide. Crystal Growth & Design 2011,11 (7):3027-3038.
    [38]A. Maher, D. M. Croker, A. C. Rasmuson, B. K. Hodnett. Solution mediated polymorphic transformation:form Ⅱ to form Ⅲ piracetam in ethanol. Crystal Growth & Design 2012,12 (12):6151-6157.
    [39]G. Azimi, V. G. Papangelakis. Mechanism and kinetics of gypsum-anhydrite transformation in aqueous electrolyte solutions. Hydrometallurgy 2011,108 (1-2):122-129.
    [40]G. Dumazer, V. Narayan, A. Smith, A. Lemarchand. Modeling gypsum crystallization on a submicrometric scale. The Journal of Physical Chemistry C 2009,113 (4):1189-1195.
    [41]G. Dumazer, A. Smith, A. Lemarchand. Master equation approach to gypsum needle crystallization. The Journal of Physical Chemistry C 2010,114 (9): 3830-3836.
    [42]H. E. Farrah, G. A. Lawrance, E. J. Wanless. Gypsum-anhydrite transformation in hot acidic manganese sulfate solution. A comparative kinetic study employing several analytical methods. Hydrometallurgy 2004,75 (1-4):91-98.
    [43]R. Hand. The kinetics of hydration of calcium sulphate hemihydrate:A critical comparison of the models in the literature. Cement and Concrete Research 1994, 24 (5):885-895.
    [44]P. J. Skrdla, R. T. Robertson. Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies:Applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals. The Journal of Physical Chemistry B 2005,109 (21):10611-10619.
    [45]P. J. Skrdla. Crystallizations, solid-state phase transformations and dissolution behavior explained by dispersive kinetic models based on a Maxwell-Boltzmann distribution of activation energies:theory, applications, and practical limitations. The Journal of Physical Chemistry A 2009,113 (33):9329-9336.
    [46]P. J. Skrdla. A collision theory-based derivation of semiempirical equations for modeling dispersive kinetics and their application to a mixed-phase crystal decomposition. The Journal of Physical Chemistry A 2006,110 (40): 11494-11500.
    [47]P. J. Skrdla. Comparison of two types of dispersive kinetic approaches in relation to time-dependent Marcus theory. The Journal of Physical Chemistry A 2007, 111 (46):11809-11813.
    [48]P. J. Skrdla. Kinetics and thermodynamics of efficient chiral symmetry breaking in nearly racemic mixtures of conglomerate crystals. Crystal Growth & Design 2011,11(5):1957-1965.
    [49]P. J. Skrdla. Physicochemically relevant modeling of nucleation-and-growth kinetics:Investigation of additive effects on the solvent-mediated phase transformation of carbamazepine. Crystal Growth & Design 2008,8 (11): 4185-4189.
    [50]A. K. Burnham, R. L. Braun. Global kinetic analysis of complex materials. Energy & Fuels 1999,13 (1):1-22.
    [51]L. K. Nash. Elements of statistical thermodynamics. Courier Dover Publications, 2012.
    [52]P. J. Skrdla. Statistical thermodynamic description of homogeneous dispersive kinetics. The Journal of Physical Chemistry A 2007,111 (20):4248-4251.
    [53]A. Lancia, D. Musmarra, F. Pepe. Uncatalyzed heterogeneous oxidation of calcium bisulfite. Chemical Engineering Science 1996,51 (16):3889-3896.
    [54]彭朝辉,童志权.亚硫酸钙氧化为石膏的研究.中国计量学院学报2002,13(2):6.
    [55]D. Karatza, M. Prisciandaro, A. Lancia, D. Musmarra. Calcium bisulfite oxidation in the flue gas desulfurization process catalyzed by iron and manganese ions. Industrial & Engineering Chemistry Research 2004,43 (16): 4876-4882.
    [56]杜谦,吴少华,赛俊聪,刘辉,秦裕琨.湿法烟气脱硫环境下亚硫酸钙强制催化氧化的研究.环境保护科学2005,(02):1-4.
    [57]W. K. T. Donald, S.T. Process for the production of alpha hemihydrate calcium sulfate from flue gas sludge. US 5562892 1996.
    [58]N. K. Akazawa H. Process for producing a-type calcium sulfate hemihydrate. US 4069300 1978.
    [59]P. John W College. Method of sulfur dioxide removal from gaseous stream with alpha-hemihydrate gypsum product formation. US 5312609 1994.
    [60]L. M. Luckevich R. E. Collins. Direct precipitation of a-hemihydrate from FGD calcium sulfite. ORTECH 5th International Conference on FGD and Synthetic Gypsum 1997.
    [61]H. H. Matsui, Genzo. Production of a-calcium sulfate by oxidation of calcium sulfite hemihydrate slurries. Ryusan to Kogyo 1987,40 (11):205-215.
    [62]H. A. Matsui, Kayoko; Hashizume, Genzo; Adachi, Ginya; Shiokawa, Jiro. Formation of needlelike a-calcium sulfate hemihydrate by oxidation of calcium sulfite hemihydrate suspensions. Nippon Kagaku Kaishi 1987,12:2279-2285.
    [63]J. Bernstein. Polymorphism-A perspective. Crystal Growth & Design 2011,11 (3):632-650.
    [64]M. Rafilovich, J. Bernstein, R. K. Harris, D. C. Apperley, P. G. Karamertzanis, S. L. Price. Groth's original concomitant polymorphs revisited. Crystal Growth & Design 2005,5 (6):2197-2209.
    [65]M. Kitamura. Strategy for control of crystallization of polymorphs. CrystalEngneeringCommunication 2009,11 (6):949-964.
    [66]W. Ostwald. File history. Zeitschrift fur Physikalische Chemie 1897,289-330.
    [67]J. Lu, X. J. Wang, X. Yang, C. B. Ching. Polymorphism and crystallization of famotidine. Crystal Growth & Design 2007,7 (9):1590-1598.
    [68]S. Jiang, J. H. ter Horst, P. J. Jansens. Concomitant polymorphism of o-aminobenzoic acid in antisolvent crystallization. Crystal Growth & Design 2007,8 (1):37-43.
    [69]S. Teychene, B. Biscans. Nucleation kinetics of polymorphs:Induction period and interfacial energy measurements. Crystal Growth & Design 2008,8 (4): 1133-1139.
    [70]G. Di Profio, S. Tucci, E. Curcio, E. Drioli. Controlling polymorphism with membrane-based crystallizers:Application to form Ⅰ and Ⅱ of paracetamol. Chemistry of Materials 2007,19 (10):2386-2388.
    [71]Y. W. Wang, Y. Y. Kim, H. K. Christenson, F. C. Meldrum. A new precipitation pathway for calcium sulfate dihydrate (gypsum) via amorphous and hemihydrate intermediates. Chemical Communications 2012,48 (4):504-506.
    [72]Y. Diao, A. S. Myerson, T. A. Hatton, B. L. Trout. Surface design for controlled crystallization:the role of surface chemistry and nanoscale pores in heterogeneous nucleation. Langmuir 2011,27 (9):5324-5334.
    [73]D. H. Dressler, Y. Mastai. Controlling polymorphism by crystallization on self-assembled multilayers. Crystal Growth & Design 2007,7 (5):847-850.
    [74]C. Desgranges, J. Delhommelle. Molecular mechanism for the cross-nucleation between polymorphs. Journal of the American Chemical Society 2006,128 (32): 10368-10369.
    [75]C. Desgranges, J. Delhommelle. Insights into the molecular mechanism underlying polymorph selection. Journal of the American Chemical Society 2006, 128 (47):15104-15105.
    [76]J. Tao, K. J. Jones, L. Yu. Cross-nucleation between d-mannitol polymorphs in seeded crystallization. Crystal Growth & Design 2007,7 (12):2410-2414.
    [77]L. Yu. Nucleation of one polymorph by another. Journal of the American Chemical Society 2003,125 (21):6380-6381.
    [78]X. Ni, A. Liao. Effects of cooling rate and solution concentration on solution crystallization of 1-glutamic acid in an oscillatory baffled crystallizer. Crystal Growth & Design 2008,8 (8):2875-2881.
    [79]V. R. Dureisseix, M. Sanselme, Y. Robin, G. R. Coquerel. Two concomitant polymorphs of 1,2-Naphthoquinone-2-semicarbazone. Crystal Growth & Design 2009,9 (8):3438-3443.
    [80]C. P. M. Roelands, S. Jiang, M. Kitamura, J. H. ter Horst, H. J. M. Kramer, P. J. Jansens. Antisolvent crystallization of the polymorphs of 1-histidine as a function of supersaturation ratio and of solvent composition. Crystal Growth & Design 2006,6 (4):955-963.
    [81]M. Svard, F. L. Nordstrom, T. Jasnobulka, A. C. Rasmuson. Thermodynamics and nucleation kinetics of m-Aminobenzoic acid polymorphs. Crystal Growth & Design 2009,10 (1):195-204.
    [82]S. Gracin, A. C. Rasmuson. Polymorphism and crystallization ofp-aminobenzoic acid. Crystal Growth & Design 2004,4 (5):1013-1023.
    [83]S. He, J. E. Oddo, M. B. Tomson. The nucleation kinetics of calcium sulfate dihydrate in NaCl solutions up to 6 m and 90℃. Journal of Colloid and Interface Science 1994,162 (2):297-303.
    [84]P. G. Klepetsanis, E. Dalas, P. G. Koutsoukos. Role of temperature in the spontaneous precipitation of calcium sulfate dihydrate. Langmuir 1999,15 (4): 1534-1540.
    [85]J. C. Yang, H. D. Wu, N. C. Teng, D. Y. Ji, S. Y. Lee. Novel attempts for the synthesis of calcium sulfate hydrates in calcium chloride solutions under atmospheric conditions. Ceramics International 2012,38 (1):381-387.
    [86]A. E. S. Van Driessche, L. G. Benning, J. D. Rodriguez-Blanco, M. Ossorio, P. Bots, J. M. Garcia-Ruiz. The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 2012,336 (6077):69-72.
    [87]A. Saha, J. Lee, S. M. Pancera, M. F. Braeu, A. Kempter, A. Tripathi, A. Bose. New insights into the transformation of calcium sulfate hemihydrate to gypsum using time-resolved cryogenic transmission electron microscopy. Langmuir 2012, 28(30):11182-11187.
    [88]J. W. Mullin. Crystallization (Third Edition). Butterworth Heinemann, Oxford, U.K.1992,173-179.
    [89]F. Wirsching. Calcium Sulfate. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA 2000.
    [90]C. P. M. Roelands, J. H. ter Horst, H. J. M. Kramer, P. J. Jansens. Analysis of nucleation rate measurements in precipitation processes. Crystal Growth & Design 2006,6 (6):1380-1392.
    [91]G. H. Nancollas, M. M. Reddy, F. Tsai. Calcium sulfate dihydrate crystal growth in aqueous solution at elevated temperatures. Journal of Crystal Growth 1973,20 (2):125-134.
    [92]G. Di Profio, E. Curcio, S. Ferraro, C. Stabile, E. Drioli. Effect of supersaturation control and heterogeneous nucleation on porous membrane surfaces in the crystallization of 1-glutamic acid polymorphs. Crystal Growth & Design 2009,9 (5):2179-2186.
    [93]J. Wang, N. Huang, P. Yang, Y. X. Leng, H. Sun, Z. Y. Liu, P. K. Chu. The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion. Biomaterials 2004,25 (16):3163-3170.
    [94]R. J. Good, L. Girifalco. A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data. The Journal of Physical Chemistry 1960,64 (5):561-565.
    [95]O. Sohnel, J. W. Mullin. Interpretation of crystallization induction periods. Journal of Colloid and Interface Science 1988,123 (1):43-50.
    [96]O. Sohnel. Estimation of electrolyte-crystal-aqueous-solution interfacial tension. Journal of Crystal Growth 1983,63 (1):174-176.
    [97]O. Sohnel. Electrolyte crystal-aqueous solution interfacial tensions from crystallization data. Journal of Crystal Growth 1982,57 (1):101-108.
    [98]P. Bennema, O. Sohnel. Interfacial surface tension for crystallization and precipitation from aqueous solutions. Journal of Crystal Growth 1990,102 (3): 547-556.
    [99]M. Kitamura. Controlling factor of polymorphism in crystallization process. Journal of Crystal Growth 2002,237-239, Part 3:2205-2214.
    [100]T. Zaremba, A. Dukowicz, J. Hehlmann, W. Mokrosz, E. Kujawska. Application of thermal analysis in a phase composition study on by-product from semi-dry flue gas desulfurization system. Journal Of Thermal Analysis and Calorimetry 2003,74 (2):503-510.
    [101]O. Hargrove Jr, G. Behrens, W. Corbett. Studies of flue gas desulfurization at Louisville Gas and Electric's Paddy's Run Station:Volume I. Carbide and commercial lime testing. Final report Mar 75-Feb 1978.1982.
    [102]K. Setoyama, S. Takahashi. Solid solution of calcium sulfite hemihydrate and calcium sulfate. Yogyo-Kyokai-Shi 1978,86 (5):244-250.
    [103]A. M. Gadalla, A. Gupta. Characterization of the product of the thiosulfate process for desulfurization of flue gases. Industrial & Engineering Chemistry Research 1994,33 (5):1145-1149.
    [104]B. F. Jones, P. S. Lowell, F. B. Mesrole. Experimental and theoretical studies of solid solution formation in lime and limestone SO2 scrubbers. Environmental Protection Agency, Office of Research and Development,1976.
    [105]D. Tromans. Oxygen solubility modeling in inorganic solutions:concentration, temperature and pressure effects. Hydrometallurgy 1998,50 (3):279-296.
    [106]H. Matsui, G. Hashizume. Production of a-calcium sulfate by oxidation of calcium sulfite hemihydrate slurries. Ryusan to Kogyo 1987,40 205-215.
    [107]G. Azimi, V. G. Papangelakis, J. E. Dutrizac. Development of an MSE-based chemical model for the solubility of calcium sulphate in mixed chloride-sulphate solutions. Fluid Phase Equilibria 2008,266 (1-2):172-186.
    [108]X. Y. Liu. Heterogeneous nucleation or homogeneous nucleation? The Journal of Chemical Physics 2000,112 (22):9949-9955.
    [109]X. J. Liu, D. Xu, M. J. Ren, G. H. Zhang, X. Q. Wei, J. Wang. An examination of the growth kinetics of 1-Arginine Trifluoroacetate (LATF) crystals from induction period and atomic force microscopy investigations. Crystal Growth & Design 2010,10 (8):3442-3447.
    [110]D. Freyer, W. Voigt. Crystallization and phase stability of CaSO4 and CaSO4 based salts. Monatshefte fur Chemie 2003,134 (5):693-719.
    [111]T. Feldmann, G. P. Demopoulos. The crystal growth kinetics of alpha calcium sulfate hemihydrate in concentrated CaCl2-HCl solutions. Journal of Crystal Growth 2012,351(1):9-18.
    [112]F. Schlogl. Chemical reaction models for non-equilibrium phase transitions. Zeitschrift fur Physik 1972,253 (2):147-161.
    [113]C. Antoine, A. Lemarchand. Resonance of relaxation time in the temperature modulated Schlogl model. The Journal of Chemical Physics 2007,126 (10): 104103-104105.
    [114]J. Beretka, J. W. Van Der Touw. Hydration kinetics of calcium sulphate hemihydrate:A comparison of models. Journal of Chemical Technology and Biotechnology 1989,44 (1):19-30.
    [115]D. Croker, B. K. Hodnett. Mechanistic features of polymorphic transformations: The role of surfaces. Crystal Growth & Design 2010,10 (6):2806-2816.
    [116]X. Y. Liu. Heterogeneous nucleation or homogeneous nucleation. The Journal of Chemical Physics 2000,112 (22):9949-9955.
    [117]S.-H. Lee, Y. Jung, R. Agarwal. Size-dependent surface-induced heterogeneous nucleation driven phase-change in Ge2Sb2Te5 nanowires. Nano Letters 2008,8 (10):3303-3309.
    [118]S. Lee, A. Choi, W.-S. Kim, A. S. Myerson. Phase transformation of sulfamerazine using a taylor vortex. Crystal Growth & Design 2011,11 (11): 5019-5029.
    [119]Z. K. Nagy, E. Aamir, C. D. Rielly. Internal fines removal using population balance model based control of crystal size distribution under dissolution, growth and nucleation mechanisms. Crystal Growth & Design 2011,11 (6):2205-2219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700