含天然气水合物相变的环空多相流流型转化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含天然气水合物相变的环空多相流流型转化机制的研究,是深水油气及天然气水合物藏钻探过程中,井筒内流体力学计算的关键问题之一。深水钻探时,由于井筒中存在天然气水合物相变问题,使得目前环空多相流动理论无法满足工程需求。此理论的突破,对我国深水油气及水合物资源的开采具有重要的意义。
     本文通过实验和理论分析,得到了天然气水合物相平衡条件、生成速率以及分解速率的计算方法;深水条件下,井筒中天然气水合物的相变模拟计算表明:水合物的生成速度要远大于其分解速度,天然气一旦进入井筒中水合物生成区域,会在很短的时间内相变为水合物。井筒内温度会对水合物相变产生很大影响。
     利用自行研制的承压、大直径的“含天然气水合物相变的环空多相流流型转化模拟系统”进行了流型转化实验研究,得到结论如下:
     随着注气量的增大,流型变化历经泡状流、弹帽泡状流、弹帽沫状流和沫状流四种流型,而没有发现段塞流,并探讨了段塞流未出现的原因。随着混合相雷诺数的增加,泡状流失稳时的临界截面含气率呈现先下降再升高的趋势,因为流动的湍流度对气泡的聚并有正反两方面作用。一方面,它使得气泡的碰撞机率增高,对气泡的聚并有利;另一方面,它使得两气泡相遇的特征时间变小,对气泡的聚并不利。混合相雷诺数较小时,有利气泡聚并的方面起主要作用,而混合相雷诺数超过一定数值后,不利于气泡聚并的方面起主要作用。大直径环空中泡状流失稳时,混合相雷诺数较高,湍流强度较强,脉动较大。由于强湍流作用使气泡聚并难以发生,或由于涡旋的搅动使已经形成的大气泡被打碎,因此大直径环空两相流中因强湍流运动和大尺度涡旋形成,使Taylor泡的形成或气泡群的聚并受到抑制,难以形成段塞流。
     注气扰动频率与空隙率波的控制频率接近的情况下,空隙率波具有最大增长率;注气扰动使得空隙率波的波动程度增加,使泡状流失稳时的临界截面含气率降低;当环空中流型处于弹帽泡状流时,少量的注气就会引起流型的转化;施加注气扰动,空隙率波的传播速度呈现二次曲线增长的趋势;注气扰动加速了泡状流的失稳。井筒压力的升高,会使得空隙率波的最大增长率降低,波动程度减小,气泡的滑脱速度降低,泡状流失稳时的临界截面含气率升高,井筒压力变大空隙率波传播波变慢,井筒压力对泡状流的失稳起到抑制作用。通过Kolmogorov熵计算表明:气液两相流的空隙率波动存在非线性特性。扰动使得空隙率波的非线性特征充分表现,从而导致空隙率波传播特性的变化。
     针对含天然气水合物相变的环空多相流动特点,增加天然气水合物相变项,得到质量守恒和动量守恒方程;增加天然气水合物分解热项,得到能量方程。通过理论分析完善了含天然气水合物相变的环空多相流动模型。通过所编制的“含相变的环空多相流动分析及井控模拟软件系统”,模拟计算表明:
     钻进期间,流量越小、抑制剂浓度越低、泥浆入口温度越低以及水深越大均会使水合物的生成区域变大;停钻期间,水合物的生成区域会随着停钻时间的增长而增大;压井期间,水合物的生成区域会随着节流管线内径的减小而增大。溢流期间,天然气水合物的相变使得环空内的气体体积分数减小,井底压力增加,关井套压降低,泥浆池增量降低,环空内的压力分布发生改变;由于环空气体体积分数和泥浆池增量的减小,增加了深水井涌的早期检测的难度;由于水合物相变,关井套压不能真实反映气侵的严重程度;对于一定精度的泥浆池检测设备,发现井涌时,储层渗透率低时井筒内生成水合物的可能性要大于储层渗透率高的情况。压井期间,气体进入尺寸较小的节流管线后会迅速膨胀,使得井筒内静液压力迅速降低。为了能够使井底有足够的压力,需要快速的调节节流阀,维持一定的节流压力,因此在深水压井时节流压力的调节速度要高于陆地井控。
Study on annular multiphase flow pattern transition considering gas hydrate phase transition is one of the key research subjects on studying wellbore hydrodynamics during deep water drilling. The present multiphase flow mechanisms can not meet the engineering requirement due to the gas hydrate phase transition. The new breakthrough of this theory is going to be of great significancy in deep water oil/gas and gas hydrate exploitation of China.
     Through experiment and theory analysis, phase equilibrium condition, formation rate and decomposition rate of gas hydrate are gotten in the paper. Through simulation of gas hydrate phase transition in deep water wellbore, the result shows: the gas hydrate formation rate is much higher than decomposition rate. Once gas entering the hydrae formation region, it will turn into gas hydrate soon. And temperature in wellbore has a great influence in hydrae phase transition.
     "Annular multiphase flow pattern transition considering gas hydrate phase transition simulation system" designing is finished with pressure and large diameter. The conclusions are as follows.
     Bubble flow, cap-bubble flow, cap-churn flow and churn flow are identified with increase of gas injection rate, however, slug flow can not be found. And the reasons are discussed. The critical void fraction of bubble flow destabilizing has an ascent trend after an initial decline with increase of total Reynolds number. The reason is that the turbulent intensity has a pro and con effect on bubble coalescence. On the one hand it increases the chance of bubble collision which is good for bubble coalescence, and on the other hand it reduces the characteristic time to meet each other for two bubbles which is a disadvantage for bubble coalescence. And the advantage aspect predominates with small total Reynolds number, however, the result is contrary when total Reynolds number beyonds a certain value. When bubble flow destabilizes, the total Reynolds number is very high in large size annulus, and there are great turbulent intensity and pulsations in annulus. It is possible that great turbulence makes it difficult for bubbles to coalesce or vortex agitation makes the large bubble already formed destroyed, which suppresses Taylor bubble formation or bubble clusters coalescence. So slug flow can not happen.
     Void fraction wave has a maximum growth rate when gas injection disturbances are applied with a certain frequency. The fluctuation extent of void fraction wave increases and the critical void fraction of bubble flow destabilizing decreases due to gas injection disturbances. When the present flow pattern is cap-bubble flow, the flow pattern transition is likely to happen after adding a little more gas. Void fraction wave speed increases with a trend of quadratic after gas injection disturbances applied. The gas injection disturbances hasten destabilizing of bubble flow. With wellbore pressure ascending, the maximum growth rate of void fraction wave decreases, and fluctuation extent of void fraction wave decreases, and bubble slip velocity slows down, and void fraction wave speed slows down. It all adds up to that wellbore pressure suppresses bubble flow destabilizing. Void fraction wave of two phase flow has a non-linear quality. The non-linear quality of void fraction wave becomes obviously with disturbances, which causes flow pattern transition.
     The multiphase flow governing equations are established through theory analysis. Mass conversation and momentum conservation equations are obtained with adding gas hydrate transition term. And energy conversation equations are obtained considering decomposition heat term of gas hydrate transition. The numerical simulation is applied by software system "Analysis of annular multiphase flow considering gas hydrate phase transition and well control simulation software system". The conclusions are drawn as follows:
     Hydrate formation area is getting large with decrease of circulation rate or inhibitor concentration or inlet temperature of drilling fluid, or with increase of water depth or rig downtime, or with decrease of choke line size during well killing. Annular void fraction, pit gain, and shut down casing pressure decreases, and bottom hole pressure increases, and annular pressure profile changes due to gas hydrate phase transition after overflow. It is more difficult for early detection of gas kick due to the decrease of annular void fraction and pit gain. Shut in casing pressure can not reflect the truth of gas kick due to hydrate formation. When gas kick is monitored by pit gain detection equipments with certain accuracy, the possibility of hydrate presence with lower gas production rate is much greater than that with larger production rate. Gas expands greatly after entering small size choke line, which reduces hydrostatic pressure rapidly during well killing. In order to maintain enough bottom hole pressure, throttle valve should be adjusted quickly and choke pressure reaches some extend. Therefore, the speed of throttle valve adjustment is faster off shore than on shore.
引文
[1]陈建文,肖国林,刘守全等.中国海域油气资源勘查战略研究[J].海洋地质与第四纪质, 2003,23(4):77-82
    [2]李清平.我国海洋深水油气开发面临的挑战[J].中国海上油气,2006,18(2):130-133
    [3]曾维平,周蒂. GIS辅助估算南海南部天然气水合物资源量[J].热带海洋学报,200322(6):35-44
    [4]金庆焕.天然气水合物——未来的新能源[J].中国工程科学,2000,2(11):29-34
    [5] Jean Laherrere. Oceanic Hydrates:More Questions than Answers[J].Energy Exploration and Exploitation, 2000, 18(4): 349-383
    [6]樊栓狮.天然气水合物开发利用面临的问题及应对策略[J].中外能源, 2007,12(4): 9-12
    [7] J. W. Barker, R. K. Gomez. Formation of Hydrates During Deepwater Drilling Operations[J]. Journal of Petroleum Technology, March 1989, 41(3): 297-301
    [8] Ebeltoft H., Yousif M. and Soergaard E.. Hydrate contol during deep water drilling: overview and new drilling fluids[C]. SPE 38567, presented at the SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, 5-8 oct. 1997
    [9] Thierry Botrel, Patrick Lsambourg. Total Fina Elf. Off Setting Kill and Choke Lines FrictionLosses, a New Method for DeepWater Well Control[C]. SPE67813, presentate at the SPE/IADC Drilling Conference held in Amsterdam, The Netherlands, 27 February–1 March 2001.2001.1-8
    [10] Don Hannegan, Richard J.. Todd and David M. Pritchard and Brian Jonasson. MPD-uniquely applicable to methane Hydrate Drilling[C]. SPE/IADC 91560, presented at the 2004 SPE/IADC underbalanced technology conference and exhibition held in Houston, Texas, U.S.A. 11-12 October 2004
    [11] W.F. Prassl, J. M. Peden and K. W. Wong. Mitigating gas hydrate related drilling risks: a process-knowledge management approach[C]. SPE 88529, presented at the SPE Asia Pacific oil and gas conference and exhibition held in Perth, Australia, 18-20 October 2004
    [12] Jicheng Zhang, Kaoping Song, Bo Dong, and et al. Prevention and control of gas hydrate for foam combination flooding[C]. SPE 77875, present at the SPE Asia Pacific oil and gas conference and exhibition held in Melboume, Australia, 8-10 October 2002
    [13] Johnny Petersen, Knut S., Bjorkevoll, et al. Computing the danger of hydrate formationusing a modified dynamic kick simulator[C]. SPE/IDC 67749, presented at the SPE/IADC drilling conference held in Amsterdam, The Netherlands, 27 Feb.-1 Mar. 2001
    [14] D. W. Moore. The boundary layer on spherical gas bubble[J]. J. Fluid Mech., 1963, vol.16:161-176
    [15] R. M. Thomas. Bubble coalescence in turbulent flows[J]. Int. J. Multiphase Flow, 1981, Vol. 7:709-717
    [16] Kaichiro Mishima, Mamoru Ishii. Flow regime transition criteria for upward two-phase flow in vertical tubes. Int. J. Heat Mass Transfer, 1984, 27(5):723-737
    [17] Peter Grassberger, Itamar Procaccia. Estimation of the komogoroventropy from a chaotic signal[J]. Physical Review A, 1993, 28:2591-2593
    [18]周强泰.两相流动和热交换[M].水利电力出版社,1990.6
    [19]刘大有.两相流体动力学[M].高等教育出版社,1993.9
    [20]陈家琅.石油气液两相流[M].石油工业出版社,1989
    [21]鲁钟琪.两相流与沸腾传热[M].清华大学出版社,2002.01
    [22] R. D. Kirkpatrick, M. J. Locket. The influence of approach velocity on bubble coalescence[J]. Chemical Engineering Science, 1974,29: 2363-2373
    [23] T. Otake et al. Coalescence and breakup of bubbles in liquids. Chemical Engineering Science, 1977, 32:377-383
    [24] Z. Bilicki, J. Kestin. Transition criteria for two-phase flow patterns in vertical upward flow[J]. Int. J. Multiphase Flow, 1987,13(3):183-294
    [25] Steven W., Beyerlein. Predication of bubble concentration profiles in vertical trubulent two-phase flow[J]. Int. J. Multiphase flow, 1985,11(5):629-641
    [26] I. Zun. Space-time Evolution of the nonhomogenous bubble distribution in upward flow[J]. Int. J. Multiphase Flow, 1993,19(1):151-172
    [27] R.M.Thomas. Bubble coalescence in turbulent flows[J], Int. J. Multiphase Flow, 1981,17(6):709-717
    [28]夏国栋,胡明胜,周芳德,两相弹状流中液弹及气泡合并情况的研究[J].西安交通大学学报,1997,31(6):52-56
    [29] E. Salinas-Rodriguez et al. Volume fraction autocorrelation functions in a two-phase bubble column[J]. Int. J. Multiphase Flow,1998,24(11):93-103
    [30] T. J. liu. Bubble size and entrance length effects on void development in a vertical channel[J], Int. J. Multiphase Flow,1993,19(1):99-113
    [31] H. Z. Li, Y. Mouline, Chaotic bubble coalescence in non-newtonian fluids[J]. Int. J. Multiphase Flow, 1997, 23:713-723
    [32] Taitel Y.. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes[J]. AICHE, 1980, 26:345-354
    [33]赵建福.气泡初始尺寸对泡-弹状流型转换的影响[J].工程热物理学报,26(5):793-795
    [34] J. A. Boure, Y. Mercadier. Existence and properties of structure waves in two-phase bubbly flows. Applied Scientific Research, 1982, 38: 297-303
    [35] G.. B. Wallis. One-Dimensional Two-phase Flow[M], McGraw-Hill, Inc. 1969
    [36] N. Zuber, J. A. Findlay. Average volumetric concentration in two-phase flow systems[J]. Trans. ASME, J. of Heat Transfer, 1965, 87:453-468
    [37] J. A. Boure, Y. Mercadier. Existence and properties of structure waves in two-phase bubbly flows. Applied Scientific Research, 1982, vol.38, pp297-303
    [38] H.cheng. A Study of the Bubble-to-Slug Transition in Vertical Gas-Liquid Flow in Columns of Different Diameter[J]. Int. J. Multiphase Flow, 1998, 24(3): 431-452
    [39] H. K. Kytomaa, C.E.Brennen. Small Amplitude Kinematic Wave Propagation in Two-Component Media, Int. J. Multiphase Flow, 1991, 17(1):13-26
    [40] Chul Hwa Song. Investigation of bubble flow developments and its transition based on the instability of void fraction waves[J]. Int. J. Multiphase Flow, 1995, 21:381-404
    [41] J. M. Saiz-Jabardo, J. A. Boure. Experiments on Void Fraction Waves[J]. Int. J. Multiphase Flow, 1989, 15(44):83-493
    [42] G.. Costigan, P. B. Whalley. Slug Flow Regime Identification from Dynamic Void Fraction Measurements in Vertical Air-Water Flows[J]. Int. J. Multiphase Flow, 1997, 23(2):263-282
    [43] A. Matuszkiewicz. The Bubble-Slug Flow Pattern Transition and Instability of Void Fraction Waves[J], Int. J. Multiphase Flow, 1987, 13(2):199-217
    [44] J. A. Boure Y. Mercadier. Existence and properties of structure waves in two-phase bubbly flows[J]. Applied Scientific Research, 1982, 38:297-303
    [45] G.. K. Batchelor. A new theory of the instability of a uniform fluidized bed[J]. J. Fluid Mech., 1988, 193:75-110
    [46] Biesheuvel A., Gorissen W. C. M. Void fraction disturbances in a uniform bubbly fluid[J]. Int. J. Multiphase Flow, 1990,16:211-231
    [47]孙宝江,颜大春.垂直气液两相管流中的流型转换机制与控制[J].北京大学学报(自然科学版),2000(5):382-387
    [48]孙宝江,颜大春.垂直气液两相管流中的空隙率波测量[J].北京大学学报(自然科学版),1999(9):648-655
    [49]龚圣捷,刘磊,张海鹏等.水平管泡状流强制扰动下的空隙波特性[J].西安交通大学学报, 2004,38(5):537-545
    [50]杨健慧,卢文强,李青等.管内气液两相流动空泡率传播模型研究[J].中国科学院研究生院学报. 2004,21(3):321-327
    [51]杨虎,陈虹,马燮.小波分析在气固流化床中颗粒碰撞压力信号分析中的应用[J].化学反应工程与工艺,2006,22(4):324-327
    [52] Hasan A. R., Kabir C. S.. Two-phase flow in vertical and inclined annuli [J] . Int J Multiphase Flow, 1992, 18(2): 279-293
    [53] Nicklin D. J., Wilkes J. O. and Davidson J. F.. Two-phase flow in vertical tubes [J] . Trans I Chem E., 1962,40 : 61-68
    [54] Sadatomi M., Sato Y.. Two-phase flow in vertical noncircular channels [J] . Int J Multiphase Flow ,1982 , 8 (6) : 641-655
    [55] Fernandes R. C., Semiat R and Dukler A. E.. Hydrody-namic model for gas-liquid slug flow in vertical tubes[J] . AIChEJ, 1989 , 29 : 981-989
    [56] Fernandes R. C., Semiat R., Dukler A E. Hydrodynamic model for gas-liquid slug flow in vertical tubes[J]. AIChE J,1983,16:281-288
    [57] Caetano E. F., Shohaum O. and Brill J. P.. Upward vertical two-phase flow through an annulus. PartⅠ: single-phase friction factor , taylor bubble rise velocity and flow pattern prediction [C]. Presented at the 4th Int Conf on Multiphase Flow. Nice , France , 1989
    [58] Kelessidis V. C., Dukler A. F.. Modeling flow pattern transition for upward gas-liquid in vertical concentric and eccentric annuli[J]. Int. J. Multiphase Flow, 1989, 15 (2) : 173-191
    [59]陈家琅,石在虹.垂直环空中气液两相向上流动的流型分布[J].大庆石油学院学报,1994,18(4): 23-26
    [60]李相方,胡湘烔.垂直环空空气-泥浆气液两相流实验研究[J].石油大学学报(自然科学版), 1995,19(4): 45-48
    [61]赵鑫.纵向多极阵列电导式两相流测量方法研究[D].天津,天津大学,2006
    [62] Wallis G. B.. One dimensitional two phase flow,McGraw-Hill BookComPany, New York,1969
    [63] Govier G. W., Sullivan G. A. and Wood R. K..The upward vertical flow of oil-watermixture[J]. J. of ChemEng, 1961:67-75
    [64] Oshimowo T., Charles M. E.. Vertical two phase flow pattern correlations[J]. Canadian Journal of Chemica1Enginering, 1974, Vol. 52(2):25-35
    [65] Hewit G. F.. Measurement of two Phaseflow parameters[J]. Academic press, London, 1978
    [66] Taitel Y., Barnea D. and Dukler A. E.. Modellingflow PaterntraI1sitionfor stcady up ward gas-liquid flow invertical tubes[J]. AICHEJ1980, 26(3):345-354
    [67] Weisman J. Effects of fluid properties and pipes diameter on two phase flow pattern in horizontal lines[J]. Int. J. Multiphase flow, 1979, 5:437-462
    [68] Vince M. A., Lahey J. On the development of an objective flow regime indicator[J]. Int. J. Multiphase Flow,1982, Vol.8:93-124
    [69] Mishima K., Nishihara H.. Methods for determining flow regimes in gas-liquid two-phase flow[J]. Annual Reports of the Rsearch Reactor lnstitute,1984,17 :61-93
    [70] Annunziato M.. Measuring system for two-phase flow pattern recognition using statistical analysis. Fluids Engineering Division,1988,Vol.73(2):15-21
    [71] Bilicki Z..Traosition criteria for two-phase flow patterns in vertical upward flow. Int. J. of MultiphaseFIow,1987, 3(3):283-294
    [72] Kytomaa, H. K., Brennen, C. E.. Small amplitude kinematic wave propagation in two-component media. Int. J. Multiphase Flow.1991:13-26
    [73] Lammers, J. H., Biesheuvel, A.. Concentration waves and instability of bubbly flows. J. Fluid Mech. 1996:67-93
    [74] Cheng, H., Hills J. H. and Azzopardi B. J.. A Study of the Bubble-to-Slug Transition in Vertical Gas-Liquid Flow in Columns of Different Diameter, Int. J. Multiphase Flow, 1998(3):431-452
    [75] Ohnuki A., Akimoto H. Experimental study on transition of flow pattern and phase distribution in upward air–water two-phase flow along a large vertical pipe. Int. J. Multiphase Flow. 2000:267-286
    [76] Hibiki T., Ishii M.. Experimental study on hot-leg U-bend twophase natural circulation in a loop with a large diameter pipe. Nucl.Eng.Des. , 2000:69–84
    [77] Shoukri M., Hassan I. and Gerges, I. E.. Two-phase bubbly flow structure in large-diameter vertical pipes. Can. J. Chem. Eng.2003:205-211
    [78] Zhu, W., Ching C. and Shoukri, M.. Phase distribution and flow regime transition of two-phase flow in large diameter pipes. In: Proceedings of the 5th International Conference on Multiphase Flow.2004,CD-ROM,#399
    [79] Prasser H. M., Beyer M., Bottger A., et al.. Influence of the pipe diameter on the structure of the gas–liquid interface in a vertical two-phase pipe flow. Nucl. Technol. 2005:3-22
    [80] Omebere-Iyari N. K., Azzopardi B. J. Gas/liquid flow in a large riser: effect of upstream configurations. In 13th International Conference on Multiphase Production Technology, 2007:5–15
    [81] Leblanc J. L., Leuis R. L. A Mathematical Model of a Gas Kick[J]. Journal of Petroleum Technology, 1968, 20(4): 888-898
    [82] Records, L. R. Mud system and Well Control[J]. Petroleum Engineering, 1972, 44(2): 97-108
    [83] Hoberock L. L., Stanbery S. R.. Pressure Dynamics in Wells During Gas Kick: Part 1—Fluid Lines Dynamics[J]. Journal of Petroleum Technology, 1981, 33(6): 1357-1366
    [84] Santos O. L. A. A mathematical model of a gas kick when drilling in deep waters [R]. MS Thesis, Colorado School of Mines 1982
    [85] Nickens H. V.. A dynamic computer model of kick Well[J]. SPE Drilling Engineering, June 1987, 2(2): 158-173
    [86] Santos O. L. A.. Well Operations in Horizontal Wells[J]. SPE Drilling Engineering, 1991, 6(1): 111-117
    [87] Ohara S.. Improved Method for Selecting Kick Tolerance During Deepwater Drilling Oerations[R]. Baton Rouge: Louisiana State University, 1995
    [88] Nunes J.. Mathematical Model of a Gas Kick in Deep Water Scenario[C], IADC/SPE 77253, presented at the IADC/SPE Asia Pacific Drilling Technology held in Jakarta, Indonesia, 9–11 September 2002
    [89]范军,王西安,韩松.油气层渗流与井筒多相流动的耦合及应用[J].重庆大学学报(自然科学版),2000, 23(10):154-157
    [90]李相方,庄湘琦,隋秀香等.气侵期间环空气液两相流动研究[J].工热物理学报,2004, 25(1):73-76.
    [91] Wang Zhiyuan, Sun Baojiang. Multiphase Flow Behavior in Annulus with Solid Gas Hydrate considering nature gas hydrate phase transition. Petroleum Science,2009,6(1):57-63
    [92]王志远,孙宝江,高永海.深水司钻法压井模拟计算.石油学报.2008,29(5):781-790
    [93]王志远,孙宝江,程海清,高永海.深水钻井井筒中天然气水合物生成区域预测.石油勘探与开发.2008,35(6):731-735
    [94] Didier Dalmazzone, Christina Dalmauone and Benjamin Herzhaft. Differential Scanning Calorimetry: A New Technique to Characterize Hydrate Formation in Drilling Muds[J]. SPE Journal, 2002, 7(2): 196-202
    [95]喻西崇,赵金州.天然气水合物生成条件预测模型的比较[J],油气储运,2002,21(1):20-24
    [96]杜亚和,郭天民.天然气水合物生成条件的预测Ⅰ,不含抑制剂体系[J].石油学报:石油加工,1988, 4(3): 82-91
    [97] Madsen J., Pedersen K. S.. Modeling of Stucture Hydrates Using a Langmuir Adsorption Model, End. Chem. Chem, Res. 2000
    [98] Arthur H. Hale, Ashok K. R.. Dewan. Inhibition of Gas Hydrates in Deepwater Drilling[C]. presentated at the SPE/IADC Drilling Conference New Orleans, Feb.28-March 3
    [99]程小娇,宫敬.天然气管道内水合物形成的预测[J].油田地面工程,2003,22(2):4-5
    [100]刘武,陈才林,阳朝晖等.海底凝析天然气管道水合物形成条件预测[J].海洋石油,2004,24(3):98-101
    [101]刘宝玉,郝敏,陈宝东.长输管道内天然气最大允许含水量的预测[J].石油化工高等学校校报,2004,17(2):75-78
    [102]陈多福,张跃中,徐文新.天然气输送管线中水合物形成的边界条件[J].矿物岩石地球化学通报,2003,22(3):197-201
    [103]樊友宏,蒲春生.天然气水合物堵塞预测技术研究[J].石油与天然气化工,2001,30(1):9-11
    [104]史斗,孙成权等,国外天然气水合物研究进展[M],兰州,兰州人学出版社,1992: 23-40
    [105]方银霞,金翔龙,杨树锋.海底天然气水合物的研究进展[J] ,海洋科学,2000,24(4):18-21
    [106]史斗,郑军卫,世界天然气水合物研究开发现状和前景[J],地球科学进展,1999,14(4): 330- 338
    [107]雷怀彦,王先彬,房玄,天然气水合物研究现状与未来来挑战[J],沉积学报,1999,17(3): 493-498
    [108]陈光进,郭天民.水合物生成过程的热力学研究[[J],石油大学学报(自然科学版),1995, 19(增刊):88-91
    [109]裘俊红,郭天民.甲烷水合物在纯水中的生成动力学[J].化工学报,1998;49(3):383-386
    [110]孙长宇,陈光进,郭天民.水合物成核动力学研究现状[J].石油学报,2001;22(4):82-86
    [111]裘俊红,郭天民.甲烷水合物在含抑制剂体系中的生成动力学[J],石油学报(石油加工),1998;14(1):1-4
    [112] Vysniauskas A., Bishnoi P. R.. A kinetic study of methane hydrate formation[J]. Chemical Engineering Science, 1983, 38(6): 1061-1072
    [113] Gumerov, N., Chahine, G.. Dynamics of bubbles in conditions of gas hydrate formation[C]. Proceedings of the 8th international offshore and polar engineering conference, Montreal, Canada, May 24-29,1998
    [114] Dholabhai P. D., Kalogerakis N., and Bishnoi P. R.. kinerics of methane hydrate formation in aqueous electrolyte solutions[J]. The Canadian Journal of Chemical Engineering, 1993, 71(2):68-74
    [115]周锡堂,陶鲜花,庞重军.天然气水合物分解动力学研究进展[J].天然气工业,2006, 31:70-73
    [116]林微,陈光进.气体水合物分解动力学研究现状[J].过程工程学报. 2004,4(1):69-73
    [117] Selim M S, Sloan E D.. Heat and Mass Transfer During the Dissociation of Hydrates in Porous Media [J]. American Institute of Chemical Engineers Journal, 1989, 35(6): 1049–1052
    [118] Ullerich J. W., Selim M S and Sloan E .D.. Theory and Measurement of Hydrate Dissociation[J]. AIChE J, 1987, 33(5): 747–752
    [119] Kamath V. A., Holder G. D., Angert P. F.. Three Phase Interfacial Heat Transfer During the Dissociation of Propane Hydrates [J]. Chem. Eng. Sci, 1984, 39(10): 1435–1442
    [120] Kamath V. A., Holder G. D.. Dissociation Heat Transfer Characteristics Methane Hydrates [J]. AIChE J, 1987, 33(2): 347–350
    [121] Kim H. C., Bishnoi P. R. and Heidemann R. A.. Kinetics of Methane Hydrate Decomposition [J]. Chem. Eng. Sci., 1987, 42(7):1645–1653
    [122] Jamaluddin A. M., Kalogerakis N. and Bishnoi P. R.. Modeling of Decomposition of A Synthetic Core of Methane Gas Hydrate by Coupling Intrinsic Kinetics with Heat Transfer Rates [J]. Phys. Chem., 1989, 67(6): 948–954
    [123]李娜,奚西峰,何小霞.甲烷水合物分解动力学模型[J].天然气地球科学.2006,17(6):880-883
    [124]刘犟,阎立军,陈光进,郭天民.活性炭中甲烷水合物的分解动力学[J].化学学报, 2002,60( 8):1385-1389
    [125]孙长宇,马昌峰,陈光进.二氧化碳水合物分解动力学研究[J].石油大学学报(自然科学版), 2001, 25(3):8-10
    [126]孙长宇,陈光进,郭天民.甲烷水合物恒温恒压分解过程研究[J].地球化学, 2003, 32(2): 112-116
    [127]田龙,樊栓狮,郝文峰.甲烷水合物常压分解[J].武汉理工大学学报, 2006, 28(7): 23-26
    [128]程海清.天然气水合物开采的流动模拟[D] .东营:中国石油大学(华东)石油工程学院,2008
    [129] Zheng, L. and Yapa, P. D.. Buoyant velocity of spherical and non-spherical bubbles/droplets[J]. Journal of hydraulic Engineering, ASCE, 2000,11:825-854
    [130] Werther J, Molerus O. The local structure of gas fluidized beds. I. A statistically based measuring system[J]. Int. J. Multiphase Flow, 1973, 1: 103
    [131] Gunn DJ, Al-Doori HH. The measurement of bubble flows in fluidized beds by electrical probe[J].Int. J. Multiphase Flow, 1985,4:535
    [132] Geraets J. M, Borst J. C.. A capacitance sensor for two phase void fraction measurement and flow pattern identification[J]. Int. J. Multiphase Flow, 1988,14:305-320
    [133] M. Fossa. Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows[J].1998, 9: 103-109
    [134]孙宝江.垂直圆管中气液两相湍流流型转化机制:博士学位论文,北京大学,北京:1999
    [135]应怀樵.波形和频谱分析及随机数据处理.北京:中国铁道出版社,1988
    [136] Jones O. C. J., Jean-Marc Delhaye. Transient and statistic measurement techniques for two-phase flow: a critical review[J]. Int. J.MultiphaseF low, 1977(3):89-116
    [137] Barnea D., Shemer L.. Void fractionm easurementin vertical slug flow: applications to slug characteristic and transition[J]. Int. J. Multiphase Flow, 1989 (15):495-504
    [138] Cartellier A., characterization. Optical probes for local void fraction measurements: of performance. Rev. Sci. Instrum. 1990(61):874-886
    [139] Hinze J. O..《湍流》,科学出版社, 1987
    [140] G.. Costigan, P. B.. Whalley, Slug Flow Regime Identification from Dynamic Void Fraction Measurements in Vertical Air-Water Flows, Int. J. Multiphase Flow, 1997, vol.23, No.2, pp.263-282
    [141] Wallis G. B.. One dimensitional two phase flow,McGraw-Hill BookComPany, New York,1969
    [142] Baojiang SUN, Dachun YAN and Zhen ZHENG. The instability of void fraction waves in vertical gas-liquid two-phase flow. Communication in Nonlinear Science & Numerical Simulation. 1999, 4(3):181-186
    [143] J.J. Joeng, B. Ozar, A. Dixit, and et al. Interfacial area transport of vertical upward air-water two-phase flow in an annulus channel. Int. J. of Heat and Fliud Flow. 2008(29):178-193
    [144] X. Sun, S. Kuran, M. Ishii.. Cap bubbly-to-slug flow regime transition in a vertical annulus. Experiments in Fluids. 2004(37): 458–464
    [145] Harrnathy T. Z.. Velocity of large drops and bubbles in media of infinite or restricted extent[J].AIChE J,1960,6(2):281-288
    [146] Hasan A. R., Kabir C. S.. Two-phase flow in vertical and inclined annuli. Int.J.Multiphase flow,1992(18):279-293
    [147] Peter Grassberger, Itamar Procaccia. Estimation of the Kolmogorov entropy from a chaotic signal. Physical Review A, 1983, 28:2591-2593
    [148] Handa Y. P.. Compositions enthalpies of dissociation ,and heat capacities in the range 85 to 270 K for clathrate hydrates of CH4 ,C2H6 ,C3H8 [J ] . J Chem Thermo, 1986, 18(7) :915-921
    [149] Loevois J. S., Perkins R., and Martin R. J.. Development of anautomated ,high pressure heat flux calorimeter and its application to measure the heat of dissociation and hydratemember of methane hydrate [ J ] . Fluid Phase quilibrium ,1990 ,59 :73-79
    [150] Rueff R. M., Sloan E. D. and Yesavage V. F.. Heat capacity and heat of dissociation of methane hydrates [J ] . AIChE J ,1988 ,34 (9) :1 468-1 476
    [151] Hasan A. R., Kabir C. S.. Heat transfer during two-phase flow in wellbores, PartⅡ: wellbore Fluid Temperature[C]. SPE22948, 1991:695-708
    [152]郭春秋,李颖川.气井压力温度预测综合数值模拟.石油学报,2001,22(3):100-104.
    [153] KHOKHAR A. A.. Storage properties of natural gas hydrates[D]. Trondheim: Norwegian University of Science and Technology 1998. 99 - 107
    [154]高永海,孙宝江,王志远等.深水钻探井筒温度场的计算与分析.中国石油大学学报:自然科学版,2008,32(2):58-62
    [155]高永海.深水油气钻探井筒多相流动与井控的研究[D] .东营:中国石油大学(华东)石油工程学院, 2008
    [156]孙志高等.含乙二醇和盐体系气体水合物相平衡测定与预测.上海交通大学学报, 2002,36(10):1509-1512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700