TiO_2纳米结构及n-型TiO_2纳米结构/p-型金刚石异质结制备、表征及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛(TiO2)是一种重要的直接带隙半导体材料,具有优异的物理、化学性质,在光催化降解有机物、场发射、太阳电池及传感器等方面等诸多领域具有重要的研究价值和广阔的应用前景。
     本论文的主要工作即是在多种衬底上制备TiO2纳米结构,并深入研究其光电特性。主要包括在化学气相沉积(CVD)硼掺杂金刚石(BDD)膜上制备TiO2纳米结构,并研究其电学特性及光催化特性;在硅(Si)单晶衬底上制备了开口的锐钛矿相TiO2纳米片;并研究上述纳米结构的光催化性能。获得了一些创新结果,具体研究内容如下:
     1.采用水热法,以ZnO为过渡层,在硼掺杂金刚石膜上生长了高密度的金红石相TiO2纳米棒。ZnO过渡层对生长TiO2纳米棒提供了非常有效地异相成核点。通过增加反应温度及反应时间,提高了TiO2纳米棒结晶质量,改变了其形貌及尺寸。获得了具有良好整流特性n-型TiO2纳米棒/BDD异质结结构,该结构具有较好的场发射特性。
     2.利用液相合成法,以ZnO纳米棒阵列作为模板,在硼掺杂金刚石膜上制备了TiO2纳米管阵列。获得了具有明显的整流特性的n-型TiO2纳米管/BDD异质结结构,该异质结结构表现出优异的光催化性能及很好重复性。
     3.利用液相合成法,以ZnO纳米片作为模板,在Si衬底上制备了开口的TiO2纳米片,并具有较好的光催化性能。
Titania (TiO2) is an important direct band gap semiconductor material. nanomaterials has recently attracted much attention due to its distinguished physical and chemical properties making it suitable for many applications such as photocatalysts, electron field emitter, photovoltaic cells, and chemical sensors.
     In this thesis, we prepare rutile TiO2 nanorods (NRs) on boron-doped diamond (BDD) film; synthesize anatase TiO2 nanotube (TiNT) arrays on chemical vapor deposited (CVD) BDD substrates and study their electrical and photocatalytic properties. The hollow and open-ended TiO2 nanosheets is fabricated on Si substrate and study their photocatalytic properties. Some innovative results are obtained and the details of our work are as follows:
     1. The rutile TiO2 NRs has been hydrothermally synthesized on BDD film with a ZnO buffer layer. It is proved that the ZnO buffer layer provide uniform heterogeneous nucleation sites effectively for the grown TiO2 NRs. Additionally, with the increase of reaction temperature and reaction time, TiO2 NRs exhibit a better crystallinity. The n-type TiO2 NRs/BDD heterojunctions have been prepared and the current-voltage (I-V) examination results represent a good diode behavior. Additionally, the TiO2 NRs/BDD heterojunction possesses better electron field emission performance with a low turn-on electric field and high current density.
     2. Anatase TiO2 nanotube (TiNT) arrays have been fabricated on a p-type boron-doped diamond substrate by a liquid phase deposition method using a ZnO nanorod template. It is proved that the ZnO nanorod template has important effect on the morphology of the TiNT. The n-typeTiNT/BDD heterojunctions have been prepared and the current-voltage (I-V) examination results represent a good diode behavior. The n-type TiNT/p-type diamond heterojunction structures which are realized show significantly enhanced photocatalytic activities with good recyclable behavior.
     3. The hollow and open-ended TiO2 nanosheets film is firstly fabricated on Si substrate. The TiO2 nanosheets are realized show good photocatalytic activities.
引文
[1]J. R. Health, Nanoscale materials. Ace. Chem. Res.1999,32,388.
    [2]A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem.1996,100,13226.
    [3]T. Trindada, P. O'Brien, N. L. Pickett, Nanocrystalline semiconductors:Synthesis, properties, and perspectives, Chem. Mater.2001,13,3843.
    [4]R. Denton, B. Muhlschlegel, D. J. Scalapino, Electronic heat capacity and susceptibility of small metal particles, Phys. Rev. Lett.1971,26,707.
    [5]P. Ball, L. Garwin, Science at the atomic scale, Nature.1992,355,761.
    [6]W. Smith, W. Ingram, Y.P. Zhao, The scaling of the photocatalytic decay rate with the length of aligned TiO2 nanorod arrays, Chem. Phys. Lett.2009,479, 270.
    [7]L. Li, C. Y. Liu, Y. Liu, Study on activities of vanadium (IV/V) doped TiO2(R) nanorods induced by UV and visible light, Mater. Chem. Phys.2009,113,551.
    [8]D. Kim, Y. K. Kim, S. C. Park, J. S. Ha, J. H. Huh, J. H, Na, G. T. Kim, Photoconductance of aligned SnO2 nanowire field effect transistors, Appl. Phys. Lett.2009,95,043107.
    [9]S. Q. Li, Y. X. Liang, T. H. Wang, Nonlinear characteristics of the Fowler-Nordheim plot for field emission from In2O3 nanowires grown on InAs substrate, Appl. Phys. Lett.2006,88,053107.
    [10]F. S. Tsai, S. J. Jinn, Y. C. Tu, Y. W. Hsu, C. Y. Kuo, Z. S. Lin, R. M. Ko, Preparation of p-SnO/n-ZnO heterojunction nanowire arrays and their optoelectronic characteristics under UV Illumination, Appl. Phys. Exp.2011,4, 025002
    [11]S. I. Na, S. S. Kim, W. K. Hong, J. W. Park, J. Jo, Y. C. Nah, T. Lee, D. Y.Kim, Fabrication of TiO2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells, Electrochimica Acta.2008, 53,2560.
    [12]D. F. Zhang, L. D. Sun, G. Xu, C. H. Yan, Size-controllable one-dimensinal SnO2nanocrystals:synthesis, growth mechanism, and gas sensing property, Phys. Chem. Chem. Phys.2006,8,4874.
    [13]L. P. Qin, J. Q. Xu, X. W. Dong, Q. Y. Pan, Z. X. Cheng, Q. Xiang, F. Li, The template-free synthesis of square-shaped SnO2 nanowires:the temperature effect and acetone gas sensors. Nanotechnology.2008,19,185705.
    [14]U. Diebold, The surface science of titanium dioxide, Sref. Sci. Rep.2003,48,53.
    [15]刘华,胡文启.钛白粉的生产与应用.北京:学技术文献出版社,1992
    [16]T. Sugimoto, X. P. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO2nanoparticles by gel-sol method, J. Colloid Interface Sci.2003,259,53.
    [17]S. Eiden-Assmann, J. Widoniak, G. Maret. Synthesis and characterization ofporous and nonporous monodisperse colloidal TiO2 particles. Chem. Mater. 2004,16,6.
    [18]S. Wang, L. J. Ji, B. Wu, et al, Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes. Appl. Surf. Sci.2008,255, 3263.
    [19]D. F. Li, Y. H.Guo, C.W. Hu, et al. A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2thin films. Mater. Chem. Phys.2004,83,169.
    [20]A. Chemseddine, T. Morotz, Nano structuring titania:Control over nanocrystalstructure, size, shape, and organization. Eur. J. Inorg. Chem.1999, 2,235.
    [21]K. Tomita, V. Petrykin, M. Kobayashi, et al. A water-soluble titanium complexfor the selective synthesis of nanocrystalline brookite,rutile,and anatase by ahydrothermal method. Angew. Chem. Int. Ed.2006,45,2378.
    [22]H. Y. Zhu, Y. Lan, X. P.Gao, S. P. Ringer, et al, Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions, J. Am. Chem. Soc.2005,127,6730.
    [23]P. H. Wen, H. Itoh, W. P. Tang, et al. Single nanocrystals of anatase-type TiO2 prepared from layered titanate nanosheets:formation mechanism and characterization of surface properties, Langmuir.2007,23,11782.
    [24]L. Q.Weng, S. H. Sog, S. Hodgson, et al. Synthesis and characterisation of nanotubular titanates and titania, J. European Ceramic Society.2006,26, 1405.
    [25]C. K. Xu, Y. J. Zhan, K. Q. Hong, et al, Growth and mechanism of titania nanowires,Solid State Communications.2003,126,545.
    [26]A. L. Castro, M. R. Nunes, A. P. Carvalho, F. M. Costa, M. H. Flore-ncio, Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity, Solid. State. Sci.2008,10,602.
    [27]T. N. Muhammad, T. Patrick, O. Patrick, M. Gennadij, F. Simon, Ute Kolb, J. Andreas, S. Michael, T, Wolfgang, Facile Synthesis and Characterization of Functionalized, Monocrystalline Rutile TiO2 Nanorods, Langmuir.2006,22, 5209.
    [28]E. Bae, N. Murakami, T. Ohno, Exposed crystal surface-controlled TiO2 nanorods having rutile phasefrom TiCl3 under hydrothermal conditions, J. Mo. Catal. A-Chem.2009,300,72.
    [29]Z.Y. Yuan, B. L. Su, Titanium oxide nanotubes, nanofibers and nanowires, Colloid. Surface. A.2004,241,173.
    [30]Q. J. Li, J. W. Zhang, B. B. Liu, M. Li, et al, Synthesis of High-Density Nanocavities inside TiO2#B Nanoribbons and Their Enhanced Electrochemical Lithium Storage Properties, Langmuir.2008,47,9870.
    [31]S. W. Yang, L. Gao, Fabrication and shape-evolution of nanostructured TiO2 via a sol-solvothermal process based on benzene-water interfaces, Mater. Chem. Phys.2006,99,437.
    [32]C. S. Kim,B. K. Moon, J. H. Park, S. T. Chung, S. M. Son, Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route, J. Cryst. Growth. 2003,254,405.
    [33]B. Wen, C. Liu,Y. Liu, Depositional Characteristics of Metal Coating on Single-Crystal TiO2 Nanowires, J. Phys. Chem. B.2005,109:12372-12375.
    [34]B. Wen, C. Liu,Y. Liu, Bamboo-Shaped Ag-Doped TiO2 Nanowires with Heterojunctions, Inorg. Chem.2005,44,6503.
    [35]X. Wang, J. Zhuang, Q. Peng, Y. D. Li, A general strategy for nanocrystal synthesis, Nature.2005,437,121.
    [36]B. Wen, C. Liu,Y. Liu, Solvothermal synthesis of ultralong single-crystallineTiO2 nanowires, New J. Chem.2005,29,969.
    [37]C. S. Kim, B. K. Moon, J. H. Park, B. C. Choi, H. J. Seo, Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant, J. Cryst. Growth. 2003,257,309.
    [38]S. Uchida, M. Tomiha, N. Masaki, A. Miyazawa, H. Takizawa, Preparation of TiO2 nanocrystalline electrode for dye-sensitized solar cells by 28 GHz microwave irradiation, Sol. Energy Mater. Sol. Cells.2004,81,135.
    [39]T. Yamamoto, Y. Wada, H. Yin, T. Sakata, H. Mori, S. Yanagida, Microwave-Driven Polyol Method for Preparation of TiO2 Nanocrystallites, Chem. Lett.2002,964.
    [40]A. B. Corradi, F. Bondioli, B. Focher, A. M. Ferrari, C. Grippo, E. Mariani, C. Villa, Conventional and Microwave-Hydrothermal Synthesis of TiO2 Nanopowders, J. Am. Ceram. Soc.2005,88,2639.
    [41]G. Ma, X. Zhao, J. Zhu, Microwave Hydrothermal Synthesis of Rutile TiO2 Nanorods, Int. J. Mod. Phys. B.2005,19(15/17),2763.
    [42]X. Wu, Q. Z. Jiang, Z. F. Ma, M. Fu, W. F. Shangguan, Synthesis of titania nanotubes by microwave irradiation, Solid State Commun.2005,136,513.
    [43]E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, Growth of Submicrometer-Scale Rectangular Parallelepiped Rutile TiO2 Films in Aqueous TiOl3 Solutions under Hydrothermal Conditions, J. Am. Chem. Soc.2004,126,7790.
    [44]X. J. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes, Vertically aligned single crystal TiO2 anowire arrays grown directly on transparent conducting oxide coated glass:synthesis details and applications, Nano. Lett.2008,8,3781.
    [45]B. Liu, E. S. Aydil, Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells, J. Am. Chem. Soc.2009,131,3985.
    [46]Z. Zhang, T. Shimizu, S. Senz, U. Go"sele, Ordered high-density Si [100] nanowire arrays epitaxially grown by bottom imprint method, Adv. Mater.2009, 21,2184.
    [47]S. M. Liu, L. M. Gan, L. H. Liu, W. D. Zhang, H. C. Zeng, Synthesis of single-crystalline TiO2 nanotubes, Chem. Mater.2002,14,1391
    [48]. M. D. Xu, J. Ouyang, G. Guo, X. Zhao,Y. Tang, Electrochemically induced sol-gel preparation of single-crystalline TiO2 nano wires, Nano. Lett.2002,2(7), 717.
    [49]Sander, M. J. Cote, W. Gu, B. M. Kile,C. P. Tripp, Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates, Adv. Mater.2004,16(22),2052.
    [50]Lee, I. C. Leu, M. C. Hsu, Y. W. Chung, M. H. Hon, Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach, J. Phys. Chem. B.2005,109,13056.
    [51]Qiu,W. D. Yu, X. D. Gao, X. M. Li, Sol-gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays, Nanotechnology.2006,17,4695.
    [52]G. K. Mor, O. K. Varghese, M. Paulose, C. A. Grimes, Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films, Adv. Funct. Mater.2005,15,1291.
    [53]D. A. Wang, B. Yu, C. W. Wang, F. Zhou, W. M. Liu, A novel protocol toward perfect alignment of anodized TiO2 nanotubes, Adv. Mater.2009,21,1.
    [54]S. Q. Li, G. M. Zhang, D. Z. Guo, L. G. Yu, W. Zhang, Anodization fabrication of highly ordered TiO2 nanotubes, J. Phys. Chem. C.2009,113,12759
    [55]S. K. Liu, W. Y. Fu, H. B. Yang, M. H. Li, P. Sun, B. M Luo, Q. J. Yu, et al, Synthesis and characterization of self-organized oxide nanotube arrays via a facile electrochemical anodization, J. Phys. Chem. C.2008,112,19852.
    [56]B. M. Luo, H. B. Yang, S. K. Liu, W. Y. Fu, P. Sun, M. X. Yuan, Y. Y. Zhang, Z. L. Liu, Fabrication and characterization of self-organized mixed oxide nanotube arrays by electrochemical anodization of Ti-6A1-4V alloy, Mater. Lett.2008, 62,4512.
    [57]C. J. Lin, W.Y. Yu, Y. T. Lu, S. H.Chien, Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications, Chem. Commun.2008,6031.
    [58]L. Wang, T. T. Zhao, Z. Zhang, G. Li, Fabrication of highly ordered TiO2 nanotube arrays via anodization of Ti-6A1-4V alloy sheet. J. Nnosci. Nanotechno.2010,10,8312.
    [59]X. L. Yuan, M. J. Zheng, L. Ma, W. Z. Shen, High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization, Nanotechnology.2010,21,405302
    [60]V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approac, Electrochimica Acta.1999,45,921.
    [61]D. W. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, E. C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res.2001,16,3331
    [62]J. C. Lee, K. S. Park, T. G. Kim, H. J. Choi, Y. M. Sung, Controlled growth of high-quality TiO2 nanowires on sapphire and silica, Nanotechnology.2006,17, 4317
    [63]J. J. Wu, C. C. Yu, Aligned TiO2 nanorods and nanowalls, J. Phys. Chem. B. 2004,108,3377.
    [64]S. N. Frank, A. J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powder. J. Am. Chem. Soc.1977,99,303.
    [65]S. N. Frank, A. J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem.1977,81, 1484.
    [66]H. C. Shin, J. Dong, M. Liu, Nanoporous structures prepared by an electrochemical deposition process. Adv. Mater.2003,15,1610.
    [67]J. Schwitzgebel, J. G. Ekerdt, H. Gerischer, et al, Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions. J. Phys. Chem.1995,99,5633.
    [68]M.Khaled, S, Odheiba. Al-Shukeili, A-A. Issa, Effect of M-doping (M=Fe, V) on the photocatalytic activity of nanorod rutile TiO2 for Congo red degradation under the sunlight, Ceramics International.2009,35,433.
    [69]C. L. Bianchi, G. Cappelletti, S. Ardizzone, S. Gialanell, A. Naldoni, C. Oliva, C. Pirola, N-doped TiO2 from TiCl3 for photodegradation of air pollutants, Catal. Today.2009,144,31.
    [70]H. Y. Li, D. J. Wang, P. Wang, H. M. Fan, T. F. Xie, Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse Bi-doped TiO2 nanospheres, Chem. Eur. J.2009,15,12521.
    [71]S. Sato, Photoelectrochemical of Pt/TiO2 catalysis. Journal of Catalysis.1985,92,11.
    [72]M. Jakob, H. Levanon, P. V. Kamat, Charge distribution between UV irradiation TiO2 and gold nanoparticles:determination of shift in the Fermi level, Nano Letters.2003,3,353.
    [73]I. M.Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytudes, P. Falaras, Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange, Applied Catalysis B:Environmental. 2003,42,187.
    [74]K. T. Ranjit, T. K. arajan, B. Viswanathan, Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2. Journal of Photochemistry and Chemistry A:Photobiology.1996,96,181.
    [75]M. R Hoffmann., S. T. Martin, W. Choi, D. W. Bahnemannt. Environmental applications of semiconductor photocatalysis, Chem. Rev.1995,95,69.
    [76]H. Y. Yang, S. F. Yu, S. P. Lau, X. W. Zhang, D. D. Sun, G. Jun, Direct growth of ZnO nanocrystals onto the surface of porous TiO2 nanotube arrays for highly efficient and recyclable photocatalysts, Small.2009,5,2260.
    [77]G. Marci, V. Augugliaro, M. J Lopez-Munoz, C. Martin, L Palmisano, V. Rives, M. Schiavello, R. Tilley, A. M. Venezia, Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. J. Phys. Chem. B. 2001,105,1033.
    [78]H. Tada, A. Hattori, Y. Tokihisa, N. Tohge, S. Ito, A patterned-Ti02/Sn02 bilayer type Photocatalyst, J. Phys. Chem. B.2000,104,4585.
    [79]X. Z. Li, F. B. Li, C. L. Yang, Photocatalytic activity of WO3/TiO2 under visible light irradiation, J. Photochem. Photobio. A.2001,141,209.
    [80]R, Vogel, P. Hoyer, H. Weller, Quantom-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 partieles assensitizers for various nanoPorous wide-bandgap semieonduetors, J. Phys. Chem.1994,98,3183
    [81]B. Pala, M. Sharonb, G. Nogami, Preparation and characterization of Ti02/Fe203 binarymixed oxides and its photocatalytic properties. Mater. Chem. Phys.1999,59,254.
    [82]H. B. Yu, S. Chen, X. Quan, H. M. Zhao, Y. B. Zhang, Environ. Sci. Technol. 2008,42,3791.
    [83]L. S. Chen, C. F. Lin, C. H. Wu, P. H. Hsieh, Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol. J. Hazard. Mater. B,2004,114, 183.
    [84]梁宗存,沈辉,李戬洪,太阳能电池及材料研究,材料导报.2000,14,38.
    [85]J. Desilvestro, M. Graetzel, L. Kavan,et al.Highly efficient sensitization of titanium dioxide, J.Am.Chem.Soc.1985,107,2988.
    [86]H. J. Kim, M. J. Bae, Y. C. Kim, E. S. Cho, Y. C. Sohn, D. Y. Kim, S. E. Lee, H. S. Kang, et al, Growth of carbon nanotube field emitters on single strand carbon fiber:a linear electron source, Nanotechnology.2011,22,095602
    [87]X. P. Xu, G. R. Brandes, A method for fabricating large-area, patterned, carbon nanotube field emitters, Appl. Phys. Lett.1999,74,2459.
    [88]S. H. Jo, J. Y. Lao, and Z. F. Ren, R. A. Farrer, T. Baldacchini, and J. T. Fourkas, Field-emission studies on thin films of zinc oxide nanowires, Appl. Phys. Lett. 2003,83,4281.
    [89]L. A. Ma, T. L. Guo, Stable field emission from cone-shaped SnO2 nanorod arrays, Physica B.2008,403,3410.
    [90]J. M. Wu, H. C. Shih, W. T. Wu, Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation, Chem. Phys. Lett.2005,413, 490.
    [91]K. F Huo, X. M. Zhang, L. S. Hu, X. J.Sun, J. J. Fu, P. K. Chu, One-step growth and field emission properties of quasialigned TiO2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates, Appl. Phys. Lett.2008,93, 013105
    [92]D. Bai, Z. Zhang, L. J. Li, F. Xu, K. Yu, Controllable synthesis and field emission properties of In2O3 nanostructures, Cryst. Res. Technol.2010,45,173
    [93]陶跃武,赵梦月,陈士夫,催化学报。1997,8,345.
    [94]C. Garzella, E. Comini, E. Tempesti, et al. TiO2 thin films by a novel sol processing for gas sensor applications.Sens.Actuators B,2000,68,189.
    [95]B. N. Mavrin, V. N. Denisov, D. M. Popova, E. A. Skryleva, M. S. Kuznetsov, S. A. Nosukhin, S. A. Terentiev, V. D. Blank, Boron distribution in the subsurface region of heavily doped lIb type diamond, Phys. Lett. A.2008,372,3914
    [96]王传新,汪建华,满卫东等,硼浓度对沉积在刀具上的金刚石膜表面的影响.武汉化工学院学报.2004,26,51
    [97]E. A. Ekimov, V. A. Sidorov. Superconductivity in diamond, nature.2004,428, 542.
    [98]Z. L. Wang, Q. Luo, L. W. Liu, C. Y. Li, H. X. Yang, H.F. Yang, J. J. Li, X. Y. Lu, Z. S. Jin, L. Lu, C. Z. Gu, The superconductivity in boron-doped polycrystalline diamond thick films, Dia. Rel. Mater.2006,15,659
    [1]H. Bala, Y. H. Yu, Y. H. Zhang, Synthesis and photocatalytic oxidation properties of titania hollow spheres, Mater. Lett.2008,62,2070.
    [2]M. Miyauchi, H. Tokudome, Y. Toda, T. Kamiya, H. Hosono. Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction Appl. Phys. Lett.2006,89,043114.
    [3]S. Pavasupree, Y. Suzuki, S. Yoshikawa, R. Kawahata, Morphology control of TiO2-based nanomaterials for sustainable energy applications, J. Solid. State. Chem.2005,178,3110.
    [4]I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers, Nano. Lett. 2006,6,2009.
    [5]J. M. Wu, H. C. Shih, W. Ti.Wu, Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation, Nanotechnology.2006,17,105.
    [6]J. Wang, Z. Q. Lin, Anodic formation of ordered TiO2 nanotube arrays:effects of electrolyte temperature and anodization potential, J. Phys. Chem. C.2009,113, 4026.
    [7]E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 Films in Aqueous TiCl3 Solutions under Hydrothermal Conditions J. Am. Chem. Soc.2004,126,7790.
    [8]B. Liu, J. E.Boercke, E. S. Aydil, Oriented single crystalline titanium dioxide nanowires, Nanotechnology.2008,19,505604.
    [9]B. Liu, E. S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells, J. Am. Chem. Soc.2009,1 31,3985.
    [10]Y. X. Li, M. Guo, M. Zhang, X. D. Wang, Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates, Mater. Res. Bull. 2009.44,1232.
    [11]X. Chen, G. Chen, F. Gao, P. L. Yue, Characterization of boron doped diamond during oxidation processes:relationship between electronic structure and electrochemical activity, Environ. Sci. Technol.2003,37,502.
    [12]H. B. Yu, H. Wang, X. Quan, S. Chen, Y. Zhang, Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor, Electrochem. Commun.2007,9,2280.
    [13]C. X. Wang, G. W. Yang, C. X. Gao, H. W. Liu, Y. H. Han, J. F. Luo, G T. Zou, Highly oriented growth of n-type ZnO films on p-type single crystalline diamond films and fabrication of high-quality transparent ZnO/diamond heterojunction,Carbon.2004,317,317.
    [14]H. B.Yu, S. Chen, X. Quan, H. M. Zhao, Y. B. Zhang, Environ. Sci. Techol. 2008,42,3791.
    [15]J. H. Qu, X. Zhao, Design of BDD-TiO2 hybrid electrode with P-N Function for photoelectroatalytic degradation of organic contaminant, Environ. Sci. Technol. 2008,42,4934.
    [16]李云奇,真空镀膜技术与设备,东北工学院出版社1989.
    [17]K. Ushizawa, K. Watanabe, T. Ando, I. Sakaguchi, M. Nishitani-Gamo, Y. Sato, H. Kanda,Boron concentration dependence of Raman spectra on{100}and{111} facets of B-doped CVD diamond, Diam. Rel. Mater.1998,7,1719.
    [18]J. W. Ager, W. Walukiewicz, M. McCluskey, M. A. Plano, M. I. Landstrass, Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition, Appl. Phys. Lett.1995,66,616.
    [19]Y G.Wang, S. P. Lau, B. K. Tay, X. H. Zhang, Resonant Raman scattering studies of Fano-type interference in boron doped diamond, J. Appl. Phys.2002, 92,7253.
    [20]潘晓燕,马学鸣,纳米TiO2的Raman光谱研究进展,材料科学与工程.2001,19,138.
    [21]X. C. Wang, J. C. Yu, C. M. Ho, Y. D. Hou, X. Z. Fu, Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titania, Langmuir.2005,21,2552.
    [22]Y. Zeng, T. Zhang, L. J. Wang, R. Wang, W. Y. Fu, H. B. Yang, Synthesis and Ethanol Sensing Properties of Self-Assembled Monocrystalline ZnO Nanorod Bundles by Poly(ethylene glycol)-Assisted Hydrothermal Process, J. Phys. Chem. C 2009,113,3442.
    [23]R. H. Fowler, L. W. Nordheim, Electron Emission in Intense Electric Fields, Proc. R. Soc. London. Ser. A.1928,119,173.
    [24]S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini, J. T. Fourkas, Field-emission studies on thin films of zinc oxide nanowires, Appl. Phys. Lett. 2003,83,4821.
    [25]G. Liu, F. Li, D. W. Wang, D. M. Tang, C. Liu, X. L. Ma, G. Q. Lu, H. M. Cheng, Emission of a nitrogen-doped TiO2 nanotube array, Nanotechnology. 2008,19,025606.
    [26]J. M. Wu, H. C. Shih, W. T. Wu. Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation, Chem. Phys. Lett.2005,413, 490.
    [27]J. Pascual, J. Camassel, H. Mathieu, Fine structure in the intrinsic absorption edge of TiO2, Phys. Rev. B.1978,18,5606.
    [28]M. W. Geis, J. C. Twichell, N. N. Efremow, K. Krohn, T. M. Lyszczarz, Comparison of electric field emission from nitrogen-doped, type Ib diamond, and boron-doped diamond. Appl. Phys. Lett.1996,68,2294.
    [1]H. Bala, Y. H. Yu, Y. H. Zhang, Synthesis and photocatalytic oxidation properties of titania hollow spheres, Mater. Lett.2008,62,2070.
    [2]H. Yoshida, K. Hirao, J. I. Nishimoto, K. Shimura, S. Kato, H. Itoh and T. Hattori, Hydrogen Production from Methane and Water on Platinum Loaded Titanium Oxide Photo catalysts, J. Phys. Chem. C.2008,112,5542.
    [3]G. K. Boschloo, A. Goossens and J. Schoonman, Photoelectrochemical study of thin anatase TiO2 films prepated by metallorganic chemical vapor deposition, J. Electrochem. Soc.1997,144,1311.
    [4]Y. S. Chen, J. C. Crittenden, S. Hackney, L. Sutter and D. W. Hand, Preparation of a novel TiO2-based p-n junction nanotube photocatalyst, Environ. Sci. Technol.2005,39,1201.
    [5]H. G. Kim, P. H. Borse, W. Y. Choi and J. S. Lee, Photocatalytic Nanodiodes for Visible Light Photocatalysis, Angew. Chem. Int. Ed.2005,44,4585.
    [6]H. B. Yu, S. Chen, X. Quan, H. M. Zhao and Y. B. Zhang, Fabrication of a TiO2-BDD Heterojunction and its Application As a Photocatalyst for the Simultaneous Oxidation of an Azo Dye and Reduction of Cr(VI), Environ. Sci. Technol.2008,42,3791.
    [7]J. H. Qu and X. Zhao, Design of BDD-TiO2 hybrid electrode with P-N Function for photoelectroatalytic degradation of organic contaminant, Environ. Sci. Technol.2008,42,4934. [8] A. Ghicov and P. Schmuki, Self-ordering electrochemistry:a review on growth andfunctionality of TiO2 nanotubes and other self-aligned MOx structures, Chem. Commun.2009,20,2791. [9] J. Lin, W. Y. Yu, Y. T. Lua and S. H. Chien, Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications, Chem. Commun.2008,45,6031.
    [10]L. R. Zheng, Y. H. Zheng, C. Q. Chen, Y. Y. Zhan, X. Y. Lin, Q. Zheng, K. M. Wei and J. F. Zhu, Network Structured SnOi/ZnO Heterojunction Nanocatalyst with High Photocatalytic Activity, Inorg. Chem.2009,48,1819.
    [11]F. Marken, A. S. Bhambra, D. H. Kim, R. J. Mortimer and S. J. Stott, Electrochemical reactivity of TiO2 nanoparticles adsorbed onto boron-doped diamond surfaces, Electrochem. Commun.2004,6,1153.
    [12]D. V. Bavykin, E. V. Milsom, F. Marken, D. H. Kim, D. H. Marsh, D. J. Riley, F. C. Walsh, K. H. El-Abiary and A. A. Lapkin, A novel cation-binding TiO2 nanotube substrate for electro-and bioelectro-catalysis, Electrochem. Commun. 2005,7,1050.
    [13]J. Wang, Z. Q. Lin, Anodic formation of ordered TiO2 nanotube arrays: effects of electrolyte temperature and anodization potential, J. Phys. Chem. C.2009,113,4026.
    [14]J. C. Lee, K. S. Park, T. G. Kim, H. J. Choi, Y. M. Sung, Controlled growth of high-quality TiO2 nanowires on sapphire and silica, Nanotechnology. 2006,17,4317.
    [15]S. I. Na, S. S. Kim, W. K. Hong, J. W. Park, J. Jo, Y. C. Nah, T. Lee, D. Y. Kim, Fabrication of TiO2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells, Electrochim. Acta.2008, 53,2560.
    [16]J. H. Lee, I. C. Leu, M. C. Hsu, Y. W. Chung and M. H. Hon, Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solutionapproach, J. Phys. Chem. B.2005,109,13056.
    [17]T. Rattanavoravipa, T. Sagawa, S. Yoshikawa, Photovoltaic performance of hybrid solar cell with TiO2 nanotubes arrays fabricated through liquid deposition using ZnO template, Sol. Energ. Mat. Sol. C.2008,92,1445
    [18]P. Charoensisirithavorn, Y. Ogomi, T. Sagawa, S. Hayase, S. Yoshikawa, A facilerouteto TiO2 nanotube arrays for dye-sensitized solar cells, J. Crystal Growth.2009,311,757.
    [19]潘晓燕,马学鸣,纳米TiO2 的 Raman 光谱研究进展,材料科学与工程.2001, 19,138.
    [20]J. B. Cui, J. Ristein, and L. Ley, Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface, Phys. Rev. Lett 1998,81,429.
    [21]H. Y. Li, D. J. Wang, P. Wang, H. M. Fan and T. F. Xie, Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse Bi-doped TiO2 nanospheres, Chem. Eur. J.2009,15,12521.
    [22]G. M. Mor, O. K. Vatghese, M. Paulose and G. A. Grimes, Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films, Adv. Funct. Mater.2005,15,1291.
    [23]S. Tiefenbacher, C. Pettenkofer and W. Jaegermann, Ultrahigh vacuum preparation and characterization of TiO2/CdTe interfaces:Electrical properties and implications for solar cells, J. Appl. Phys.2002,91,1984.
    [1]W. Q. Han, Y. Zhang, Magneli phases TinO2n-1 nanowires:Formation, optical, and transport properties, Appl. Phys. Lett.2008,92,203117.
    [2]J. T. Jiu, S. J. Isoda, F. M. Wang, M. Adachi, Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film, J. Phys. Chem. B.2006,110,2087.
    [3]Q. J. Li, J. W. Zhang, B. B. Liu, M. Li, et al, Synthesis of High-Density Nanocavities inside TiO2#B Nanoribbons and Their Enhanced Electrochemical Lithium Storage Properties, Langmuir.2008,47,9870.
    [4]X. M. Sun, Y. D. Li, Synthesis and characterization of ion-exchangeable titanate nanotubes, Chem. Eur. J.2003,9,2229.
    [5]J. J. Wu, C. C. Yu, Aligned TiO2 nanorods and nanowalls, J. Phys. Chem. B, 2004,108,3377.
    [6]S. Y. Gao, H. D. Li, J. J. Yuan, Y. A. Li, X. X Yang, J. W. Liu, ZnO nanorods/plateson Si substrate grown by low-temperature hydrothermal reaction, Appl. Surf. Sci.2010,256,2781.
    [7]J. H. Lee, I. C. Leu, M. C. Hsu, Y. W. Chung and M. H. Hon, Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solutionapproach, J. Phys. Chem. B.2005,109,13056.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700