碱性成纤维细胞因子对根尖牙乳头干细胞生物学作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根尖牙乳头干细胞(Stem cells from the apical papilla,SCAP)是位于未发育完成恒牙根尖乳头的间充质干细胞(mesenchymal stem cells, MSCs)。SCAP是一类具有成牙潜能的干细胞,具有比牙髓干细胞(dental pulp stemcells,DPSCs)更强的群体倍增能力、增殖能力、端粒酶活性及成牙本质潜能。研究发现SCAP是根部成牙本质细胞的主要来源,对根部牙本质形成发挥重要作用。SCAP独特的功能和特点决定了其不仅仅是一种研究牙根发育时成牙本质细胞分化机制的体外细胞,而且是一种很好的牙组织工程种子细胞,可用于牙髓牙本质和生物学牙根的再生,具有良好且广阔的临床应用前景。
     牙根的发育形成是由一系列上皮和间充质信号的相互作用调控的。碱性成纤维细胞因子(Basic fibroblast growth factor,bFGF)是纤维生长因子(fibroblast growth factors, FGFs)家族的成员之一,在牙组织形态发生中发挥重要作用,并有效促进牙根的延长和牙周组织的形成。在小鼠磨牙牙根形成的各个阶段,分化的成牙本质细胞均表达bFGF,提示bFGF参与了牙根形成的信号调控。bFGF是一种多效性生长因子,参与细胞的增殖,分化和迁移。同时也是维持人胚胎干(human embryonic stem,hES)细胞自我更新能力的重要因子。对成体干细胞,bFGF对不同分化阶段的细胞以及不同间充质干细胞的生物学效应表现并不相同。文献报道bFGF对牙髓干细胞的作用可表现上调或降低ALP的活性;促进或抑制其成牙本质细胞分化。SCAP是根部成牙本质细胞的来源,具有很强的成牙本质细胞分化潜能,而bFGF对SCAP的生物学作用如何,目前尚未见报道。
     本研究采用体外培养的SCAP为实验模型,研究bFGF对SCAP增殖、分化等生物学效应,从而明确bFGF对SCAP增殖和分化的调控作用;进而明确bFGF对SCAP干细胞干性(stemness)的影响;明确在bFGF调控SCAP增殖分化中MAPKs信号通路是否发挥作用;这将为进一步研究SCAP的生物学特性、成牙本质细胞分化机制、牙髓牙本质再生及生物学牙根等组织工程应用提供实验基础,同时为将来SCAP应用于临床治疗提供新的思路和途径。
     课题所取得的主要结果如下:
     1.根尖牙乳头干细胞的分离、培养、鉴定及多向分化能力检测
     通过酶消化法原代培养根尖牙乳头细胞,利用有限稀释培养法成功分离出根尖牙乳头干细胞克隆;采用成骨诱导、成脂诱导实验验证了根尖牙乳头干细胞具备多向分化能力;采用免疫组织化学染色检测了根尖牙乳头细胞中充质干细胞标志物STRO-1,波形丝蛋白和CD24的表达;流式细胞仪定量分析了根尖牙乳头干细胞的STRO-1阳性表达率。
     2.碱性成纤维细胞因子提高根尖牙乳头干细胞干性
     以体外培养的SCAP为靶细胞,研究了不同浓度bFGF对SCAP的促增殖作用:MTT比色法发现不同浓度bFGF可提高SCAP的细胞存活率,以5,10,20ng/ml浓度促增殖的效果显著;bFGF可加速SCAP细胞周期进程;bFGF可提高3,6,12代SCAP细胞克隆形成率;bFGF可明显降低SCAP的ALP活性,抑制体外矿化结节形成, bFGF对体外矿化诱导1,2,4w后的SCAP可不同程度降低成牙本质标记基因DSPP、ALP、OCN和BSPmRNA表达; bFGF抑制SCAP细胞向成骨方向分化;而以bFGF预培养1w后SCAP的成骨能力增加;bFGF增加成脂诱导3w SCAP中PPAR-γ2mRNA表达;bFGF可提高不同培养代数SCAP中STRO-1的阳性表达率及干细胞基因Nanog, Oct4, Sox2及Rex1的mRNA表达,从而提高SCAP的干细胞特性及未分化潜能。
     3.碱性成纤维细胞因子对根尖牙乳头干细胞生物学作用机制的初步探讨
     bFGF可激活MAPKs信号通路,促进SCAP中p38、ERK、JNK通路磷酸化蛋白的表达水平;在应用p38、ERK、JNK通路的抑制剂阻断各通路后,可部分逆转bFGF下调SCAP中DSPP、ALP、OCN和BSP表达的作用;bFGF分别联合JNK、ERK和p38通路抑制剂作用后,Nanog、Oct4和Sox2的表达在各实验组呈现了不同程度的下调;以JNK通路抑制剂(SP600125)和ERK通路抑制剂(U0126)组较为明显。实验结果显示MAPKs信号通路参与了bFGF对SCAP生物学作用的调控。
     综上所述,本研究认为bFGF可以促进根尖牙乳头干细胞的增殖;调控细胞的分化能力从而增加SCAP的干细胞干性(stemness)及未分化潜能;MAPKs信号通路参与了bFGF对根尖牙乳头干细胞分化特性的调控。本实验结果为进一步研究根尖牙乳头干细胞的生物学特性及分化机制提供了研究基础;为进一步研究bFGF对根尖牙乳头干细胞的分化调控机制提供了研究基础;同时为牙髓牙本质再生及生物学牙根的组织工程研究提供了新的研究思路。
Introduction
     Stem cells from the apical papilla (SCAP) are a population ofmesenchymal stem cells (MSCs) residing in the apical papilla of incompletelydeveloped teeth. SCAP are a distinct source of potent dental stem/progenitorcells and appear to have a greater dentinogenic potential than dental pulp stemcells (DPSCs). The distinction between dental pulp and apical papilla is thatapical papilla is the precursor tissue of the radicular pulp. Recently, SCAP havebeen shown to possess the ability to regenerate vascularized human dentalpulp-like tissues in emptied root canal space and produce new dentin-like tissueon existing dentinal walls. These pieces of evidence support the hypothesis thatSCAP may be the source of primary odontoblasts that are responsible for theformation of root dentin.
     Tooth root formation is mediated through a series of epithelial-mesenchymal interactions regulated by several signaling pathways. Basic fibroblast growth factor (bFGF) is a member of FGFs, which plays an importantrole in morphogenesis and histogenesis of tooth and they effectively promote thetooth root elongation and periodontal tissue formation. More importantly, bFGFwas observed in differentiating odontoblasts at the apical end of the tooth and inthe furcation zone of the developing root at all the stages suggesting that bFGFmay participate in the signaling network associated with root development.bFGF is known an angiogenic and pleiotropic growth factor involved in theproliferation, differentiation and migration of numerous cell types. It is knownbFGF is a critically important factor to maintain self renewal ability of humanembryonic stem (hES) cells in cultures. For adult stem cells, the effects of bFGFon MSCs of different tissue origin are different. bFGF appears to exertdifferential effects on different cell types and the stage of differentiaton of cellsmay respond differently to bFGF as well. Some studies, however, have reportedthat bFGF can up-regulate or down-regulate the ALP activity, promote orsupress the differentiation potential of DPSCs. However, the effects of bFGF onSCAP have not yet been reported. Thus, it is important to investigate the effectsof bFGF on the biologic functions of SCAP in order to understand its regulatoryrole in this context.
     The purpose of this study was to examine the effects of bFGF on thebehavior of SCAP in terms of cell proliferation, differentiation potential,stemness, and whether MAPK was involved in the differentiation of SCAP bybFGF.
     Main results
     1. Isolation of SCAP and characterization of multipotent differentiationability.
     Human third molars with developing roots were collected due to orthodonticreasons. Procedures were performed according to the approval of theinstitutional review board and the informed consent of the patients. SCAP wereisolated, cultured and expanded as previously described. Cells were collectedand prepared for limiting dilution procedures to obtain single-colony-derivedstrains. Growth characteristics and multipotent differentiation of the cell wereassessed.
     2. Biological effects of bFGF on SCAP.
     Different concentration of bFGF all increased the proliferation of SCAP. Theconcentration of5,1020ng/ml were significantly increased SCAP proliferation..bFGF proceeded into the G2/S phase of SCAP. The numbers of CFU-Fformation of SCAP at passages3,6and12were increased with bFGF. Incontrast, bFGF reduced the ALP activity and mineral nodule formation. bFGFdown-regulated the expression of ALP, BSP, DSPP and OCN especially afterSCAP cultured in osteo/dentinogenic medium for2week. SCAP pretreated withbFGF for1week can increase the ability of calcium deposition. bFGFup-regulated the expression of PPAR-γ2after3weeks of adipogenic induced.Regardless of the passage numbers, bFGF increased the percentage of STRO-1+cells significantly and increased the expression levels of pluripotent gene (Oct4,Nanog, Sox2and Rex1) expression levels. These results indicated bFGF canincrease the stemness of SCAP.
     3. The mechanism of biological effects of bFGF on SCAP differentiationand remain stemness.
     After SCAP treated with bFGF for different time, the phosphorylation ofJNK, P38and ERK were determined by Western blot assay. bFGF can inducedphos-JNK, phos-ERK and phos-p38expression.
     The inhibitors U0126, SP600125or SB203580can partly withdraw thesuppression of bFGF on the expression of DSPP, BSP and OCN in SCAP, whichwere cultured in mineralization differentiation media for1week. After treatedwith SP600125,U0126and SB203580respectively, SCAP were cultured instandard medium with or without the presence of bFGF for6days. Theinhibitors only could be partially withdraw the effect of bFGF, Nanog, Oct4andSox2decreased but Rex1not. ERK and JNKpathway play an important role inthe effect of bFGF to SCAP.Conclussions
     In summary, our results suggest that bFGF enhanced the stemness of SCAPevidenced by the increased proliferation, CFU-F forming capacity, andexpression of STRO-1, Nanog, Sox2, Oct4and Rex1, while bFGF suppressedALPase activity, calcified nodule formation and osteo/dentinogenicdifferentiation. MAPKs pathway take part in the effects of bFGF on the biologicfunctions of SCAP. Therefore, in this system, bFGF appears to function as afactor to maintain SCAP stemness, by enhancing self-renewal ability andpreventing cell differentiation. This will facilitate the long-term usage of thesecells for various tissue regeneration applications including pulp/dentinregeneration, bioroot formation and even for neural tissue regeneration.
引文
[1] Chueh LH, Huang GT, Immature teeth with periradicular periodontitis or abscessUndergoing apexogenesis: A paradigm shift. J Endod,2006,32(12):1205-1213.
    [2] Jung IY, Lee SJ, Kenneth MH. Biologically Based Treatment of Immature PermanentTeeth with pulpal necrosis: A case series. J Endod,2008,34(7):876-887.
    [3] Huang GT, Yamaza T, Lonnie DS, Djouad F, Nastaran ZK, Rocky ST, Shi. S.Stem/progenitor cell–mediated de novo regeneration of dental pulp with newlydeposited continuous layer of dentin in an in vivo model. Tissue Eng Part A,2010,16(2):605-615.
    [4] Bohl KS, Shon J, Rutherford B, Mooney DJ. Role of synthetic extracelluar matrix indevelopment of engineered dental pulp. J Biomaterials Science. Polymer Edition,1998,9(7):749-764.
    [5] Batouli S, Miura M, Brahim J, Tsutsui TW, Fisher LW, Gronthos S, Robey PG, Shi S.Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res,2003,82(12):976-981.
    [6] Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT.Characterization of the apical papilla and its residing stem cells from humanimmature permanent teeth: a pilot study. J Endod2008,34(2):166–171.
    [7] Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, Liu H, Gronthos S,Wang CY, Shi S, Wang S. Mesenchymal stem cell-mediated functional toothregeneration in swine. PLoS one2006,1(1):e79.
    [8] Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The Hidden Treasure inApical Papilla: The potential role in pulp/dentin regeneration and bioroot engineering.J Endod,2008,34(6):645-651.
    [9] Iwaya SI, Ikawa M, Kubota M. Revascularization of an immature permanent toothwith apical periodontitis and sinus tract. Dent Traumatol,2001,17(4):185–187.
    [10] Banchs F, Trope M. Revascularization of immature permanent teeth with apicalperiodontitis: new treatment protocol? J Endod,2004,30(4):196–200.
    [11] Cotti E, Mereu M, Lusso D. Regenerative treatment of an immature, traumatizedtooth with apical periodontitis: report of a case. JOE,2008,34(5):611-616.
    [12] Tucker AS, Al Khamis, PT. Sharpe. Interactions between Bmp-4and Msx-1act torestrict gene expression to odontogenic mesenchyme, Dev. Dyn,1998,212(4):533–539.
    [13] Allouche M, Bikfalvi A. The role of fibroblast growth factor-2(FGF-2) inhematopoiesis.Growth Factor Research,1995,6(1):35-48.
    [14] Huang G.T.-J, Gronthos S, Shi S. Mesenchymal stem cells derived from dentaltissues vs.those from other sources: their biology and role in regenerative Medicine. JDent Res,2009,88(9):792-806.
    [15] Masato S.Ota, Nakatomi M, Iseki S, Nakahara T, Eto1K, Sonic hedgehog and FGFsignaling are important for tooth root development. European Cells and Materials,2007,14(2):45.
    [16] Madan AK, Beverley K, Immunolocalization of fibroblast growth factor-2(FGF-2) inthe developing root and supporting structures of the murine tooth. J Mol Hist,2005,36(3):171–178.
    [17]闫征斌,侯景秋,田卫东.牙齿发育异常的分子机制[J].国外医学:口腔医学分册,2005,32(1):35-37.
    [18] Tran-Hung L, Mathieu S, About I. Role of human pulp fibroblasts in angiogenesis. JDent Res,2006,85(9):819–823.
    [19] Tran-Hung L, Laurent P, Camps J, About I. Quantification of angiogenic growthfactors released by human dental cells after injury. Arch Oral Biol,2008,53(1):9–13.
    [20] McNeil PL, Muthukrishnan L, Warder E, D’Amore PA. Growth factors are releasedby mechanically wounded endothelial cells. J Cell Biol,1989,109(2):811–822.
    [21] Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF. FGF-2enhances the mitotic and chondrogenic potentials human adult bone marrow-derivedmesenchymai stem cells. J Cell Physiol,2005,203(2):398–409.
    [22] Tomomi I, Sawada R, Fujiwara Y, Tsuchiya T. FGF-2increases osteogenic andchondrogenic differentiation potentials of human mesenchymal stem cells byinactivation of TGF-β signaling. Cytotechnology,2008,56(1):1–7.
    [23] Kim JH, Lee MC, Seong SC, Park KH, Lee S. Enhanced proliferation andchondrogenic differentiation of human synovium-derived stem cells expanded withbasic fibroblast growth factor.Tissue Engineering Part A,2011,17(7-8):991-1002.
    [24] Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, Takagishi K,KatoY. Retention of multilineage diferentiation potential of mesenchymal stem cellsduring proliferation in response to FGF. Biochem Biopys Res. Commun,2001,288(2):413-419.
    [25] Nakao K, Itoh M, Tomita Y, Tomooka Y, Tsuji T. FGF-2potently induces bothproliferation and DSP expression in collagen type I gel cultures of adult incisorimmature pulp cells. Biochem Biophys Res Commun,2004,325(3):1052-1059.
    [26] Shimabukuro Y, Ueda M, Ozasa M, Anzai J, Takedachi M, Yanagita M, Ito M,Hashikawa T, Yamada S, Murakami S. Fibroblast growth factor–2regulates the cellfunction of human dental pulp cells.J Endod,2009,35(11):1529-1535.
    [27] Quarto N, Longaker MT. FGF-2inhibits osteogenesis in mouse adiposetissue-derived stromal cells and sustains their proliferative and osteogenic potentialstate.Tissue Eng,2006,12(6):1405–1418.
    [28] Huixia H, Jinhua Y, Yuan L, Lu S, Liu H, Shi J, Jin Y. Effects of FGF2and TGFb1on the differentiation of human dental pulp stem cells in vitro. Cell BiologyInternational,2008,32(7):827-834.
    [29] Kim YS, Min KS, Jeong DH, Jang JH, Kim HW, Kim EC. Effects of fibroblastgrowth factor-2on the expression and regulation of chemokines in human dentalpulp cells. JOE,2010,36(11):1824-30.
    [30] Kitchens DL, Snwyder EY, Gottlieb DI. FGF and EGF are mitogens for immortalizedneural progenitors. J Neurobiol,1994,25(7):797-807.
    [31] Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA,Itskovitz-Eldor J, Thomson JA. Clonally derived human embryonic stem cell linesmaintain pluripotency and proliferative potential for prolonged periods of culture.Dev. Biol,2000,227(2):271–278.
    [32] Marie PJ, Lomri A, Debiais F, Lemonnier J. Fibroblast growth factors andosteogenesis. Skeletal Growth Factors. Edited by E Canalis. Baltimore, Lippincott,Williams and Wilkins,2000, pp179–196.
    [33] Ahn HJ, Lee WJ, Kwack KB, Kwon YD. FGF2stimulates the proliferation of humanmesenchymal stem cells through the transient activation of JNK signaling. FEBSLetters,2009,583(17):2922–2926.
    [34] Wang S, Shen Y, Yuan X, Chen K, Guo X, Chen Y, Niu Y, Li J, Xu RH, Yan X,Zhou Q, Ji W. Dissecting signaling pathways that govern self-renewal of rabbitembryonic stem cells. J Biol Chem,2008,283(51):35929-35940.
    [35] Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulpstem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA,2000,97(25):13625-13630.
    [36] Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stemcells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA,2003,10(10):5807-5812.
    [37] Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, RobeyPG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from humanperiodontal ligament. Lancet,2004,364(9429):149-155.
    [38] Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C,Hoffmann KH. Isolation of precursor cells (PCs) from human dental follicle ofwisdom teeth. Matrix Biol,2005,24(2):155-165.
    [39] Abe S, Yamaguchi S, Amagasa T. Multilineage cells from apical pulp of humantooth with immature apex. Oral Sci Int,2007,4(1):45-58.
    [40]司徒镇强,吴军政.细胞培养.2版,西安:世界图书出版西安公司,2007. P77.
    [41] Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S, Wang S. Effect of cryopreservationon biological and immunological properties of stem cells from apical papilla. J CellPhysiol,2010,223(2):415-422.
    [42] Abe S, Yamaguchi S, Watanabe A, Hamada K, Amaqasa T. Hard tissue regenerationcapacity of apical pulp derived cells (APDCs) from human tooth with immature apex.Biochemical and Biophysical Research Communications,2008,37(1):90–93.
    [43] Tsukiboshi M. Autotransplantation of teeth: requirements for predictablesuccess.Dent Traumatol,2002,18(4):157-180.
    [44] Tsukiboshi M. Autogenous tooth transplantation: a reevaluation. Int J PeriodonticsRestorative Dent,1993,13(2):120-149.
    [45] Ding G,Liu Y,An Y,Zhang C,Wang W,Wang S. Suppression of T cell proliferationby root apical papilla stem cells in vitro. Cells Tissues Organs,2010,191(5):357–364.
    [46] Yang ZH, Zhang XJ, Dang NN, Ma ZF, Xu L, Wu JJ, Sun YJ, Duan YZ, Lin Z, JinY. Apical tooth germ cell-conditioned medium enhances the differentiation ofperiodontal ligament stem cells into cementum periodontal ligament-like tissues. JPeriodont Res,2009,44(2):199–210.
    [47] Cam Y, Neumann MR, Oliver L, Raulais D, Janet T, Ruch JV. Immunolocalizationof acidic and basic fibroblast growth factors during mouse odontogenesis. Int J DevBiol,1992,36(3):381-389.
    [48] Russo LG, Maharajan P, Maharajan V. Basic fibroblast growth factor (FGF-2) inmouse tooth morphogenesis. Growth Factors,1998,15(2):125-133.
    [49] Johnson DE, Williams LT. Structural and functional diversity in the FGF receptormultigene family. Adv Cancer Res,1993,60:1–41.
    [50] Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM.Receptor specificity of the fibroblast growth factor family. The complete mammalianFGF family. J Biol Chem,2006,281(23):15694–15700.
    [51] Deng C, Wynshaw-Boris A,Zhou F, Kou A, Leder P. Fibroblast growth factorreceptor3is a negative regulator of bone growth. Cell,1996,84(6):911-921.
    [52]程敏,刘晓红,程琳,冯志远。碱性成纤维细胞生长因子在牙发育各阶段中的表达及意义.吉林大学学报,2009,35(5):829-832.
    [53]张颖丽,姜新朋,张影杰,欧阳红生。碱性成纤维细胞因子对人体外培养牙髓细胞增殖的影响.现代口腔医学杂志,2008,22(2):173-175.
    [54] Nugent MA,Iozzo RV.Fibroblast growth factor2. Int J Biochem&Cell Biology,2002,32(2):115-120.
    [55] Kikuchi N, Kitamura C, Morotomi T, Inuyama Y, Ishimatsu H, Tabata Y, Nishihara T,Terashita M. Formation of dentin-like particles in dentin defects above exposed pulpby controlled release of fibroblast growth factor2from gelatin hydrogels. J Endod,2007,33(10):1198–202.
    [56]刘铁军,陈砚凝,于利洁,刘爽,何洪涛,许彦枝.碱性成纤维因子用于犬牙盖髓剂的实验研究.现代口腔医学杂志,2008,22(4):386-388.
    [57] Murakaml S, Tskayama S, Kitamura M, Shimabukuro Y, Yanaqi K, Ikezawa K, SahoT, Nozaki T, Okada H. Recombinant human basic fibroblast growth factor (bFGF)stimulates periodontal regeneration in class II furcation defects created in beagledogs.J Periodontal Res,2003,38(1):97-103.
    [58]刘辉,王强,朱峰,罗平平,刘天麟,韦晓玲.过量氟对大鼠切牙碱性成纤维细胞生长因子表达的影响.中华口腔医学杂志,2007,42(4):242-4.
    [59] Roberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix.Arch Oral Biology,2000,45(11):1013–1016.
    [60]陈学鹏,段银钟,金作林,钱红,张永宽. bFGF对体外培养人牙囊细胞VEGF表达的影响.临床口腔医学杂志,2006,22(12):712-715.
    [61] Shimabukuro Y, Ueda M, Ichikawa T, Terashi Y, Yamada S, Kusumoto Y, TakedachiM, Terakura M, Terakura M, Kohya A, Hashikawa T, Murakami S. Fibroblast growthfactor-2stimulates hyaluronan production by human dental pulp cells. J Endod,2005,31(11):805-8.
    [62]陈莹,林崇韬,高颖.碱性成纤维细胞生长因子对牙周膜细胞表皮生长因子受体基因表达的影响.华西口腔医学杂志,2009,27(3):340-343.
    [63] Magloire H, Joffre A, Bleicher F. An in vitro model of human dental pulp repair. JDent Res,1996,75(12):1971–8.
    [64]张光东,徐艳,吴友农,刘卫红等.碱性成纤维细胞生长因子和胰岛素样生长因子-1对人牙髓细胞碱性磷酸酶活性及矿化能力的影响.口腔医学,2006,26(4):261-263.
    [65] Mullane EM, Dong Z, Sedgley CM, Hu JC, Botero TM, Holland GR, N r JE.Effectsof VEGF and FGF2on the revascularization of severed human dental pulps.J DentRes,2008,87(12):1144-1148.
    [66]张智慧,胡伟平,郭阳,曹潇方,袁梦桐. SHH和bFGF体外诱导人牙髓干细胞向神经细胞分化的研究.口腔医学研究,2010,26(5):631-635.
    [67] Wang L, Li L, Menendez P, Cerdan C, Bhatia M. Human embryonic stem cellsmaintained in the absence of mouse embryonic fibroblasts or conditioned media arecapable of hematopoietic development. Blood,2005,105(12):4598–4603.
    [68] Honda A, Hirose M, Inoue K, Ogonuki N, Miki H, Shimozawa N, Hatori M, ShimizuN, Murata T, Hirose M, Katayama K, Wakisaka N, Miyoshi H, Yokoyama KK,Sankai T, Ogura A. Stable embryonic stem cell lines in rabbits: potential smallanimal models for human research. Reprod Biomed,2008,17(5):706–715.
    [69] Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M,Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance ofpluripotency in mouse epiblast and ES cells.Cell,2003,113(5):631–642.
    [70] Niwa H. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct.Funct,2001,26(3):137–148.
    [71] Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, PereiraLV, Caplan AI, Cerruti HF. Isolation and characterization of a population of immaturedental pulp stem cells expressing OCT-4and other embryonic stem cell markers.Cells Tissues Organs,2006,184(3-4):105-116.
    [72] Mansukhani A, Ambrosetti D, Holmes G, Cornivelli L, Basilico C. Sox2induction byFGF and FGFR2activating mutations inhibits Wnt signaling and osteoblastdifferentiation. J Cell Biol,2005,168(7)1065–1076.
    [73] Liu Y, Song Z, Zhao Y, Qin H, Cai J, Zhang H, Yu T, Jiang S, Wang G, Ding M,Deng H. A novel chemical-defined medium with bFGF and N2B27supplementssupports undiferentiated growth in human embryonic stem cells. Biochemical andBiophysical Research Communications,2006,346(1):131–139.
    [74] Honda A, Hirose M, Ogura A. Basic FGF and Activin/Nodal but not LIF signalingsustain undifferentiated status of rabbit embryonic stem cells. Exp Cell Res,2009,315(12):2033–2042.
    [75] Choi JW, Kim S, Kim TM, Kim YM, Seo HW, Park TS, Jeong JW, Song G, Han JY.Basic fibroblast growth factor activates MEK/ERK cell signaling pathway andstimulates the proliferation of chicken primordial germ cells, PLoS One,2010,5(9):e12968.
    [76] Yang R, Chen M, Lee CH, Yoon R, Lal S, Mao JJ. Clones of ectopic stem cells in theregeneration of muscle defects in vivo. PLoS One,2010,5(10):e13547.
    [77] Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, Takagishi K,KatoY. Retention of multilineage diferentiation potential of mesenchymal stem cellsduring proliferation in response to FGF. Biochem Biopys Res. Commun,2001,288(2):413-419.
    [78] Go MJ, Takenaka C, Ohgushi H. Forced expression of Sox2or Nanog in humanbone marrow derived mesenchymal stem cells maintains their expansion anddifferentiation capabilities. Exp Cell Res,2008,314(5):1147-54.
    [79] Li J, Wang G, Wang C, Zhao Y, Zhang H, Tan Z, Song Z, Ding M, Deng H.MEK/ERK signaling contributes to themaintenance of human embryonic stem cellself-renewal. Differentiation,2007,75(4):299–307.
    [80] Kim SJ, Cheon SH, Yoo SJ, Kwon J, Park JH, Kim CG, Rhee K, You S, Lee JY,Roh SI, Yoon HS. Contribution of the PI3K/Akt/PKB signal pathway to maintenanceof self-renewal in human embryonic stem cells. FFBS Lett,2005,579(2):534-540.
    [81] Liao J, Wu Z, Wang Y, Cheng L, Cui C, Gao Y, Chen T, Rao L, Chen S, Jia N, Dai H,Xin S, Kang J, Pei G, Xiao L. Enhanced efficiency of generating induced pluripotentstem (iPS) cells from human somatic cells by a combination of six transcriptionfactors.Cell Res,2008,18(5):600-603.
    [82] Lee JG, Kay EP. FGF-2-mediated signal transduction during endothelialmesenchymal transformation in corneal endothelial cells. Experimental Eye Research,2006,83(6):1309-1316.
    [83] Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y. Odontogenic capability: bonemarrow stromal stem cells versus dental pulp stem cells. Biol Cell,2007,99(8):465-474.
    [84] Bartold PM, McCulloch CA, Narayanan AS, Pitaru S. Tissue engineering: a newparadigm for periodontal regeneration based on molecular and cell biology.Periodontol,2000,24(1):253-269.
    [85] Madan AK, Beverley Kramer. Immunolocalization of fibroblast growth factor-2(FGF-2) in the developing root and supporting structures of the murine tooth. J MolHist.2005,36(3):171-178.
    [86] Ishimatsu H, Kitamura C, Morotomi T, Tabata Y, Nishihara T, Chen KK, Terashita M.Formation of dentinal bridge on surface of regenerated dental pulp in dentin defectsby controlled release of fibroblast growth factor–2from gelatin hydrogels. J Endod2009,35(6):858–865.
    [87] Takayama S, Murakami S, Shimabukuro Y, Kitamura M, Okada H. Periodontalregeneration by FGF-2(bFGF) in primate Models. J Dent Res,2001,80(12):2075-2079.
    [88]张颖丽,姜新朋,张影杰,欧阳红生.碱性成纤维细胞因子对人体外培养牙髓细胞增殖的影响[J].现代口腔医学杂志,2008,22(2):173-175.
    [89] Morito A, Kida Y, Suzuki K, Inoue K, Kuroda N, Gomi K, Arai T, Sato T. Effects ofbasic fibroblast growth factor on the development of the stem cell properties ofhuman dental pulp cells. Arch Histlo Cytol,2009,72(1):51-64.
    [90] Walsh S, Jefferiss C, Stewart K, Jordan GR, Screen J, Beresford JN, Expression ofthe developmental markers STRO-1and Alkaline Phosphatase in cultures of humanmarrow stromal cells: regulation by fibroblast growth factor (FGF)-2and relationshipto the expression of FGF receptors1–4. Bone,2000,27(2):185–195.
    [91] Carl A. Gregory, W. Grady Gunn, Alexandra Peister, Darwin J. Prockop. An Alizarinred-based assay of mineralization by adherent cells in culture: comparison withcetylpyridinium chloride extraction. Analytical Biochemistry.2004,329(1):77–84.
    [92] Strauss PG, Closs EI, Schmidt J, Erfie V. Gene expression during osteogenicdifferentiation in mandibular condyles in vitro.J Cell Bioi,1990,110(4):1369-1378.
    [93] Rajan S, Awang H, Devi S, Pooi AH, Hassan H. Alkaline phosphatase activityassessment of two endodontic materials: A preliminary study. Annal Dent UnivMalaya,2008,15(1):5-10.
    [94] Tsuboi T, Mizutani S, Nakano M, Hirukawa K, Togari A. FGF-2regulates enameland dentine formation in mouse tooth germ. Calcif Tissue Int,2003,73(5):496–501.
    [95] Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptorsand signaling. Endocr. Relat. Cancer,2000,7(3):165–197.
    [96] Kakudo N, Shimotsuma A, Kusumoto K. Fibroblast growth factor-2stimulatesadipogenic diferentiation of human adipose-derived stem cells. BiochemBiophysical Res Commun,2007,359(2):239–244.
    [97]周媛,叶茂昌,翟志敏,王志华,王来平,李容新. bFGF促进hMSCs向脂肪分化过程中PPAR-γ2的表达.口腔颌面外科杂志,2007,17(2):118-122.
    [98] Neubauer M, Fischbach C, Bauer-Kreisel P, Lieb E, Hacker M, Tessmar J, MichaelaB. Schulz, Goepferich A, Blunk T. Basic fibroblast growth factor enhances PPARcligand-induced adipogenesis of mesenchymal stem cells. FEBS Letters,2004,577(1-2):277–283.
    [99]李慧武,戴冠戎.骨髓内成骨与成脂平衡的调控.国外医学·骨科学分册,2005,2(5):287-289.
    [100] Kliewer SA, Wilson TM. The nuclear receptor PPARgamma-bigger than fat.Curr Opin Genet Dev,1998,8(5):576-581.
    [101] Colleoni S, Bottani E, Tessaro I, Mari G, Merlo B, Romagnoli N, Spadari A, Galli C,Lazzari G. Isolation, growth and differentiation of equine mesenchymal stem cells:effect of donor, source, amount of tissue and supplementation with basic fibroblastgrowth factor. Vet Res Commun,2009,33(8):811–821.
    [102] Yang X, van den Dolder J, Walboomers XF, Zhang W, Bian Z, Fan M, Jansen JA.The odontogenic potential of STRO-1sorted rat dental pulp stem cells in vitro. JTissue Eng Regen Med,2007,1(1):66–73.
    [103] Harting Mt, Jimenez F, Pati S, Baumgartner J, Cs Cox Jr. Immunophenotypecharacterization of rat mesenchymal stromal cells. Cytotherapy.2008,10(3):243-253.
    [104] Itaya T, Kagami H, Okada K, Yamawaki A, Narita Y, Inoue M, Sumita Y, Ueda M.Characteristic changes of periodontal ligament-derived cells during passage. JPeriodontal Research,2009,44(4):425-433.
    [105] Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4definesdifferentiation, dedifferentiation or self-renewal of ES cells. Nat Genet,2000,24(4):372-376.
    [106] Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A.Functional expression cloning of Nanog, a pluripotency sustaining factor inembryonic stem cells. Cell2003,113(5):643-655.
    [107] Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotentcell lineages in early mouse development depend on SOX2function. Genes Dev2003,17(1):126-140.
    [108] Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H,Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H. Pluripotency governed by Sox2via regulation of Oct3/4expression in mouse embryonic stem cells. Nat Cell Biol2007,9(6):625-635.
    [109] H. Pratsinis, D. Kletsas. PDGF, bFGF and IGF-I stimulate the proliferation ofintervertebral disc cells in vitro via the activation of the ERK and Akt signalingpathways. Eur Spine J,2007,16(11):1858–1866.
    [110] Xiao Z, Kong Y, Yang S, Li M, Wen J, Li L.Upregulation of Flk-1by bFGF via theERK pathway is essential for VEGF-mediated promotion of neural stem cellproliferation. Cell Res,2007,17(1):73-79.
    [111] Qi M, Elion EA. MAP kinase pathways. J. Cell. Sci,2005,118(16):3569–3572.
    [112] Goldfarb M. Functions of fibroblast growth factors in vertebrate development.Cytokine Growth Factor Rev,1996,7(4):311–325.
    [113] Waskiewicz AJ, Cooper JA. Mitogen and stress response pathways: MAP kinasecascades and phosphatase regulation in mammals and yeast. Current Opinion in CellBiology,1995,7(6):798-805
    [114] Matsumoto T, Turesson I, Book M, Gerwins P, Claesson-Welsh L. p38MAP kinasenegatively regulates endothelial cell survival, proliferation, and differentiation inFGF-2–stimulated angiogenesis. J Cell Biol,2002,156(1):149–160.
    [115] Marie PJ. Fibroblast growth factor signaling controlling osteoblast differentiation.Gene,2003,316(16):23–32.
    [116] Ito T, Sawada R, Fujiwara Y, Tsuchiya T. FGF-2increases osteogenic andchondrogenic differentiation potentials of human mesenchymal stem cells byinactivation of TGF-b signaling. Cytotechnology,2008,56(1):1–7.
    [117] Israsena N, Hu M, Fu W, Kan L, Kessler JA. The presence of FGF2signalingdetermines whether h-catenin exerts effects on proliferation or neuronaldifferentiation of neural stem cells. Developmental Biology,2004,268(1):220–231.
    [118] Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA. Basic FGF and
    suppression of BMP signaling sustain undifferentiated proliferation of human ES
    cells. Nat. Methods,2005,2(3):185–190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700