四川石棉大水沟碲矿床地质地球化学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以野外地质研究及室内测试数据为依据,在详细研究了四川石棉大水沟碲矿床的区域地质地球化学背景和矿床地质特征基础上,通过研究大水沟碲矿床元素地球化学、矿石矿物Pb、S同位素、不同成矿期矿物包裹体H、O同位素地球化学特征,探索成矿环境、物质来源、成矿流体来源等,研究结果表明:
     1、大水沟碲矿床的形成与深部地质过程密切相关。碲矿床发育在板块拼接部位,深大断裂构造活动强烈,深大断裂发育,这无疑为后期的构造-岩浆活动及大量成矿物质向浅部输送提供了良好通道。同时,其伴生的次级或低级别的断裂构造则为后期的成矿热液的运移、成矿作用的发生及碲矿床的形成提供了有利的通道和良好的储矿空间。
     2、大水沟碲矿床具有良好的多金属矿集区的区域成矿地球化学背景,是铜、金、银等多金属矿集区。该矿床处于贫碲的地球化学场内,在大面积贫碲环境中碲之所以能局部富集成矿,表明成矿元素碲主要来源于深部物质。
     3、碲矿床发育在志留系通化组一段的变基性火山岩中,产于大水沟热穹窿构造翼部,受NNE组脆性等间距破裂带控制。表明热穹窿构造为碲矿床的发育塑造了良好的储矿场所,而后期脆性构造发育,使得储矿层破碎充分,无疑大大增加其与成矿热液反应的比表面积,同时为成矿物质提供通道和反应场。使得成矿物质在大水沟热穹窿内反应充分,并大量富集成矿。
     4、大水沟碲矿床常微量元素特征显示,大水沟碲矿床变质围岩原岩为大陆拉斑玄武岩,矿石与围岩的成岩成矿氧化还原环境截然不同,有利于成矿。更为重要的是区内出露有一定规模的花岗岩,研究表明这种花岗岩具有明显的陆壳改造型花岗岩的微量元素特征,且相对富Bi、Ag等成矿元素。而Bi、Ag则是碲的最佳沉淀剂元素(刘英俊,1987)。由此可见,区内中酸性岩浆活动与花岗岩的成岩作用对碲矿床的形成具有密切的成因联系。
     5.同位素特征显示碲及其矿化剂、含矿流体,主要来自深源岩浆热液。成矿过程中,成矿环境较为封闭。
     综合上述,认为大水沟碲矿床的形成与构造-岩浆活动、动力变质作用、大水沟热穹窿构造+次级脆性构造、赋矿围岩与成矿物质的化学差异等具有密切的成因联系,同时表明该矿床具有动力变质岩浆改造成矿的特征。
Based on large geological investigations in the field and a lot of analytical data gained in the laboratory, the author researched the regional geological-geochemical background and the geological features by studying the element geochemistry, the isotope of Pb, S in ores, and the isotope of H, O of fluid inclusions of different stages of mineralization, in order to discuss the ore-forming environment, the sources of materials and the sources of the ore-forming fluid. The result showed that:
     1. The Dashuigou tellurium deposit is formed in the site where the plates splice, the structure with deep fracture, and the magma intense activity. Multiple stages of the deep fracture provide passages for the latter magma. Minerals react fully and precipitation in the fragmentation zone which caused by plate collision. This is conducive to the formation of tellurium deposit.
     2. The Dashuigou tellurium deposit is located in area with regional geochemical background of polymetallic ore enrichment. It is the polymetallic ore enrichment area of Cu, Au, Ag, and so on. Lying in the geochemical field with barren Te, the enrichment of the Te (up to 7-8 orders of magnitude) in partial geologic bodies where the whole area is poor of Te in the geological environment indicated that the Te may source from the deep.
     3. The deposit is formed in the Triassic metabasic volcano rock of Tonghua group of Silurian in the Dashuigou thermal dome, and under the control of NNE group of brittle rupture zones with equal interval. The thermal dome structure provided favorable storage place for the development of Te deposit. The later development of brittle structure made the ore bed crash fully, which greatly increased the surface area of reaction between the ore-forming hydrothermal and it, provided passage and reaction field for ore-forming materials so that they reacted adequately and enriched into deposit in the Dashuigou thermal dome.
     4.The features of the trace elements showed that the origin of the metamorphic wall rocks are continental tholeiite. The redox environment of the deposit and the wall rocks are very different which is conducive to mineralization. The granite exposed in the area is rich of Bi and Ag, which has the trace element characteristics of continental crust-type granites. The limestone of Tonghua group of Silurian is obviously erosion of magmatism which is enrichment of Co, Ni, Sc, In, Ga. The ore-forming elements of Te and Bi are rich in metamorphic rocks, especially in slate, schist, fine - banded marble and rocks with low metamorphic degree.
     5.The features of isotopes show that Te and its mineralizer, ore-bearing fluid mainly come from the deep magmatic hydrothermal. The environment of ore-forming is isolated with the outside.
     In summary, it is believed that the form of Gashuigou Te deposit is closely related with tectonic-magmatic activities, dynamic metamorphism, Dashuigou thermal dome structure and brittle substructure, chemical differences between ore-hosting wall-rocks and ore-forming materials. It indicates this deposit has the features of dynamic metamorphic magmatic mineralization.
引文
[1]陈毓川,银剑钊,周剑雄,毛景文。四川石棉县大水沟独立碲矿床地质特征[J]。地质科学,1994,,2(2):P165-167.
    [2]骆耀南,傅德明,周绍东.四川石棉大水沟碲矿床地质与成因[J].四川地质学报,1994,14(2):P100-110.
    [3]毛景文,陈毓川,魏家秀,杨百川等。四川省石棉县大水沟碲矿床成矿物质来源的一些证据[J]。贵金属地质,1995,4(4):P294-301.
    [4]毛景文,魏家秀,杨百川.四川省石棉县大水沟碲矿床成因的初步探讨[J].矿物岩石地球化学通讯,1995,(1):P23-24.
    [5]曹志敏.大水沟碲矿床成矿条件与碲的矿机理研究[D].成都理工大学博士论文,1995.P7-35
    [6]银剑钊,陈毓川等。四川省石棉独立碲矿床蚀变岩的地质地球化学研究[J].西安地质学院学报,1996,18(4):P19-25.
    [7]王汝成,陈毓川等。四川大水沟独立碲矿床中的楚碲铋矿[J].矿物学报,1997,17(3):P280-284.
    [8]李保华,曹志敏,金景福,温春齐。大水沟碲矿床成矿物理化学条件研究[J]。地质科学,1999,34(4):P463-472.
    [9]陈毓川,毛景文,骆耀南,等。四川大水沟碲(金)矿床地质和地球化学[M].北京:原子能出版社.1996,P51-96.
    [10]温春齐,曹志敏,李保华。四川大水沟碲矿床成矿物质来源研究[J]。成都理工学院学报,2002,29(5):P526-532.
    [11]涂光炽,高振敏,胡瑞忠,张乾等编著.分散元素地球化学及成矿机制[D].地质出版社,2004:P268-327.
    [12]马东.四川石棉碲矿床成矿的地球化学机理[D].成都理工大学硕士论文,2007,P6-15.
    [13]张程远.四川石棉碲矿床元素地球化学研究[D].成都理工大学硕士论文,2010,P3-10.
    [14]李同柱,冯孝良等.四川里伍铜矿含矿岩系地球化学特征及成因分析[J].地质与勘探,46(5):P921-930.
    [15]冯孝良,刘俨松等.四川九龙县里伍铜矿包裹体研究[J].沉积与特提斯地质,28(2):P1-11.
    [16]王晓刚,陈根,严云峰.四川里伍铜矿区成矿规律、深部及外围找矿研究[J].现代矿业,(499):P44-48.
    [17]郭建强,游再平,王大可.松潘—甘孜造山带东缘大水沟地区变质变形作用[J].中国区域地质,1999:P312-319.
    [18]四川省地质矿产局,四川省区域地质志,地质出版社,北京,1991.
    [19]西油房幅.区域调查报告.四川省地质矿产局区域地质调查队. 1996.
    [20]骆耀南,曹志敏.四川大水沟独立碲矿床—世界首例碲化物脉型矿床地质地球化学[M].成都:西南交通大学出版社.1996,p55-119.
    [21]陈毓川,毛景文,骆耀南,等。四川大水沟碲(金)矿床地质和地球化学[M].成都:西南交通大学出版社.1996,p7-24.
    [22]李中海,辜学达,杨胜铠等.川西藏东地区地层与古生物(第一册)[M].成都:四川人民出版社,1982 ,p222-224.
    [23]四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1991,p220-221.
    [24]骆耀南,傅德明,周绍东.四川石棉大水沟碲矿床地质与成因[J].四川地质学报,1994,14(2):p100-110.
    [25]石棉大水沟碲铋矿床及外围金银矿普查报告[R].四川省地矿局科研所,1996.
    [26]银剑钊,陈毓川等.世界首例独立碲矿床赋矿围岩的地质地球化学研究[J].长春地质学院学报,1996,26(3):p322-326.
    [27]骆耀南,傅德明,周绍东等.四川石棉大水沟碲矿床地质与成因[J].四川地质学报,1994,14(2):p100-110.
    [28]喻安光.四川石棉—冕宁地区之伸展构造[J].中国区域地质,2000,19(1):20—25.
    [29]谢学锦、程志中等.中国西南地区七十六种元素地球化学图集[M].北京:地质出版社,2008,p1-200.
    [30]胡云中,任天祥等.中国地球化学场及其成矿关系[M].北京:地质出版社,2006,p18-39.
    [31]侯立玮.扬子克拉通西缘穹状变形变质体的类型与成因[J].四川地质学报,1996,16 (1):p6-11.
    [32]侯立玮.扬子克拉通西缘穹状变形变质体的类型与成因[J].四川地质学报,1996,16 (1):p6-11.
    [33] Wright J, Schrader H, Holser WT. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite [J] ,Geochimica et Cosmochimica Acta,1987, 51: 637-644.
    [34]银剑钊,陈毓川等,世界首例独立碲矿床赋矿围岩的地质地球化学研究[J],长春地质学院学报,26(3):p322-326
    [35] Le Maitre R W (ed). A Classification of Igneous Rocks and Glossary of Terms. Blackwell,Oxford,1989,p193-199.
    [36] Wright J, Schrader H, Holser WT. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite [J] ,Geochimica et Cosmochimica Acta,1987, 51: p637-644.
    [37] R E Zartman and B R Doe.Plumbotectonics the model.Tectonophysics.1981,75:p135-162.
    [38]朱炳泉.地球化学省与地球化学急变带[M].北京:科学出版社,2001,P12
    [39]毛景文,魏家秀,杨百川.四川省石棉县大水沟碲矿床成因的初步探讨[J].矿物岩石地球化学通讯,1995,(1):p23-24.
    [40] Baturin G. N.The Geochemistry of Manganese and Manganese Nodules in the Ocean.D. Reidel,1998.
    [41] HEIN J.R,KOSCHINSKY A,HALLIDAY A N.Global occurrence of tellurium -rich ferromanganese crusts and a model for the enrichment[J].Geochimica et Cosmo -chimica Acta,2003,67(6):p1117-1127.
    [42]韩丽荣,李冰,马新荣.乙醇增强-电感耦合等离子体质谱法直接测定地质样品中碲[J].岩矿测试,22(2):p98-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700