狂犬病毒感染的神经细胞差异蛋白质组学研究及伴侣素CCTγ的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狂犬病毒(Rabies virus, RV)属于弹状病毒科狂犬病毒属的单股不分节段的负链RNA病毒,具有高度嗜神经性和致死性。基因组全长约为12kb,分别编码糖蛋白(G)、核蛋白(N)、基质蛋白(M)、磷蛋白(P)和大蛋白(L)。目前对该病毒与宿主细胞相互作用的机制认识相对有限,致病机制仍不甚明了。本研究对RV感染的宿主细胞差异表达蛋白进行分析,旨在为探讨RV对宿主细胞的致病作用和寻找潜在的药物靶标奠定基础。
     单克隆抗体是疾病诊断、预防、治疗以及免疫机制研究的有力武器,除商业化的糖蛋白单克隆抗体,无针对RV其他蛋白的单克隆抗体。本研究将RV核蛋白重组表达载体pET32a-NP和糖蛋白重组表达载体pET32a-GP分别诱导表达,用变性纯化的表达蛋白免疫BALB/c小鼠,成功制备了9株抗RV核蛋白的单克隆抗体杂交瘤细胞和1株抗RV糖蛋白单克隆抗体杂交瘤细胞。同时,通过以自制的狂犬病毒感染乳鼠脑组织悬液为抗原免疫小鼠,取脾细胞与sp2/0细胞融合,成功获得了7株为抗RV磷蛋白的单克隆抗体杂交瘤细胞。
     为了探索病毒与宿主细胞的相互作用,本研究选择鼠成神经瘤细胞N2a为感染模型,采用二维凝胶电泳技术结合质谱鉴定的经典比较蛋白组学方法,分析了N2a细胞在感染RV后24h、48h和96h的差异蛋白表达谱。PDQuest软件分析结果显示,RV感染N2a细胞后,共出现了97个差异表达的蛋白点,差异表达的蛋白点主要出现在感染后48h和96h,且多数蛋白点呈现上调表达趋势。串联质谱MALDI-TOF/TOF对差异蛋白点进行鉴定,成功鉴定出对应49种差异蛋白的53个蛋白点。这些差异蛋白的功能涉及蛋白合成与加工、能量代谢、信号转导、应激反应/伴侣蛋白、基因调控、免疫反应和泛素——蛋白酶体通路。设计引物,并通过适时荧光定量PCR对其中的27个差异蛋白对应基因转录本的变化进行了验证,一定程度上确证了质谱鉴定结果的可靠性。免疫印迹实验验证了HSP90和CCTγ在感染组和对照组中上调表达的差异。针对差异表达蛋白,基于Ingenuity生物网络分析软件IPA绘制了这些差异蛋白的相互作用网络。上述差异表达蛋白信息和蛋白相互作用网络为进一步解析狂犬病发病机制提供了重要的蛋白组学信息。
     依据比较蛋白组学信息,采用间接免疫荧光双标技术进一步分析了RV感染细胞CCTα、CCTβ、CCTγ、HSP90、PFDN1和DLC8的亚细胞分布。结果表明,病毒感染引起了细胞CCTα和CCTγ蛋白在内氏小体部位的高度募集,PFDN1和DLC8在该部位的部分聚集,CCTα和CCTγ与病毒N、P蛋白能够很好的共定位;而CCTβ和HSP90则无明显的内氏小体部位募集现象。共转染RVN和P的细胞内也形成类似内氏小体的结构,且在该结构中出现与感染细胞类似的现象,CCTγ、CCTα、PFDN1和DLC8与内氏小体中N、P蛋白发生共定位。单独转染N或P的细胞中也出现不同程度的CCTγ和CCTα与N或P的共定位。荧光定量结果表明感染细胞中DLC8、CCTγ和HSP90均呈现出转录上调,而CCTα、 CCTβ、PFDN1则变化不明显;而P质粒单转以及与N质粒共转N2a细胞引起了DLC8的转录水平上调,这可能与P和DLC8的相互作用有关,而其他蛋白则变化不显著。这都说明,这些宿主细胞蛋白主动或被动的参与了病毒的生命活动。
     鉴于CCTγ在蛋白组学上的表达差异及亚细胞定位上的分布变化,有必要对其在狂犬病毒生命周期中的具体功能进行探索。本研究通过慢病毒介导的shCCTγ、shCCTα和无义序列shcoo2v(?)勺转导建立了稳定表达shCCTγ、shCCTα的RNA干扰细胞系,通过病毒接种,TCID50测定以及适时荧光定量PCR分析,发现CCTγ和CCTα的敲除能够降低狂犬病毒的复制以及病毒各基因的转录水平,表明CCTγ和shCCTα对于狂犬病毒的复制和转录是重要的。
Rabies virus (RV), is a member of the Rhabdovirus family, Lyssavirus genus, with high neurotropism and lethality. The genome is a single-stranded, negative-sense RNA of approximately12kb that encodes five structural proteins, glycoprotein(G), nucleoprotein(N), matrix protein(M), phosphoprotein(P) and large protein(L). The pathogenic mechanism of RV is still unclear, and the research on interaction of the host cell and virus is relatively limited. In this study, the differential protein expression profiles of host cells infected by RV were analysed, to understand the pathogenesis of RV infection on host cells and find potential drug targets for treatment.
     Monoclonal antibody is a powerful weapon for disease diagnosis, prevention, treatment and study of the immune system, in the current prevention and control of viral diseases and basic research, there are no commercial monoclonal antibodies available for the structural proteins of rabies virus, except glycoprotein. In this study, recombinant rabies virus nucleoprotein expression vector pET32a-NP and glycoprotein recombinant expression vector pET32a-GP were induced, purified under denaturing conditions, and immunized BALB/c mice, nine monoclonal anti-RV-N antibodies and one anti-RV-G monoclonal antibodies were successfully prepared. On the other side, immunized mice with the suspension of rabies virus infected suckling mouse brain tissue antigen,7monoclonal antibodies against rabies virus were identified to be anti-P monoclonal antibodies.
     In order to explore the interaction of virus-host cell, this study choose mouse neuroblastoma N2a cells as cell model, differential protein expression profiles of N2a cells infected with RV at24,48and96h post infection (p.i.) were analyzed by two-dimensional gel electrophoresis combined with mass spectrometry. Software PDQuest analysis showed that RV infected N2a cells resulting in a total of97differential protein spots, and significant differences of these protein points are mainly found in the48h and96h p.i., and most of the protein spots were up-regulated. Fifty-three proteins, corresponding to49kinds of different proteins were identified successfully by MALDI-TOF/TOF tandem mass spectrometry. The functions of the differential proteins are involved in protein synthesis and processing, energy metabolism, signal transduction, stress response/chaperone protein, gene regulation, immune response and ubiquitin-proteasome pathway. Specific primers were designed, and the changes of27differentially expressed proteins corresponded gene transcripts were verified through quantitative PCR, confirmed the reliability of the mass spectrometry results at some extent. Western blot experiments demonstrated HSP90and CCTy upregulation of the infected group compared with the control. For the differentially expressed proteins, by IPA Ingenuity biological network analysis, the protein interaction network of these differential proteins was drawed. All the information about differentially expressed proteins and protein interaction networks provide important proteomic information for further resolve the pathogenesis of rabies.
     On the base of comparative proteomics information, subcellular distribution of CCTα, CCTβ, CCTγ, HSP90, PFDN1and DLC8were analyzed by indirect immunofluorescence double-labeling. The results showed that viral infection caused the highly recruitments of cellular protein CCTa and CCTy and partially recruitments of PFDN1and DLC8to the position of Negri bodies, CCTa and CCTy colocalized with the viral N, P protein well; however, CCTβ and HSP90are not recruited to the Negri bodies. RV N, P eukaryotic expression vectors co-transfected cells can form Negri body like structure within the cell, similar to the RV infected cells, CCTγ, CCTα, PFDN1and DLC8were also gathered to the Negri body-like structures, and colocalized with the viral N, P protein of the Negri body-like structures. In the cells mono-transfected N or P plasmid are also showing varying degrees of CCTy and CCTa co-localization with viral proteins N or P. Quantitative results showed that DLC8, CCTy and HSP90were showed up-regulation in the infected cells; mono-tranfection of P plasmid or co-transfected with N plasmid in N2a cells caused the up-regulation of DLC8, and other proteins has no significant difference. All this shows that these host cell proteins by way of active or passive participation in the virus life activities.
     In order to clarify the exact function of CCTγ and CCTα in the life cycle of rabies virus, this study using lentivirus-mediated shCCTγ, shCCTα and nonsense sequence shcoo2v transduction, established stable expression of shCCTγ RNA interference cell lines, through virus seeding, TCID50determination and quantitative PCR analysis, we found that knockdown of CCTγ and CCTα significantly reduced both the replication and viral gene transcription of rabies virus, indicating that CCTγ and CCTα are key host factors for rabies virus.
引文
1. Schnell MJ, Faber M, Faber ML, Papaneri A, Bette M, et al. (2005) A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J Virol 79: 14141-14148.
    2. Hotta K, Bazartseren B, Kaku Y, Noguchi A, Okutani A, et al. (2009) Effect of cellular cholesterol depletion on rabies virus infection. Virus Res 139:85-90.
    3. Familusi JB, Moore DL (1972) Isolation of a rabies related virus from the cerebrospinal fluid of a child with'aseptic meningitis'. Afr J Med Sci 3:93-96.
    4. Mcgarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, et al. (1995) Expression of the Rabies Virus Glycoprotein in Transgenic Tomatoes. Bio-Technology 13:1484-1487.
    5. Jorge SAC, Lemos MAN, dos Santos AS, Astray RM, Pereira CA (2009) Rabies virus glycoprotein expression in Drosophila S2 cells. I:Design of expression/selection vectors, subpopulations selection and influence of sodium butyrate and culture medium on protein expression. J Biotechnol 143:103-110.
    6. Tuli R, Roy S, Tyagi A, Tiwari S, Singh A, et al. (2010) Rabies glycoprotein fused with B subunit of cholera toxin expressed in tobacco plants folds into biologically active pentameric protein. Protein Expr Purif 70:184-190.
    7. Tuli R, Tiwari S, Mishra DK, Roy S, Singh A, et al. (2009) High level expression of a functionally active cholera toxin B:rabies glycoprotein fusion protein in tobacco seeds. Plant Cell Rep 28: 1827-1836.
    8. Xia XZ, Huang HN, Xiao SB, Qin JL, Jiang YB, et al. (2011) Construction and immunogenicity of a recombinant pseudotype baculovirus expressing the glycoprotein of rabies virus in mice. Arch Virol 156:753-758.
    9. Burger SR, Remaley AT, Danley JM, Moore J, Muschel RJ, et al. (1991) Stable Expression of Rabies Virus Glycoprotein in Chinese-Hamster Ovary Cells. J Gen Virol 72:359-367.
    10. Esposito JJ, Knight JC, Shaddock JH, Novembre FJ, Baer GM (1988) Successful Oral Rabies Vaccination of Raccoons with Raccoon Poxvirus Recombinants Expressing Rabies Virus Glycoprotein. Virology 165:313-316.
    11. Dietzschold B, Faber M, Li JW, Kean RB, Hooper DC, et al. (2009) Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc Natl Acad Sci USA 106:11300-11305.
    12. Schnell MJ, Wirblich C (2011) Rabies Virus (RV) Glycoprotein Expression Levels Are Not Critical for Pathogenicity of RV. J Virol 85:697-704.
    13. Wu X, Lei X, Fu ZF (2003) Rabies virus nucleoprotein is phosphorylated by cellular casein kinase II. Biochem Biophys Res Commun 304:333-338.
    14. Mavrakis M, Iseni F, Mazza C, Schoehn G, Ebel C, et al. (2003) Isolation and characterisation of the rabies virus N degrees-P complex produced in insect cells. Virology 305:406-414.
    15. Liu P, Yang J, Wu X, Fu ZF (2004) Interactions amongst rabies virus nucleoprotein, phosphoprotein and genomic RNA in virus-infected and transfected cells. J Gen Virol 85:3725-3734.
    16. Sugiyama M, Masatani T, Ito N, Shimizu K, Ito Y, et al. (2010) Rabies Virus Nucleoprotein Functions To Evade Activation of the RIG-I-Mediated Antiviral Response. J Virol 84: 4002-4012.
    17. Lahaye X, Vidy A, Fouquet B, Blondel D (2012) Hsp70 protein positively regulates rabies virus infection. J Viro 86:4743-4751.
    18. Raux H, Flamand A, Blondel D (2000) Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol 74:10212-10216.
    19. Chenik M, Chebli K, Gaudin Y, Blondel D (1994) In vivo interaction of rabies virus phosphoprotein (P) and nucleoprotein (N):existence of two N-binding sites on P protein. J Gen Virol 75 (Pt 11):2889-2896.
    20. Takamatsu F, Asakawa N, Morimoto K, Takeuchi K, Eriguchi Y, et al. (1998) Studies on the rabies virus RNA polymerase:2. Possible relationships between the two forms of the non-catalytic subunit (P protein). Microbiol Immunol 42:761-771.
    21. Eriguchi Y, Toriumi H, Kawai A (2002) Studies on the rabies virus RNA polymerase:3. Two-dimensional electrophoretic analysis of the multiplicity of non-catalytic subunit (P protein). Microbiol Immunol 46:463-474.
    22. Gupta AK, Blondel D, Choudhary S, Banerjee AK (2000) The phosphoprotein of rabies virus is phosphorylated by a unique cellular protein kinase and specific isomers of protein kinase C. J Virol 74:91-98.
    23. Blondel D, Regad T, Poisson N, Pavie B, Harper F, et al. (2002) Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies. Oncogene 21: 7957-7970.
    24. Chenik M, Chebli K, Blondel D (1995) Translation Initiation at Alternate in-Frame Aug Codons in the Rabies Virus Phosphoprotein Messenger-Rna Is Mediated by a Ribosomal Leaky Scanning Mechanism. J Virol 69:707-712.
    25. Marschalek A, Drechsel L, Conzelmann KK (2012) The importance of being short:The role of rabies virus phosphoprotein isoforms assessed by differential IRES translation initiation. Eur J Cell Biol 91:17-23.
    26. Vidy A, Chelbi-Alix M, Blondel D (2005) Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways. J Virol 79:14411-14420.
    27. Chelbi-Alix MK, Vidy A, El Bougrini J, Blondel D (2006) Rabies viral mechanisms to escape the IFN system:The viral protein P interferes with IRF-3, Statl, and PML nuclear bodies. J Interf Cytok Res 26:271-280.
    28. Blondel D, Vidy A, El Bougrini J, Chelbi-Alix MK (2007) The nucleocytoplasmic rabies virus P protein counteracts interferon signaling by inhibiting both nuclear accumulation and DNA binding of STATI1. J Virol 81:4255-4263.
    29. Moseley GW, Filmer RP, DeJesus MA, Jans DA (2007) Nucleocytoplasmic distribution of rabies virus P-protein is regulated by phosphorylation adjacent to C-terminal nuclear import and export signals. Biochemistry 46:12053-12061.
    30. Brzozka K, Finke S, Conzelmann KK (2005) Identification of the rabies virus alpha/beta interferon antagonist:phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J Virol 79:7673-7681.
    31. Bonilla WV, Pinschewer DD, Klenerman P, Rousson V, Gaboli M, et al. (2002) Effects of promyelocytic leukemia protein on virus-host balance. J Virol 76:3810-3818.
    32. Moseley GW, Lahaye X, Roth DM, Oksayan S, Filmer RP, et al. (2009) Dual modes of rabies P-protein association with microtubules:a novel strategy to suppress the antiviral response. J Cell Sci 122:3652-3662.
    33. Shoji Y, Inoue S, Nakamichi K, Kurane I, Sakai T, et al. (2004) Generation and characterization of P gene-deficient rabies virus. Virology 318:295-305.
    34. Tordo N, Castel G, Chteoui M, Caignard G, Prehaud C, et al. (2009) Peptides That Mimic the Amino-Terminal End of the Rabies Virus Phosphoprotein Have Antiviral Activity. J Virol 83: 10808-10820.
    35. Graham SC, Assenberg R, Delmas O, Verma A, Gholami A, et al. (2008) Rhabdovirus matrix protein structures reveal a novel mode of self-association. PLoS Pathog 4:e1000251.
    36. Finke S, Mueller-Waldeck R, Conzelmann KK (2003) Rabies virus matrix protein regulates the balance of virus transcription and replication. J Gen Virol 84:1613-1621.
    37. Conzelmann KK, Mebatsion T, Weiland F (1999) Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G. J Virol 73:242-250.
    38. Nakahara K, Ohnuma H, Sugita S, Yasuoka K, Nakahara T, et al. (1999) Intracellular behavior of rabies virus matrix protein (M) is determined by the viral glycoprotein (G). Microbiol Immunol 43:259-270.
    39. Dietzschold B, Pulmanausahakul R, Li JW, Schnell MJ (2008) The glycoprotein and the matrix protein of rabies virus affect pathogenicity by regulating viral replication and facilitating cell-to-cell spread. J Virol 82:2330-2338.
    40. Komarova AV, Real E, Borman AM, Brocard M, England P, et al. (2007) Rabies virus matrix protein interplay with eIF3, new insights into rabies virus pathogenesis. Nucleic Acids Res 35: 1522-1532.
    41. Nakahara T, Toriumi H, Irie T, Takahashi T, Ameyama S, et al. (2003) Characterization of a slow-migrating component of the rabies virus matrix protein strongly associated with the viral glycoprotein. Microbiol Immunol 47:977-988.
    42. Ito N, Sugiyama M, Yamada K, Shimizu K, Takayama-Ito M, et al. (2005) Characterization of M gene-deficient rabies virus with advantages of effective immunization and safety as a vaccine strain. Microbiol Immunol 49:971-979.
    43. Finke S, Conzelmann KK (2003) Dissociation of rabies virus matrix protein functions in regulation of viral RNA synthesis and virus assembly. J Virol 77:12074-12082.
    44. Banerjee AK (1987) Transcription and replication of rhabdoviruses. Microbiol Rev 51:66-87.
    45. Morimoto K, Akamine T, Takamatsu F, Kawai A (1998) Studies on rabies virus RNA polymerase:1. cDNA cloning of the catalytic subunit (L protein) of avirulent HEP-flury strain and its expression in animal cells. Microbiol Immunol 42:485-496.
    46. Chen HL, Tao LH, Ge JY, Wang XJ, Zhai HY, et al. (2010) Molecular Basis of Neurovirulence of Flury Rabies Virus Vaccine Strains:Importance of the Polymerase and the Glycoprotein R333Q Mutation. J Virol 84:8926-8936.
    47. Faber M, Pulmanausahakul R, Hodawadekar SS, Spitsin S, McGettigan JP, et al. (2002) Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. J Virol 76:3374-3381.
    48. Schnell MJ, McGettigan JP, Wirblich C, Papaneri A (2010) The cell biology of rabies virus:using stealth to reach the brain. Nat Rev Microbiol 8:51-61.
    49. Schnell MJ, Tan GS, Preuss MAR, Williams JC (2007) The dynein light chain 8 binding motif of rabies virus phosphoprotein promotes efficient viral transcription. Proc Natl Acad Sci USA 104:7229-7234.
    50. Blondel D, Lahaye X, Vidy A, Pomier C, Obiang L, et al. (2009) Functional Characterization of Negri Bodies (NBs) in Rabies Virus-Infected Cells:Evidence that NBs Are Sites of Viral Transcription and Replication. J Virol 83:7948-7958.
    51. Menager P, Roux P, Megret F, Bourgeois JP, Le Sourd AM, et al. (2009) Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies. PLoS Pathog 5:e1000315.
    52. Yang Y, Koprowski H, Dietzschold B, Fu ZF (1999) Phosphorylation of rabies virus nucleoprotein regulates viral RNA transcription and replication by modulating leader RNA encapsidation. J Virol 73:1661-1664.
    53. Weissenhorn W, Albertini AAV, Wernimont AK, Muziol T, Ravelli RBG, et al. (2006) Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313:360-363.
    54. Tordo N, Kouknetzoff A (1993) The Rabies Virus Genome-an Overview. Onderstepoort J Vet 60: 263-269.
    55. Iverson LE, Rose JK (1981) Localized Attenuation and Discontinuous Synthesis during Vesicular Stomatitis-Virus Transcription. Cell 23:477-484.
    56. Conzelmann KK, Finke S, Cox JH (2000) Differential transcription attenuation of rabies virus genes by intergenic regions:Generation of recombinant viruses overexpressing the polymerase gene. J Virol 74:7261-7269.
    57. Tordo N, Poch O, Ermine A, Keith G, Rougeon F (1986) Walking Along the Rabies Genome-Is the Large G-L Intergenic Region a Remnant Gene. Proc Natl Acad Sci U S A 83:3914-3918.
    58. Fu ZF, Yang J, Hooper DC, Wunner WH, Koprowski H, et al. (1998) The specificity of rabies virus RNA encapsidation by nucleoprotein. Virology 242:107-117.
    59. McGettigan JP, Naper K, Orenstein J, Koser M, McKenna PM, et al. (2003) Functional human immunodeficiency virus type 1 (HIV-1) Gag-Pol or HIV-1 Gag-Pol and env expressed from a single rhabdovirus-based vaccine vector genome. J Virol 77:10889-10899.
    60. Wojczyk BS, Stwora-Wojczyk M, Shakin-Eshleman S, Wunner WH, Spitalnik SL (1998) The role of site-specific N-glycosylation in secretion of soluble forms of rabies virus glycoprotein. Glycobiology 8:121-130.
    61. Toriumi H, Kawai A (2004) Association of rabies virus nominal phosphoprotein (P) with viral nucleocapsid (NC) is enhanced by phosphorylation of the viral nucleoprotein (N). Microbiol Immunol 48:399-409.
    62. Fu ZF, Wu XF, Gong XM, Foley HD, Schnell MJ (2002) Both viral transcription and replication are reduced when the rabies virus nucleoprotein is not phosphorylated. J Virol 76:4153-4161.
    63. Carroll AR, Wagner RR (1979) Role of the membrane (M) protein in endogenous inhibition of in vitro transcription by vesicular stomatitis virus. J Virol 29:134-142.
    64. Dhingra V, Li X, Liu Y, Fu ZF (2007) Proteomic profiling reveals that rabies virus infection results in differential expression of host proteins involved in ion homeostasis and synaptic physiology in the central nervous system. J Neurovirol 13:107-117.
    65. Hooper DC (2005) The role of immune responses in the pathogenesis of rabies. J Neurovirol 11: 88-92.
    66. Hooper DC, Phares TW, Fabis MJ, Roy A (2009) The production of antibody by invading B cells is required for the clearance of rabies virus from the central nervous system. PLoS Negl Trop Dis3:e535.
    67. Lodmell DL, Dimcheff DE, Ewalt LC (2006) Viral RNA in the bloodstream suggests viremia occurs in clinically ill rabies-infected mice. Virus Res 116:114-118.
    68. Preuss MA, Faber ML, Tan GS, Bette M, Dietzschold B, et al. (2009) Intravenous inoculation of a bat-associated rabies virus causes lethal encephalopathy in mice through invasion of the brain via neurosecretory hypothalamic fibers. PLoS Pathog 5:e1000485.
    69. Jackson AC (1993) Cholinergic System in Experimental Rabies in Mice. Acta Virol 37:502-508.
    70. Ceccaldi PE, Fillion MP, Ermine A, Tsiang H, Fillion G (1993) Rabies virus selectively alters 5-HT1 receptors subtypes in rat brain. Eur J Pharmacol 245:129-138.
    71. Ladogana A, Bouzamondo E, Pocchiari M, Tsiang H (1994) Modification of tritiated gamma-amino-n-butyric acid transport in rabies virus-infected primary cortical cultures. J Gen Virol 75:623-627.
    72. Iwata M, Komori S, Unno T, Minamoto N, Ohashi H (1999) Modification of membrane currents in mouse neuroblastoma cells following infection with rabies virus. Brit J Pharmacol 126: 1691-1698.
    73. Koprowski H, Zheng YM, Heber-Katz E, Fraser N, Rorke L, et al. (1993) In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci U S A 90:3024-3027.
    74. Hooper DC, Ohnishi ST, Kean R, Numagami Y, Dietzschold B, et al. (1995) Local nitric oxide production in viral and autoimmune diseases of the central nervous system. Proc Natl Acad Sci U S A 92:5312-5316.
    75. Weli SC, Scott CA, Ward CA, Jackson AC (2006) Rabies virus infection of primary neuronal cultures and adult mice:failure to demonstrate evidence of excitotoxicity. J Virol 80: 10270-10273.
    76. Koprowski H, Prosniak M, Hooper DC, Dietzschold B (2001) Effect of rabies virus infection on gene expression in mouse brain. Proc Natl Acad Sci U S A 98:2758-2763.
    77. Jackson AC, Rossiter JP (1997) Apoptosis plays an important role in experimental rabies virus infection. J Virol 71:5603-5607.
    78. Theerasurakarn S, Ubol S (1998) Apoptosis induction in brain during the fixed strain of rabies virus infection correlates with onset and severity of illness. J Neurovirol 4:407-414.
    79. Dietzschold B, Morimoto K, Hooper DC, Spitsin S, Koprowski H (1999) Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J Virol 73:510-518.
    80. Scott CA, Rossiter JP, Andrew RD, Jackson AC (2008) Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein-expressing transgenic mice. J Virol 82:513-521.
    81. Jackson AC, Rasalingam P, Weli SC (2006) Comparative pathogenesis of recombinant rabies vaccine strain SAD-L16 and SAD-D29 with replacement of Arg333 in the glycoprotein after peripheral inoculation of neonatal mice:less neurovirulent strain is a stronger inducer of neuronal apoptosis. Acta Neuropathol 111:372-378.
    82. Juntrakul S, Ruangvejvorachai P, Shuangshoti S, Wacharapluesadee S, Hemachudha T (2005) Mechanisms of escape phenomenon of spinal cord and brainstem in human rabies. Bmc Infect Dis 5:104.
    83. Jackson AC, Randle E, Lawrance G, Rossiter JP (2008) Neuronal apoptosis does not play an important role in human rabies encephalitis. J Neurovirol 14:368-375.
    84. Jackson AC, Rossiter JP, Hsu L (2009) Selective vulnerability of dorsal root ganglia neurons in experimental rabies after peripheral inoculation of CVS-11 in adult mice. Acta Neuropathol 118:249-259.
    85. Lafon M, Camelo S, Lafage M, Galelli A (2001) Selective role for the p55 Kd TNF-alpha receptor in immune unresponsiveness induced by an acute viral encephalitis. J Neuroimmunol 113: 95-108.
    86. Hooper DC, Roy A (2008) Immune evasion by rabies viruses through the maintenance of blood-brain barrier integrity. J Neurovirol 14:401-411.
    87. Hooper DC, Roy A (2007) Lethal silver-haired bat rabies virus infection can be prevented by opening the blood-brain barrier. J Virol 81:7993-7998.
    88. Lafon M, Megret F, Meuth SG, Simon O, Romero MLV, et al. (2008) Detrimental contribution of the immuno-inhibitor B7-H1 to rabies virus encephalitis. J Immunol 180:7506-7515.
    89. Faul EJ, Wanjalla CN, Suthar MS, Gale M, Wirblich C, et al. (2010) Rabies virus infection induces type Ⅰ interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling. PLoS Pathog 6:e1001016.
    90. Conzelmann KK, Rieder M, Brzozka K, Pfaller CK, Cox JH, et al. (2011) Genetic Dissection of Interferon-Antagonistic Functions of Rabies Virus Phosphoprotein:Inhibition of Interferon Regulatory Factor 3 Activation Is Important for Pathogenicity. J Virol 85:842-852.
    91. Lafon M, Chopy D, Pothlichet J, Lafage M, Megret F, et al. (2011) Ambivalent Role of the Innate Immune Response in Rabies Virus Pathogenesis. J Virol 85:6657-6668.
    92. Li XQ, Sarmento L, Fu ZF (2005) Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses. J Virol 79:10063-10068.
    93.刘辉张,陈国强,吕丽艳,李智立(2007)应用蛋白质组学技术筛选胰腺癌生物标志物的研究进展.世界华人消化杂志15:1628-1633.
    94. Bernhard OK, Diefenbach RJ, Cunningham AL (2005) New insights into viral structure and virus-cell interactions through proteomics. Expert Rev Proteomics 2:577-588.
    95. Dhingra V, Li Q, Allison AB, Stallknecht DE, Fu ZF (2005) Proteomic profiling and neurodegeneration in West-Nile-virus-infected neurons. J Biomed Biotechnol 2005:271-279.
    96. Pechkova E, Nicolini C (2004) Protein nanocrystallography:a new approach to structural proteomics. Trends Biotechnol 22:117-122.
    97.何大澄,肖雪媛(2002)差异蛋白质组学及其应用.北京师范大学学报(自然科学版)38:558-562.
    98.刘燕韦,鲍国连,季权安(2007)比较蛋白质组学研究进展.动物医学进展28:58-61.
    99. Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795-806.
    100. Picotti P, Rinner O, Stallmach R, Dautel F, Farrah T, et al. (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7:43-46.
    101. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, et al. (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27:633-641.
    102. Yocum AK, Chinnaiyan AM (2009) Current affairs in quantitative targeted proteomics:multiple reaction monitoring-mass spectrometry. Brief Funct Genomic Proteomic 8:145-157.
    103. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, et al. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994-999.
    104. Hutchens TW, Yip TT (1993) New Desorption Strategies for the Mass-Spectrometric Analysis of Macromolecules. Rapid Commun Mass Sp 7:576-580.
    105. Zandi F, Eslami N, Soheili M, Fayaz A, Gholami A, et al. (2009) Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus. Proteomics 9:2399-2407.
    106. Vester D, Rapp E, Gade D, Genzel Y, Reichl U (2009) Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines. Proteomics 9: 3316-3327.
    107. Zheng X, Hong L, Shi L, Guo J, Sun Z, et al. (2008) Proteomics analysis of host cells infected with infectious bursal disease virus. Mol Cell Proteomics 7:612-625.
    108.吴永平(2009)传染性法氏囊病毒感染鸡靶器官的差异蛋白质组研究:浙江大学.61-100 p.
    109. Zhang X, Zhou JY, Wu YP, Zheng XJ, Ma GP, et al. (2009) Differential Proteome Analysis of Host Cells Infected with Porcine Circovirus Type 2. J Proteome Res 8:5111-5119.
    110.吴双(2010)2005-2008年华东地区NDV遗传进化分析和代表性毒株感染细胞的比较蛋白质组研究:扬州大学.44-93 p.
    111. Zhang HM, Guo X, Ge XN, Chen YH, Sun QX, et al. (2009) Changes in the Cellular Proteins of Pulmonary Alveolar Macrophage Infected with Porcine Reproductive and Respiratory Syndrome Virus by Proteomics Analysis. J Proteome Res 8:3091-3097.
    112. Rassmann A, Henke A, Jarasch N, Lottspeich F, Saluz HP, et al. (2007) The human fatty acid synthase:A new therapeutic target for coxsackievirus B3-induced diseases? Antiviral Res 76: 150-158.
    113. Zhang L, Zhang ZP, Zhang XE, Lin FS, Ge F (2010) Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication. J Virol 84:6050-6059.
    114. Kong Q, Xue C, Ren X, Zhang C, Li L, et al. (2010) Proteomic analysis of purified coronavirus infectious bronchitis virus particles. Proteome Sci 8:29.
    115. Moerdyk-Schauwecker M, Hwang SI, Grdzelishvili VZ (2009) Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach. Virol J 6:166.
    116. Dry I, Haig DM, Inglis NF, Imrie L, Stewart JP, et al. (2008) Proteomic analysis of pathogenic and attenuated alcelaphine herpesvirus 1. J Virol 82:5390-5397.
    117. Denard J, Rundwasser S, Laroudie N, Gonnet F, Naldini L, et al. (2009) Quantitative proteomic analysis of lentiviral vectors using 2-DE. Proteomics 9:3666-3676.
    118. Fuchigami T, Misumi S, Takamune N, Takahashi I, Takama M, et al. (2002) Acid-labile formylation of amino terminal proline of human immunodeficiency virus type 1 p24(gag) was found by proteomics using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Biochem Biophys Res Commun 293: 1107-1113.
    119. Saphire AC, Gallay PA, Bark SJ (2006) Proteomic analysis of human immunodeficiency virus using liquid chromatography/tandem mass spectrometry effectively distinguishes specific incorporated host proteins. J Proteome Res 5:530-538.
    120. Hogue IB, Hoppe A, Ono A (2009) Quantitative fluorescence resonance energy transfer microscopy analysis of the human immunodeficiency virus type 1 Gag-Gag interaction: relative contributions of the CA and NC domains and membrane binding. J Virol 83: 7322-7336.
    121. Fontaine-Rodriguez EC, Taylor TJ, Olesky M, Knipe DM (2004) Proteomics of herpes simplex virus infected cell protein 27:association with translation initiation factors. Virology 330: 487-492.
    122. Fislova T, Thomas B, Graef KM, Fodor E (2010) Association of the influenza virus RNA polymerase subunit PB2 with the host chaperonin CCT. J Virol 84:8691-8699.
    123. Noisakran S, Sengsai S, Thongboonkerd V, Kanlaya R, Sinchaikul S, et al. (2008) Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein. Biochem Biophys Res Commun 372:67-72.
    124. Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V (2010) Vimentin interacts with heterogeneous nuclear ribonucleoproteins and dengue nonstructural protein 1 and is important for viral replication and release. Mol Biosyst 6:795-806.
    125. Kang SM, Shin MJ, Kim JH, Oh JW (2005) Proteomic profiling of cellular proteins interacting with the hepatitis C virus core protein. Proteomics 5:2227-2237.
    126. Fukasawa M, Nitahara-Kasahara Y, Shinkai-Ouchi F, Sato S, Suzuki T, et al. (2009) Cellular vimentin content regulates the protein level of hepatitis C virus core protein and the hepatitis C virus production in cultured cells. Virology 383:319-327.
    127. Carducci M, Licata L, Peluso D, Castagnoli L, Cesareni G (2010) Enriching the viral-host interactomes with interactions mediated by SH3 domains. Amino Acids 38:1541-1547.
    128. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571-579.
    129. Lewis VA, Hynes GM, Zheng D, Saibil H, Willison K (1992) T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature 358:249-252.
    130. Spiess C, Meyer AS, Reissmann S, Frydman J (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 14:598-604.
    131. Llorca O, Martin-Benito J, Grantham J, Ritco-Vonsovici M, Willison KR, et al. (2001) The 'sequential allosteric ring' mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin. Embo J 20:4065-4075.
    132. M Anaul K, Wasim U, Aswathy N, Praveen Kumar R, M Aman J, et al. (2011) Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding. J Amino Acids 2011.
    133. Fares MA, Wolfe KH (2003) Positive selection and subfunctionalization of duplicated CCT chaperonin subunits. Mol Biol Evol 20:1588-1597.
    134. Liou AK, Willison KR (1997) Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes. Embo J 16: 4311-4316.
    135. Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, et al. (2010) 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci U S A 107:4967-4972.
    136. Munoz IG, Yebenes H, Zhou M, Mesa P, Serna M, et al. (2011) Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat Struct Mol Biol 18:14-19.
    137. Zhang J, Baker ML, Schroder GF, Douglas NR, Reissmann S, et al. (2010) Mechanism of folding chamber closure in a group Ⅱ chaperonin. Nature 463:379-383.
    138. Frydman J, Nimmesgern E, Erdjument-Bromage H, Wall JS, Tempst P, et al. (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. Embo J 11:4767-4778.
    139. Meyer AS, Gillespie JR, Walther D, Millet IS, Doniach S, et al. (2003) Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. Cell 113: 369-381.
    140. Melki R (2001) Review:nucleotide-dependent conformational changes of the chaperonin containing TCP-1. J Struct Biol 135:170-175.
    141. Dobrzynski JK, Sternlicht ML, Farr GW, Sternlicht H (1996) Newly-synthesized beta-tubulin demonstrates domain-specific interactions with the cytosolic chaperonin. Biochemistry 35: 15870-15882.
    142. Lewis SA, Tian G, Vainberg IE, Cowan NJ (1996) Chaperonin-mediated folding of actin and tubulin. J Cell Biol 132:1-4.
    143. Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin:DNase I complex. Nature 347:37-44.
    144. Llorca O, McCormack EA, Hynes G, Grantham J, Cordell J, et al. (1999) Eukaryotic type Ⅱ chaperonin CCT interacts with actin through specific subunits. Nature 402:693-696.
    145. Rommelaere H, De Neve M, Melki R, Vandekerckhove J, Ampe C (1999) The cytosolic class Ⅱ chaperonin CCT recognizes delineated hydrophobic sequences in its target proteins. Biochemistry 38:3246-3257.
    146. Hynes GM, Willison KR (2000) Individual subunits of the eukaryotic cytosolic chaperonin mediate interactions with binding sites located on subdomains of beta-actin. J Biol Chem 275: 18985-18994.
    147. Llorca O, Martin-Benito J, Gomez-Puertas P, Ritco-Vonsovici M, Willison KR, et al. (2001) Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. J Struct Biol 135:205-218.
    148. Llorca O, Martin-Benito J, Ritco-Vonsovici M, Grantham J, Hynes GM, et al. (2000) Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. Embo J 19:5971-5979.
    149. Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391:199-203.
    150. Jayasinghe M, Tewmey C, Stan G (2010) Versatile substrate protein recognition mechanism of the eukaryotic chaperonin CCT. Proteins:Structure, Function, and Bioinformatics 78:1254-1265.
    151. Feldman DE, Thulasiraman V, Ferreyra RG, Frydman J (1999) Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. Mol Cell 4:1051-1061.
    152. Frydman J, Hartl FU (1996) Principles of chaperone-assisted protein folding:differences between in vitro and in vivo mechanisms. Science 272:1497-1502.
    153. Hansen WJ, Cowan NJ, Welch WJ (1999) Prefoldin-nascent chain complexes in the folding of cytoskeletal proteins. J Biol Chem 145:265-277.
    154. Doucey MA, Bender FC, Hess D, Hofsteenge J, Bron C (2006) Caveolin-1 interacts with the chaperone complex TCP-1 and modulates its protein folding activity. Cell Mol Life Sci 63: 939-948.
    155. Dittmar KD, Banach M, Galigniana MD, Pratt WB (1998) The role of DnaJ-like proteins in glucocorticoid receptor.hsp90 heterocomplex assembly by the reconstituted hsp90.p60.hsp70 foldosome complex. J Biol Chem 273:7358-7366.
    156. Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370:111-117.
    157. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333-366.
    158. Lim J, Crespo-Barreto J, Jafar-Nejad P, Bowman AB, Richman R, et al. (2008) Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452: 713-718.
    159. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, et al. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300: 486-489.
    160. Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775:24-29.
    161. Auluck PK, Bonini NM (2002) Pharmacological prevention of Parkinson disease in Drosophila. Nat Med8:1185-1186.
    162. Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, et al. (2008) Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83:30-42.
    163. Tam S, Geller R, Spiess C, Frydman J (2006) The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 8:1155-1162.
    164. Kitamura A, Kubota H, Pack CG, Matsumoto G, Hirayama S, et al. (2006) Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat Cell Biol 8: 1163-1170.
    165. Camasses A, Bogdanova A, Shevchenko A, Zachariae W (2003) The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. Mol Cell 12:87-100.
    166. Broadley SA, Hartl FU (2009) The role of molecular chaperones in human misfolding diseases. Febs Letters 583:2647-2653.
    167. Hong S, Choi G, Park S, Chung AS, Hunter E, et al. (2001) Type D retrovirus gag polyprotein interacts with the cytosolic chaperonin TRiC. J Virol 75:2526-2534.
    168. Inoue Y, Aizaki H, Hara H, Matsuda M, Ando T, et al. (2011) Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein. Virology 410:38-47.
    169. Cai YQ, Ma YP, Shen HG, Guo JQ, Zhou JY (2007) High-level expression of nucleoprotein gene of rabies virus in Escherichia coli. VETERINARY SCIENCE IN CHINA 37:145-149.
    170. Smith JS, Yager, P.A., Baer, G.M. (1996) Laboratory Techniques in Rabies, four ed:A rapid fluorescent focus inhibition test (RFFIT) for determining rabies virus-neutralizing antibody. World Health Organization, Geneva, fourth ed:pp.181-191.
    171. Lodmell DL, Esposito JJ, Ewalt LC (1993) Rabies Virus Antinucleoprotein Antibody Protects against Rabies Virus Challenge in-Vivo and Inhibits Rabies Virus-Replication in-Vitro. J Virol 67:6080-6086.
    172. Astoul E, Lafage M, Lafon M (1996) Rabies superantigen as a Vbeta T-dependent adjuvant. J Exp Med 183:1623-1631.
    173. Loza-Rubio E, Molina-Guarneros J, Montano-Hirose JA (2009) Nucleocapsid of rabies virus improve immune response of an inactivated avian influenza vaccine. Vet Res Commun 33: 589-595.
    174. Hooper DC, Pierard I, Modelska A, Otvos L, Fu ZF, et al. (1994) Rabies Ribonucleocapsid as an Oral Immunogen and Immunological Enhancer. Proc Natl Acad Sci U S A 91:10908-10912.
    175. Bussereau F, Perrin P (1982) Cellular-Response to Rabies Virus-Infection. Comp Immunol Microb 5:49-&.
    176. Liu N, Song WJ, Wang P, Lee KC, Chan W, et al. (2008) Proteomics analysis of differential expression of cellular proteins in response to avian H9N2 virus infection in human cells. Proteomics 8:1851-1858.
    177. Emmott E, Wise H, Loucaides EM, Matthews DA, Digard P, et al. (2010) Quantitative Proteomics Using SILAC Coupled to LC-MS/MS Reveals Changes in the Nucleolar Proteome in Influenza A Virus-Infected Cells. J Proteome Res 9:5335-5345.
    178. Zou W, Ke JJ, Zhang AD, Zhou MG, Liao YH, et al. (2010) Proteomics Analysis of Differential Expression of Chicken Brain Tissue Proteins in Response to the Neurovirulent H5N1 Avian Influenza Virus Infection. J Proteome Res 9:3789-3798.
    179. Liu K, Qian L, Wang JL, Li WR, Deng XY, et al. (2009) Two-dimensional Blue Native/SDS-PAGE Analysis Reveals Heat Shock Protein Chaperone Machinery Involved in Hepatitis B Virus Production in HepG2.2.15 Cells. Mol Cell Proteomics 8:495-505.
    180. Li C, Tan YX, Xia QC, Wu JR, Wang HY, et al. (2004) Proteomics studies of hepatitis B virus-associated hepatocellular carcinoma by two-dimensional difference gel electrophoresis: More accurate qualitative and quantitative analysis. Mol Cell Proteomics 3:S35-S35.
    181. Tsutsumi T, Matsuda M, Aizaki H, Moriya K, Miyoshi H, et al. (2009) Proteomics Analysis of Mitochondrial Proteins Reveals Overexpression of a Mitochondrial Protein Chaperon, Prohibitin, in Cells Expressing Hepatitis C Virus Core Protein. Hepatology 50:378-386.
    182. Bourchookarn A, Havanapan PO, Thongboonkerd V, Krittanai C (2008) Proteomic analysis of altered proteins in lymphoid organ of yellow head virus infected Penaeus monodon. Bba-Proteins Proteom 1784:504-511.
    183. Wang XH, Zhang SF, Sun CL, Yuan ZG, Wu XF, et al. (2011) Proteomic Profiles of Mouse Neuro N2a Cells Infected with Variant Virulence of Rabies Viruses. J Microbiol Biotechn 21: 366-373.
    184. Thanomsridetchai N, Singhto N, Tepsumethanon V, Shuangshoti S, Wacharapluesadee S, et al. (2011) Comprehensive proteome analysis of hippocampus, brainstem, and spinal cord from paralytic and furious dogs naturally infected with rabies. J Proteome Res 10:4911-4924.
    185. Chang LY, Ali AR, Hassan SS, AbuBakar S (2007) Human neuronal cell protein responses to Nipah virus infection. Virol J 4:54.
    186. Chongsatja PO, Bourchookarn A, Lo CF, Thongboonkerd V, Krittanai C (2007) Proteomic analysis of differentially expressed proteins in Penaeus vannamei hemocytes upon Taura syndrome virus infection. Proteomics 7:3592-3601.
    187. Thanthrige-Don N, Abdul-Careem MF, Shack LA, Burgess SC, Sharif S (2009) Analyses of the spleen proteome of chickens infected with Marek's disease virus. Virology 390:356-367.
    188. Zhang CW, Xue CY, Li Y, Kong QM, Ren XP, et al. (2010) Profiling of cellular proteins in porcine reproductive and respiratory syndrome virus virions by proteomics analysis. Virol J 7: 242.
    189. Lam YW, Evans VC, Heesom KJ, Lamond Al, Matthews DA (2010) Proteomics Analysis of the Nucleolus in Adenovirus-infected Cells. Mol Cell Proteomics 9:117-130.
    190. Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V (2010) The Ubiquitin-Proteasome Pathway Is Important for Dengue Virus Infection in Primary Human Endothelial Cells. J Proteome Res 9:4960-4971.
    191. Pattanakitsakul S, Rungrojcharoenkit K, Kanlaya R, Sinchaikul S, Noisakran S, et al. (2007) Proteomic analysis of host responses in HepG2 cells during dengue virus infection. J Proteome Res 6:4592-4600.
    192.孙英杰(2010) CLASS_新城疫病毒感染鸡成纤维细胞的时相变化研究:中国农业科学院.42-48 p.
    193. Skiba M, Mettenleiter TC, Karger A (2008) Quantitative whole-cell proteome analysis of pseudorabies virus-infected cells. J Virol 82:9689-9699.
    194.郑肖娟(2007)传染性法氏囊病病毒感染细胞的差异蛋白质组学研究:浙江大学.61-99 p.
    195. Hierholzer J.C. KRA (1996) Virus isolation and quantitation. In:BWJ Mahy and HO Kangro, Editors, Virology Methods Manual, Academic Press, London:pp25-46.
    196. Sklan EH, Staschke K, Oakes TM, Elazar M, Winters M, et al. (2007) A Rab-GAP TBC domain protein binds hepatitis C virus NS5A and mediates viral replication. J Virol 81:11096-11105.
    197. Perluigi M, Poon HF, Maragos W, Pierce WM, Klein JB, et al. (2005) Proteomic analysis of protein expression and oxidative modification in R6/2 transgenic mice. Mol Cell Proteomics 4: 1849-1861.
    198. Schmid GM, Converset V, Walter N, Sennitt MV, Leung KY, et al. (2004) Effect of high-fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics 4:2270-2282.
    199. Koyama AH, Uchida T (1987) The mode of entry of herpes simplex virus type 1 into Vero cells. Microbiol Immunol 31:123-130.
    200. Pelkmans L, Puntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535-539.
    201. Stolp B, Fackler OT (2011) How HIV Takes Advantage of the Cytoskeleton in Entry and Replication. Viruses-Basel 3:293-311.
    202. Dillon PJ, Gupta KC (1988) Early steps in the assembly of vesicular stomatitis virus nucleocapsids in infected cells. J Virol 62:1582-1589.
    203. Vallee RB, Bremner KH, Scherer J, Yi JL, Vershinin M, et al. (2009) Adenovirus Transport via Direct Interaction of Cytoplasmic Dynein with the Viral Capsid Hexon Subunit. Cell Host Microbe 6:523-535.
    204. Ceccaldi PE, Valtorta F, Braud S, Hellio R, Tsiang H (1997) Alteration of the actin-based cytoskeleton by rabies virus. J Gen Virol 78:2831-2835.
    205. Park YU, Jeong J, Lee H, Mun JY, Kim JH, et al. (2010) Disrupted-in-schizophrenia 1 (DISCI) plays essential roles in mitochondria in collaboration with Mitofilin. Proc Natl Acad Sci U S A 107:17785-17790.
    206. von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, et al. (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21: 694-707.
    207. Kim K, Lee S, Chang J, Rhee K (2008) A novel function of CEP135 as a platform protein of C-NAP1 for its centriolar localization. Exp Cell Res 314:3692-3700.
    208. Ohta T, Essner R, Ryu JH, Palazzo RE, Uetake Y, et al. (2002) Characterization of Cep135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. J Cell Biol 156:87-99.
    209. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, et al. (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13:190-202.
    210. Van Vliet K, Mohamed MR, Zhang L, Villa NY, Werden SJ, et al. (2009) Poxvirus proteomics and virus-host protein interactions. Microbiol Mol Biol Rev 73:730-749.
    211. Khadka S, Vangeloff AD, Zhang C, Siddavatam P, Heaton NS, et al. (2011) A physical interaction network of dengue virus and human proteins. Mol Cell Proteomics 10:M111 012187.
    212. Norgren N, Rosengren L, Stigbrand T (2003) Elevated neurofilament levels in neurological diseases. Brain Res 987:25-31.
    213. Julien JP, Mushynski WE (1998) Neurofilaments in health and disease. Prog Nucleic Acid Res Mol Biol 61:1-23.
    214. Leung CL, Sun D, Zheng M, Knowles DR, Liem RK (1999) Microtubule actin cross-linking factor (MACF):a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J Cell Biol 147:1275-1286.
    215. Chen HJ, Lin CM, Lin CS, Perez-Olle R, Leung CL, et al. (2006) The role of microtubule actin cross-linking factor 1 (MACF1) in the Wnt signaling pathway. Genes Dev 20:1933-1945.
    216. Feng H, Li X, Niu D, Chen WN (2010) Protein profile in HBx transfected cells:a comparative iTRAQ-coupled 2D LC-MS/MS analysis. J Proteomics 73:1421-1432.
    217. Kerr JR, Kaushik N, Fear D, Baldwin DA, Nuwaysir EF, et al. (2005) Single-nucleotide polymorphisms associated with symptomatic infection and differential human gene expression in healthy seropositive persons each implicate the cytoskeleton, integrin signaling, and oncosuppression in the pathogenesis of human parvovirus B19 infection. J Infect Dis 192: 276-286.
    218. Goryunov D, He CZ, Lin CS, Leung CL, Liem RK (2010) Nervous-tissue-specific elimination of microtubule-actin crosslinking factor la results in multiple developmental defects in the mouse brain. Mol Cell Neurosci 44:1-14.
    219. Jacob Y, Badrane H, Ceccaldi PE, Tordo N (2000) Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein. J Virol 74:10217-10222.
    220. Gao B, Duan Z, Xu W, Xiong S (2009) Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain. Hepatology 50:424-433.
    221. Yang K, Shi HX, Liu XY, Shan YF, Wei B, et al. (2009) TRIM21 Is Essential to Sustain IFN Regulatory Factor 3 Activation during Antiviral Response. J Immunol 182:3782-3792.
    222. Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, et al. (2010) Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natl Acad Sci U S A 107:19985-19990.
    223. Taylor RT, Lubick KJ, Robertson SJ, Broughton JP, Bloom ME, et al. (2011) TRIM79 alpha, an Interferon-Stimulated Gene Product, Restricts Tick-Borne Encephalitis Virus Replication by Degrading the Viral RNA Polymerase. Cell Host Microbe 10:185-196.
    224. Blondel D, Kheddache S, Lahaye X, Dianoux L, Chelbi-Alix MK (2010) Resistance to Rabies Virus Infection Conferred by the PMLIV Isoform. J Virol 84:10719-10726.
    225. Liang P, MacRae TH (1997) Molecular chaperones and the cytoskeleton. J Cell Sci 110 (Pt 13): 1431-1440.
    226. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781-791.
    227. Richter K, Buchner J (2001) Hsp90:chaperoning signal transduction. J Cell Physiol 188:281-290.
    228. Rutherford S, Hirate Y, Swalla BJ (2007) The Hsp90 capacitor, developmental remodeling, and evolution:the robustness of gene networks and the curious evolvability of metamorphosis. Crit Rev Biochem Mol Biol 42:355-372.
    229. Chase G, Deng T, Fodor E, Leung BW, Mayer D, et al. (2008) Hsp90 inhibitors reduce influenza virus replication in cell culture. Virology 377:431-439.
    230. Smith DR, McCarthy S, Chrovian A, Olinger G, Stossel A, et al. (2010) Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antiviral Res 87:187-194.
    231. Connor JH, McKenzie MO, Parks GD, Lyles DS (2007) Antiviral activity and RNA polymerase degradation following Hsp90 inhibition in a range of negative strand viruses. Virology 362: 109-119.
    232. Dutta D, Bagchi P, Chatterjee A, Nayak MK, Mukherjee A, et al. (2009) The molecular chaperone heat shock protein-90 positively regulates rotavirus infectionx. Virology 391:325-333.
    233. Nakagawa S, Umehara T, Matsuda C, Kuge S, Sudoh M, et al. (2007) Hsp90 inhibitors suppress HCV replication in replicon cells and humanized liver mice. Biochem Biophys Res Commun 353:882-888.
    234. Hu J, Seeger C (1996) Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci U S A 93:1060-1064.
    235. Basha W, Kitagawa R, Uhara M, Imazu H, Uechi K, et al. (2005) Geldanamycin, a potent and specific inhibitor of Hsp90, inhibits gene expression and replication of human cytomegalovirus. Antivir Chem Chemother 16:135-146.
    236. Radhakrishnan A, Yeo D, Brown G, Myaing MZ, Iyer LR, et al. (2010) Protein analysis of purified respiratory syncytial virus particles reveals an important role for heat shock protein 90 in virus particle assembly. Mol Cell Proteomics 9:1829-1848.
    237. Hung JJ, Chung CS, Chang W (2002) Molecular chaperone Hsp90 is important for vaccinia virus growth in cells. J Virol 76:1379-1390.
    238. Kampmueller KM, Miller DJ (2005) The cellular chaperone heat shock protein 90 facilitates Flock House virus RNA replication in Drosophila cells. J Virol 79:6827-6837.
    239. Li YH, Tao PZ, Liu YZ, Jiang JD (2004) Geldanamycin, a ligand of heat shock protein 90, inhibits the replication of herpes simplex virus type 1 in vitro. Antimicrob Agents Ch 48:867-872.
    240. Zheng ZZ, Miao J, Zhao M, Tang M, Yeo AE, et al. (2010) Role of heat-shock protein 90 in hepatitis E virus capsid trafficking. J Gen Virol 91:1728-1736.
    241. He FC, Sun W, Xing BC, Sun Y, Du XJ, et al. (2007) Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis. Mol Cell Proteomics 6: 1798-1808.
    242. Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C (2010) Dual Role of Heat Shock Proteins as Regulators of Apoptosis and Innate Immunity. J Innate Immun 2:238-247.
    243. Lu Z, Qin A, Qian K, Chen X, Jin W, et al. (2010) Proteomic analysis of the host response in the bursa of Fabricius of chickens infected with Marek's disease virus. Virus Res 153:250-257.
    244. Kashuba E, Pokrovskaja K, Klein G, Szekely L (1999) Epstein-Barr virus-encoded nuclear protein EBNA-3 interacts with the epsilon-subunit of the T-complex protein 1 chaperonin complex. J Hum Virol 2:33-37.
    245. Seo S, Baye LM, Schulz NP, Beck JS, Zhang QH, et al. (2010) BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proc Natl Acad Sci USA 107:1488-1493.
    246. Kajaste-Rudnitski A, Mashimo T, Frenkiel MP, Guenet JL, Lucas M, et al. (2006) The 2',5'-oligoadenylate synthetase lb is a potent inhibitor of West Nile virus replication inside infected cells. J Biol Chem 281:4624-4637.
    247. Lucas M, Mashimo T, Frenkiel MP, Simon-Chazottes D, Montagutelli X, et al. (2003) Infection of mouse neurones by West Nile virus is modulated by the interferon-inducible 2'-5' oligoadenylate synthetase lb protein. Immunol Cell Biol 81:230-236.
    248. Saha S, Rangarajan PN (2003) Common host genes are activated in mouse brain by Japanese encephalitis and rabies viruses. J Gen Virol 84:1729-1735.
    249. Zhao P, Zhao L, Zhang T, Qi Y, Wang T, et al. (2011) Innate immune response gene expression profiles in central nervous system of mice infected with rabies virus. Comp Immunol Microbiol Infect Dis 34:503-512.
    250.郭晓强(2009)伴侣素的发现者--霍维茨.生物学通报44:60-62.
    251. Yokota S, Yanagi H, Yura T, Kubota H (1999) Cytosolic chaperonin is up-regulated during cell growth-Preferential, expression and binding to tubulin at G(1)/S transition through early S phase. J Biol Chem 274:37070-37078.
    252. Yokota S, Kayano T, Ohta T, Kurimoto M, Yanagi H, et al. (2000) Proteasome-dependent degradation of cytosolic chaperonin CCT. Biochem Bioph Res Co 279:712-717.
    253.蔡月琴(2006)狂犬病病毒糖蛋白、核蛋白高效表达体系的建立:浙江大学.29-49 p.
    254. Araujo FD, Stracker TH, Carson CT, Lee DV, Weitzman MD (2005) Adenovirus type 5 E4orf3 protein targets the Mrell complex to cytoplasmic aggresomes. J Virol 79:11382-11391.
    255. Oh J, Broyles SS (2005) Host cell nuclear proteins are recruited to cytoplasmic vaccinia virus replication complexes. J Virol 79:12852-12860.
    256. Kristensson K, Dastur DK, Manghani DK, Tsiang H, Bentivoglio M (1996) Rabies:interactions between neurons and viruses. A review of the history of Negri inclusion bodies. Neuropathol Appl Neurobiol 22:179-187.
    257. Shin T, Weinstock D, Castro MD, Hamir AN, Wampler T, et al. (2004) Immunohistochemical localization of endothelial and inducible nitric oxide synthase within neurons of cattle with rabies. J Vet Med Sci 66:539-541.
    258. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes:A cellular response to misfolded proteins. J Cell Biol 143:1883-1898.
    259. Khan WN, Cao S, Carlesso G, Osipovich AB, Llanes J, et al. (2008) Subunit 1 of the Prefoldin chaperone complex is required for lymphocyte development and function. J Immunol 181: 476-484.
    260. Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, et al. (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863-873.
    261. Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, et al. (1999) Compartmentation of protein folding in vivo:sequestration of non-native polypeptide by the chaperonin-GimC system. Embo J 18:75-84.
    262. Yeh CT, Tsao ML, Chao CH (2006) Interaction of hepatitis C virus F protein with prefoldin 2 perturbs tubulin cytoskeleton organization. Biochem Bioph Res Co 348:271-277.
    263. Tam S, Spiess C, Auyeung W, Joachimiak L, Chen B, et al. (2009) The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat Struct Mol Biol 16:1279-1285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700