阿尔茨海默症模型细胞的钙信号研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默症(Alzheimer’s Disease,AD)是一种神经退行性疾病。AD患者临床上表现为记忆、语言、感觉和运动功能的进行性损害,性格和情感控制等方面的异常。随着人类老龄化社会的到来,阿尔茨海默症已成为医学和社会面临的严峻问题。
    但至今为止,AD的发病机理仍不清楚。普遍认为,Aβ(Amyloid-β)在AD的病理机制中处于中心地位。另一方面,AD神经元出现钙信号紊乱也是不容置疑的。在神经系统中,钙信号有多种调节功能,如突触的可塑性、神经元的凋亡等。Aβ和Tau蛋白诱发的神经退化很可能是由细胞钙信号紊乱介导实现的。不仅如此,研究已经证实家族性AD基因突变会对细胞的钙信号通路产生影响。作为第二信使的钙离子可能在AD的发病机理中扮演着重要的角色,因此AD的细胞钙信号研究对阐明AD的机理是有益的。
    本论文以转基因AD模型细胞为材料,利用激光共聚焦扫描显微镜成像技术,系统地研究了AD模型细胞的钙信号紊乱情况。
    本文的主要内容及结果如下:
    一、对神经瘤细胞和海马神经元进行形态和功能研究,对神经瘤细胞作为AD钙信号研究模型细胞的可行性进行了初步验证。 从实验结果得知,在合适浓度的细胞分化诱导剂视黄酸(Retinoic Acid, RA)诱导下,N2a(Neuroblastoma Cell,Mouse)细胞向与神经元类似的形态分化,可以形成类似于神经元的轴突,甚至神经元间的网络状结构;实验中还发现有的诱导细胞形态非常接近于星型胶质细胞。
    在神经科学的研究中,对生理和病理状态下Ca~(2+)波动研究是探讨许多疾病机理的重要途径之一。而细胞的K+极化刺激诱发的Ca~(2+)波动是一个经典实验。K~+极化刺激诱发的Ca~(2+)波动实验结果显示,N2a细胞和海马神经元的Ca~(2+)波动非常相似。此实验结果也进一步表明:用N2a细胞代替原代海马神经元进行AD致病机理的Ca~(2+)信号的功能性研究是可行的。
    N2a细胞的可传代性、可诱导分化性和与神经元钙信号的相似性可以满足AD钙信号研究的要求。
    二、APP695 基因突变对细胞钙信号的影响。
Alzheimer’s Disease(AD) is a progressive and irreversible neurodegenerative disorderthat leads to cognitive, memory and behavioural impairments. The pathogenesis ofAlzheimer’s Disease is complex, and involves many molecular, cellular and physiologicalpathologies. With the coming of aging society, the correspongding research attracts moreand more attention in the world. However, its pathogenic mechanism is still poorlyunderstood now. Calcium modulates many neural processes, including synaptic plasticityand apoptosis. It is irrefutable that calcium dysregulation is involved in theneurodegeneration of Alzheimer’s Disease. Neurodegeneration that is induced byamyloid-βor tau protein is probably mediated by changes in calcium homeostasis.Moreover, mutations that cause familial Alzheimer’s Disease have been linked tointracellular calcium signalling pathways. Destabilization of calcium signalling seems to be akey factor in the pathogenesis of Alzheimer’s Disease, and drug design targeting this processmight be therapeutically promising.
    Using the image technology of confocal laser scanning microscope, we studied themechanism of the calcium dysregulation of the AD model cell s.
    Three aspects of work were designed and have performed in the research:
    In the first part of the dissertation, to test the feasibility of using N2a cell as model cellin AD calcium signal, we studied the morphological and functional differences between N2aand hippocampus neuron. After being treated by 10-5 uM RA(Retinioc Acid) for 7 days, N2acell could grow axon and form network .The result of K+ depolarization stimulationexperiment indicate that the Ca~(2+) wave of N2a cell was closed to hippocamp neron. Fromthese resulst, we can conform that using N2a cell as model cell in AD calcium signal isviable.
    In the second part of the dissertation, we employed the image technology of confocallaser scanning microscope to study the interaction between APP695(amyloid precusorprotein 695,APP695 ) mutation and calcium dysregulation. At present, calcium dysregulation
引文
1. James C. Sacchettini and Jeffery W. Kelly .Therapeutic strategies for hunman amyloid disease. Nature.2002, 1:267-275.
    2. Fraser, PE., Darabie, A A. and McLaurin, J. A. Amyloid-βinteractions with chondroitin sulfate-derived monosaccharides and disaccharides. Implications for drug development. J. Biol. Chem. 2001,276: 6412–6419.
    3. Soto, C. β-Sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nature Med. 1998 ,4: 822–826).
    4. Kisilevsky, R. Arresting amyloidosis in vivo using smallmolecule anionic sulphonates or sulphates: implications for Alzheimer’s disease. Nature Med.1995, 1: 143–148.
    5. Tanzi RE,Koracs,Kim TW et al.The gene defects responsible for familial Alzheimer’s Disease.Nerobiol Dis.1996,3(3):159-68.
    6. Johnson-wood K,Lee M,Motter R et al.Amiloid precursor protein processing and A beta42 deposition in a transgenic mouse model of Alzheimer’s disease. Proc Natal Acad Sci.1997,94(4):1550-1555.
    7. Levy-lehand E ,Wasco W,Poorkaj P,et al.Candidate gene for the chromosome 1 familial Alzheimer’s disease locus.Science.1995,269:973-977.
    8. Nakai M,Kawata T,Taniguchi T et al. Expressing if apolipopreotein E mRNA in rat microglia.Neurosci lett.1996,211(1):41-44.
    9. Mark P.Mattaon,Sic L.Chan et al.Presenilin mutations and calcium signaling defects in the nervous and immune systems.BioE,2001, 23:733-744.
    10. Tilvis RS,Strandberg TE,Jaua K. Apolipoprotein E phenotypes,dementia and mortality in prospective population in sample. J Am Geriatr Soc.1998,46(6):712-715.
    11. 国汉帮,唐蔚青,秦斌等,老年痴呆患者ApoE基因分布,中华老年医学杂志.1997, 16(6):340-343
    12. Strittmatter WJ,Sannders AM.Isoform-specific interaction of apolipoprotein E with microtubule-associated protein tau: implication for Alzheimer’s Disease. Goedert Mproc.Natl Acad Sci USA.1994,91:11183-11186.
    13. Lendon CL,Ashall F.Exploring the etiology of Alzheimer’s disease using molecular genetic .Gogate Am.JMA.1997,277(10):8252-8261.
    14. 王建枝,阿尔次海默病患者中双螺旋丝的体外去磷酸化作用。中华神经科学杂 志.1998,3:1-5
    15. 王建枝,蛋白磷酸酯酶-2A和-1抑制剂对成神经瘤细胞的影响。中华神经科学杂 志.1998,14:63-67
    16. 王建枝,去磷酸化对Alzheimer神经元纤维缠结结构和功能的影响.同济医科大学学 报.1998,21:1-5.
    17. Wang JZ. Dephosphorylation of Alzhemer’s paired helical filaments by protein phosphatase-2A and -2B.J Boil Chem.1995,270:4854-4860
    18. Wang JZ.Glycosylation of microtubule-associated protein Tau: an abnonal posttranslational modification in Alzheimer’s disease.Nature Med.1996,2:871-875.
    19. Wang JZ . Restoration of biological activity of Alzheimer abnormally phosphorylated tau by dephosphorylation with protein phosphatase-2A,-2B,and-1.Brain Mol Res.1996,38:200-208
    20. Mattson MP .Presenilins, the endoplasmic reticulum,and neuronal apoptosis in Alzheimer’s disease. J Neurochem.1998,70:1-14
    21. Mills J . Activation of a PP2A-like phosphatase and dephosphorylation of tau protein characterize onset of the execution phase of apoptosis。J cell Sci.1998,111:625-636
    22. 李为平,杨晓岚,刘晓加。大脑皮质及海马乙酰胆碱酯酶纤维分布及其痴呆关系的 研究.中华老年医学杂志.1997,16:226-228
    23. Zapatero MD,Garcia de Jalon A,Pasucual F et al.Serum aluminum levels in Alzheimer’s disease and other senile dementias.Bio Trac Elem Res.1995,47(1-3):235-240.
    24. Tokutake S,Nagase H,Morisaki S et al. Aluminum detected in senile plaques and neurofibrillary tangles is contained in lipofuscin granules with silicon,probably as aluminosiliciate.Neurosci Lett.1995,185(2):99-102.
    25. Armstrong RA,Winsper SJ,Blair JA. Aluminum and Alzheimer’s disease:review of possible pathogenic mechanism.Dementi.1996,7(1):1-9.
    26. PaillerFM,Bequet D,Corbe H et al. Aluminum,hypothetic cause of Alzheimer’s disease.Press Med.1995,11(24):489-490.
    27. Schulz JB, Matthews RT, Jenkins BG, et al.Protection against mitochondrial toxins by inhibition of neuronal nitric-oxide synthase in-vivo. Neurology.1995 45 (4): A204-A205 Suppl. .
    28. Yang, J, McBride S, Mak DOD, et al. Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels. Proc. Natl Acad. Sci. USA. 2002.99: 7711–7716
    29. Berridge, M. J., Lipp, P.and Bootman, M. D. The versatility and universality of calcium signalling. Nat Rev. Mol. Cell Biol. 2000,1: 11–21.
    30. Parker, I., Choi, J. and Yao, Y. Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium .1996,20: 105–121.
    31. Yao, Y., Choi, J. and Parker, I. Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes.J. Physiol. (Lond.) .1995, 482:533–553.
    32. Sun, X. P., Callamaras, N., Marchant et al.A continuum of InsP3-mediated elementary Ca~(2+) signaling events in Xenopus oocytes. J. Physiol. (Lond.).1998, 509: 67–80.
    33. Leissring, M. A, Akbari Y, Fanger CM et al. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol.2000, 149: 793–798 .
    34. Yoo AS, Cheng I, Chung S, et al. Presenilin-mediated modulation of capacitative calcium entry. Neuron .2000,27: 561–572.
    35. Smith IF, Boyle JP, Vaughan PFT, et al. Ca2+ stores and capacitative Ca2+ entry in human neuroblastoma (SH-SY5Y) cells expressing a familial Alzheimer’s disease presenilin-1 mutation. Brain Res. 2002, 949 (1-2): 105-111
    36. Van Leuven, F., Dewachter, I., Herms et al, E. APP and PS1 overexpressing and deficient mice: is calcium homeostasis the crux in Alzheimer’s disease? Neurobio Aging.2002, 23 (1): 911 Suppl. 1 .
    37. Mattson MP, LaFerla FM, Chan SL, et al. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders.Trends Neurosci.2000, 23: 222–229.
    38. Etcheberrigaray R, Hirashima N, Nee L, et al.. Calcium responses in fibroblasts from asymptomatic members of Alzheimer’s disease families. Neurobiol. Dis.1998,5: 37–45.
    39. Larson, J., Lynch, G., Games, D. et al. Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res.1999, 840: 23–35.
    40. Chui DH, Tanahashi H, Ozawa K, et al. Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nature Med.1999, 5: 560–564.
    41. Leissring MA, Murphy MP, Mead TR, et al.. A physiologic signaling role for the γ-secretase-derived intracellular fragment of APP. Proc. Natl Acad. Sci. USA.2002,99, 4697–4702.
    42. Wasco W, Peppercom J, Tanzi R E. Search for the genes responsible for familial Alzheimer’s disease. Ann N Y Acad Sci.1993, 695: 203-208.
    43. Nishimoto, I. Alzheimer amyloid protein precursor complexes with brain GTP-binding protein Go. Nature .1993,362: 75–79
    44. Gibson, G. E.Vestling, M.Zhang H,et al . Abnormalities in Alzheimer’s disease fibroblasts bearing the APP670/671 mutation. Neurobiol. Aging.1997, 18: 573–580.
    45. Koizumi S, Ishiguro M, Ohsawa I, et al. The effect of a secreted form of β-amyloid precursor protein on intracellular Ca2+ increase in rat cultured hippocampal neurones. Br. J. Pharmacol. 1998,123: 1483–1489 .
    46. Guo, Q., Robinson, N. and Mattson, M. P.Secreted β-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-κB and stabilization of calcium homeostasis. J. Biol. Chem.1998, 273: 12341–12345
    47. Mbebi C., Sée Violaine, Mercken L et al. Amyloid precursor protein family-induced neuronal death is mediated by impairment of the neuroprotective calcium/calmodulin protein kinaseIV-dependent signaling pathway. J. Biol. Chem.2002, 277: 20979–20990.
    48. Querfurth, H. W., Jiang, J., Geiger, J. D.et al. Caffeine stimulates amyloidβ-peptide release from β-amyloid precursor protein-transfected HEK293 cells. J. Neurochem. 1997, 69: 1580–1591.
    49. Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Med.1996, 2: 864–870.
    50. De Strooper B, Saftig P, Craessaerts K, et al.. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature.1998, 391:387–390.
    51. Li YM, Xu M, Lai MT, et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature.2000, 405: 689–694.
    52. Wolfe MS, Xia WM, Ostaszewski BL, et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature.1999, 398: 513–517.
    53. Wolfe, M. S. and Selkoe, D. J. Intramembrane proteases —mixing oil and water. Science .2002,296: 2156–2157.
    54. Wolfe, M. S. Presenilin and γ-secretase: structure meets function. J. Neurochem. 2001,76: 1615–1620 .
    55. Weihofen, A., Binns, K., Lemberg, M. K.et al. Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science.2002, 296:2215–22218
    56. Yu G, Nishimura M, Arawaka S, et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature.2000, 407: 48–54.
    57. Francis R, McGrath G, Zhang JH, et al. aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev. Cell.2002, 3: 85–97.
    58. Kopan, R. and Goate, A. Aph-2/Nicastrin: an essential component of γ-secretase and regulator of Notch signaling and Presenilin localization. Neuron.2002, 33: 321–324.
    59. Nakajima, M., Miura, M., Aosaki, T.et al.Deficiency of presenilin-1 increases calcium-dependent ulnerability of neurons to oxidative stress in vitro.J. Neurochem.2001, 78: 807–814.
    60. Weidemann A,Konig G,Bunke D et al.Indentification,biogenesis,and localization of precursors of Alzheimer’s disease A4 amyloid protein.Cell.1989 ,57(1):115-26.
    61. Hooper NM and Turner AJ.Specifity of the Alzheimer’s disease amyloid precursor protein.Nature.1995,373(6514):523
    62. Scubert P,oltersdorf T,Lee MG et al.Secretion of β-amyloid protein precursor cleaved at the amino terminals of theβ-amyloid peptide. Nature.1993,361(6409):260-263
    63. Selkoe DJ,Yamazaki T,Citron M et al. The role of APP processing and traddicking pathways In the formation of amyloid beta-protein.Ann N Y Acad Sci.1996,77:57-64
    64. Greenfield JP, Xu HX, Greengard P, et al.Generation of the amyloid-beta peptide N terminus in Saccharomyces cerevisiae expressing human Alzheimer's amyloid-beta precursor protein .J Biol Chem. 1999,274 (48): 33843-33846
    65. Greenfield JP, Tsai J, Gouras GK, et al.Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides .Proc Natl Acad Sci USA. 1999,96 (2): 742-747 .
    66. Xu HX, Sweeney D, Wang R, et al.Generation of Alzheimer beta-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation . Proc Natl Acad Sci USA. 1997 ,94 (8): 3748-3752
    67. Sunde M,Blake CC.From the globular to the fibrous state:protein structure and structural conversion in amyloid formation.Q Rev Biophys.1998,31(1):1-39.
    68. Sunde M,Serpell LC,Bartlam M et al.Common core structure of amyloid fibrils by sybchrotron X-ray diffraction.J mol Biol.1997,273(3):729-739.
    69. Seiheimer B,Bohrmann B,Bondolfi L et al.The toxicity of the Alzheimer’s beta-amyloid peptide correkates with a distict fiber morphology.J struct Biol.1997,119(1):59-71.
    70. Kowalewski T,Holtzman DM.Free in PMC,In situ atomic force microscopy study of Alzheimer’s beta-amyloid peptide on different substrates:New insights into mechanism of beta-sheet formation.Proc Natl Acad Sci USA.1999,96(7):3688-3693.
    71. Wood Sj,Chan W,Wetzel R. Seeding of a beta fibril formation is inhibitede by all three isotypes of apolipoprotein E. Biochemistry.1996,35(38):12623-12628.
    72. Solomon B,Koppel R,Frankel D et al.Disaggregation of Alzheimer’s beta-amyloid by site-directed mAb.Proc Natl Acad Sci USA.1997,94(8):4109-4112.
    73. Schenk D,Barbour R,Dunn W et al.Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse.Nature.1999,400(6740);173- 177.
    74. Pappolla M,Bozner ,Soto C et al.Inhibition of Alzheimer’s beta-fibrillogenesis by melatonin.J Biol Chem.1998,273(13):7185-7188.
    75. Peterson SA,Klabunde T,Lashuel HR et al.Inhibiting transthyertin conformational changes that lead to amyloid fibril formation . Proc Natl Acad Sci USA. 1998, 95(22):
     12956-12960.
    76. maurice T,Lockhart BP,Privat A.Amnesia induced in mice by centrally administerered beta-amyloid peptides involves cholinergic dysfunction.Brain Re.1996,706(2):181-93.
    77. Giaccone G,Pedroctti B,Migheli A et al.Beta PP and Tau interaction .A possinle lin between amyloid and neurofibrillary tangles in Alzheimer’s disease.Am j Pathol. 1996,148(1):79-87.
    78. CaféC,Torri C,Bertorelli L et al.Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by beta-amyloid peptide.Mol Pharmacol. 1995,47(5);890-897.
    79. Ho, R., Ortiz, D., and Shea, T. B. Amyloid-_ promotes calcium influx and neurodegeneration via stimulation of L voltagesensitive calcium channels rather than NMDA channels in cultured neurons. J. Alzheimers Dis. 2001. 3:479–483.
    80. Rovira, C., Arbez, N., and Mariani, J. A_(25–35) and Aβ(1–40) act on different calcium channels in CA1 hippocampal neurons. Biochem. Biophys. Res. Commun. 2002.296:1317–1321.
    81. Green, K. N. and Peers, C. Amyloid _ peptides mediate hypoxic augmentation of Ca2+ channels. J. Neurochem. 2001.77: 953–956.
    82. Kasparova, J., Lisa, V., Tuˇcek, S., and Dolezal, V. Chronic exposure of NG108-15 cells to amyloid βpeptide (Aβ–42) abolishes calcium influx via N-type calcium channels. Neurochem. Res. 2001,26:1079–1084.
    83. Huang, H. M., Ou, H. C., and Hsieh, S. J. Antioxidants prevent amyloid peptide-induced apoptosis and alteration of calcium homeostasis in cultured cortical neurons. Life Sci. 2000,66:1879–1892.
    84. Kelly, Roth, G. S., and Mattson, M. P.et al. Amyloid _-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc. Natl. Acad. Sci. USA.1996.93:6753–6758.
    85. Pike, C. J., Balazs, R., and Cotman, C. W. Attenuation of β-amyloid neurotoxicity in vitro by potassium-induced depolarization. J. Neurochem. 1996.67:1774–1777.
    86. Blanchard, B. J., Konopka, G., Russell M et al. Mechanism and prevention of neurotoxicity caused by β-amyloid peptides: Relation to Alzheimer’s disease. Brain Res.
     1997.,776:40–50.
    87. Abramov, A. Y., Canevari, L., and Duchen, M. R.. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci. 2003,23:5088–5095.
    88. Arispe, N., Pollard, H. B., and Rojas, E. Giant multilevel cation channels formed by Alzheimer disease amyloid β-protein [APP-(1–40)] in bilayer membranes. Proc. Natl. Acad. Sci. USA. 1993. 90:10573–10577.
    89. Rhee, S. K., Quist, A. P., and Lal, R. 1 Amyloid βrotein-(1–42) forms calcium-permeable, Zn2+-sensitive channel. J. Biol.Chem.1998,273:13379–13382.
    90. Arispe, N., Pollard, H. B., and Rojas, E. Zn2+ interaction with Alzheimer amyloid β protein calcium channels. Proc. Natl.Acad. Sci. USA .1996.93:1710–1715.
    91. Bush, A. J.. The metallobiology of Alzheimer’s disease. Trends Neurosci. 2003, 26:207–214.
    92. Lin, H., Bhatia, R., and Lal, R. Amyloid _ βprotein forms ion channels: Implications for Alzheimer’s disease pathophysiology.FASEB J. 2001.15:2433–2444.
    93. Bhatia, R., Lin, H., and Lal, R. Fresh and globular amyloid βprotein (1–42) induces rapid cellular degeneration: Evidence for AβP channel-mediated cellular toxicity. FASEB J. 2000. 14:1233–1243.
    94. Arispe, N. and Doh, M. Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AβP (1–40) and (1–42) peptides. FASEB J. 2002.16:1526–1536.
    95. Kawahara, M. and Kuroda, Y. Intracellular calcium changes in neuronal cells induced by Alzheimer’s β-amyloid protein are blocked by estradiol and cholesterol. Cell. Mol. Neurobiol. 2001.21:1–13.
    96. Leissring MA, Murphy MP, Mead TR, et al.A physiologic signaling role for the gamma-secretase-derived intracellular fragment of APP .Proc. Natl. Acad. Sci. USA .2002,99 (7): 4697-4702
    97. Cao X, Sudhof TC.A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60. Science. 2001,293 (5534): 1436-1436
    98. Xu HX, Sweeney D, Greengard P, et al.Metabolism of Alzheimer beta-amyloid precursor protein: Regulation by protein kinase A in intact cells and in a cell-free
     system .Proc. Natl. Acad. Sci. USA .1996,93 (9): 4081-4084.
    99. Xu HX, Greengard P, Gandy S.Regulated formation of golgi secretory vesicles containing Alzheimer’s beta-amyloid precursor protein.J Biol Chem.1995, 270 (40): 23243-23245
    100.Xu HX, Wallen R, Seeger M, et al.Regulated cleavafe of beta-amyloid precursor protein(APP)-molecular and cellular basis.J Cell Bioche. 1995, Suppl. 21B :88-88 .
    101.Gouras GK, Xu HX, Gross RS, et al.Testosterone reduces neuronal secretion of Alzheimer's beta-amyloid peptides . Proc. Natl. Acad. Sci. USA. 2000,97 (3): 1202-1205 .
    102.Greenfield JP, Gross RS, Gouras GK, et al.Cellular and molecular basis of beta-amyloid precursor protein metabolism .Fron In Biosci.2000,5: D72-D83 .
    103.Cai DM, Leem JY, Greenfield JP, et al.Presenilin-1 regulates intracellular trafficking and cell surface delivery of beta-amyloid precursor protein .J Biolchem.2003,278 (5): 3446-3454
    104.Leem JY, Saura CA, Pietrzik C, et al.A role for presenilin 1 in regulating the delivery of amyloid precursor protein to the cell surface. Neurobiol Dis.2002, 11 (1): 64-82.
    105.Leem JY, Vijayan S, Han P, et al.Presenilin 1 is required for maturation and cell surface accumulation of nicastrin .J Biol Chem.2002, 277 (21): 19236-19240 .
    106.Yu CJ, Kim SH, Ikeuchi T, et al.Characterization of a presenilin-mediated amyloid precursor protein carboxyl-terminal fragment gamma -Evidence for distinct mechanisms involved in gamma-secretase processing or the APP and Notch1 transmembrane domains .J BiolChem.2002,276 (47): 43756-43760 .
    107.Greenfield JP, Gross RS, Gouras GK, et al.Cellular and molecular basis of beta-amyloid precursor protein metabolism . Front Biosci.2000, 5: D72-D83 .
    108.Gouras GK, Tsai J, Naslund J, et al.Intraneuronal A beta 42 accumulation in human brain.Ame J Pathol.2000, 156 (1): 15-20
    109.Lorenzo A, Yankner BA.Amyloid fibril toxicity in Alzheimer's disease and diabetes .Ann NEW YORK Acad Sci.1996, 777: 89-95
    110.Legutko B, Staufenbiel M, Krieglstein K. Amyloid beta peptide is not a candidate for the neurotrophic activities released from chromaffin cells.Int J Dev Neurosci. 1998,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700