液压缸驱动履带行走机构液压系统动态设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
履带起重机是以吊装一些质量大、体积大、普通设备难以搬运的物料为主的多用途工程机械,广泛地应用于大型工程建设中。履带起重机较其他起重机械的优势主要来源于它独特的行走机构,因而行走机构性能的优劣,直接影响着履带起重机整车的性能和市场生命力。
     当前,国内外大吨位履带起重机制造厂商大多采用靠液压马达及减速器驱动的行走系统,这种驱动方式虽然已经相当成熟,但考虑到大吨位履带吊的实际使用工况,传统驱动方式仍然存在着支撑机构复杂、系统耗能大、成本高等缺点,本文以某公司开发的750t履带起重机为参照机型,设计了利用液压缸驱动的新型行走机构及其液压系统,并利用Simscape软件对行走机构液压系统的动态特性进行仿真研究。
     (1)分析了能够实现参照机型行走性能的新型行走系统的可行性,并对新型行走机构液压系统及其主要动力元件进行初步集成设计;
     (2)应用数值分析软件Matlab软件创建新型行走系统模型,基于Simscape建立新型行走系统液压模型,提出参数设置及控制方法;
     (3) Simulink环境下对新型行走机构液压系统进行仿真分析,通过各显示器监测系统的压力及流量,分析换向过程和负载变化对液压系统的影响;
     (4)仿真分析了影响行走机构液压系统动态特性的主要因素,并对大型履带起重机的新型行走机构液压系统的控制提出了要求;
     (5)参照仿真结果对大型履带起重机新型行走机构液压系统进行了改进,通过对蓄能器及换向阀过渡机能的合理使用降低液压油缸换向运动的冲击。
     本文通过对履带起重机行走机构液压系统的仿真,为基于Simulink/SimHydraulic的复杂工程机械液压动态仿真分析做了有意义的尝试,其研究成果为指导履带起重机新型行走机构液压系统的设计、改进和优化提供了理论基础,具有一定的应用前景。
Crawler crane is the multipurpose engineering machinery which is widely applied for large-scale construction engineering. It mainly lifts and loads materials of great mass, large size and those cannot be moved by normal machinery. Compared with other cranes, crawler crane has its own advantage of the particular traveling mechanism; therefore, the performance of the traveling mechanism has a direct impact on the performance of the entire crane and its market vitality.
     At present, most domestic and foreign large-tonnage crawler crane manufacturers tend to choose the traveling system driven by hydraulic motors and reducers. Although such driving pattern is rather mature, considering the actual usage of large-tonnage crawler crane, there is still some defects of this traditional driving pattern, such as the complexity of the support mechanism, high consumption of energy and high economic costs. Taking the750-ton crawler crane as a reference model, this paper will find methods to improve its traveling hydraulic system and use Simscape to do simulation studies on dynamic characteristics of the new system.
     Analyze the feasibility of the new hydraulic system to achieve the reference models traveling performance, and make a preliminary integrated design for the new hydraulic system.
     Establish the new traveling system model with the data-analyzing software Matlab. Based on Simscape, the hydraulic system simulation model is built and parameter settings as well as controlling methods are put forward.
     Simulate and analyze the traveling mechanism in Simulink environment and analyze how changes in time and pressure influence the hydraulic system through system pressure and flow which gets from sensors.
     Simulate and analyze the main factors that impact the dynamic characteristics of traveling hydraulic system and raise new requirements on hydraulic traveling mechanism control system of large crawler cranes.
     Consulting the simulation result, improve designs of new traveling hydraulic system on large crawler cranes. Reduce the impact of movements of the hydraulic cylinder commutation by reasonably use accumulator and transitional function of directional valve.
     By simulating crawler crane's traveling hydraulic system, this paper made a significative attempt based on Simulink/SimHydraulic. The research output provides a theoretic base on leading design, improvement and optimizing of large crawler crane's new traveling hydraulic system, and has a certain application prospect.
引文
[1]刘金江.履带起重机产品现状及发展趋势[J].建筑机械,2009,(05):32-34.
    [2]杨君玉.国内外履带式起重机精品荟萃[J].工程机械维修,2005(11):126.
    [3]罗汝先.国外履带起重机的发展[J].冶金建筑,1980(3):10-13.
    [4]张明辉.大型履带起重机回转液压系统仿真研究[D].辽宁:大连理工大学机械工程学院,2011.
    [5]李春英.几种履带行走减速器的剖析[J].建筑机械,2009,(01):100-101.
    [6]大连起重机厂编制.起重机设计手册[M].辽宁人民出版社,1979.
    [7]沙永柏,于萍,张翠AMESim软件在导向钻机液压系统仿真中的应用[J].机床与液压,2010(10):94-95.
    [8]BaumaChina2010盛宴中国.工程机械与维修[J].机床与液压,2010.
    [9]濮良贵,纪名刚.机械原理[M].北京:高等教育出版社,2006.
    [10]刘钊,张珊珊.变量泵控制方式及其应用[J].中国工程机械学报,2004,(07):304.
    [11]王学礼.焊机液压控制系统状态监控与故障诊断研究[D].浙江:浙江大学机械工程学院,2010.
    [12]唐省名.液压驱动往复泵换向冲击研究及闭式系统设计[D].湖南:中南大学机械学院,2011.
    [13]赵青,唐省名.油压机回油冲击产生的原因与解决措施[J].液压与气动,2011(05).
    [14]何国华,胡军科,王清标等.混凝土输送泵主泵送回路换向冲击问题研究[J].机械科学与技术,2006(09).
    [15]章宏甲,黄谊.液压传动[M].北京:机械工业出版社,2007.
    [16]成大仙.机械设计手册(第五版)[M].北京:化学工业出版社,2008.
    [17]成红梅.液压系统中换向阀的选择与应用[J].机床与液压,2006(09).
    [18]李颖Simulink动态系统建模与仿真(第二版)[M].西安:西安电子科技大学出版社,2009.
    [19]MATLAB/Simscape User's Manual, The MathWorks Inc.,2010.
    [20]于志远.海上风电安装设备液压系统动态设计[D].辽宁:大连理工大学机械工程学院,2011.
    [21]James A Sullivan. Fluid Power:Theory and Applications [M].4th Ed. Columbus, Ohio, USA:Prentice Hall,1998.
    [22]陈柏松,伍先俊,李兢.基于Simscape的2级双作用液压缸的建模仿真研究[J].机械制造,2009,(04).
    [23]Yeaple F. Fluid Power Design Handbook[M].2nd Ed. New York and Basel:Marcel Dekker Inc,1990.
    [24]董景新,赵长德,熊沈蜀,郭美凤.控制工程基础(第二版)[M].北京:清华大学出版社,2003.
    [25]Stateflow(?)Getting Started Version 6, The MathWorks Inc.,2006.
    [26]张威Stateflow逻辑系统建模[M].西安:西安电子科技大学出版社,2007.
    [27]贾秋玲,袁冬莉,栾云凤.基于MATLAB7.x/Simulink/Stateflow系统仿真、分析及设计[M].西安:西北工业大学出版社,2006.
    [28]余俊.基于双目视觉的机器人目标检测与控制研究[D].北京:北京交通大学,2011.
    [29]施嵘Simulink/Stateflow仿真原理和实现的研究[D].四川:电子科技大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700