DMP1 C末端突变小鼠模型的建立和表型分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低血磷性佝偻病(hypophosphatemic rickets, HR)是由于肾小管对磷的重吸收降低而造成的以骨骼矿化不良、骨软化和佝偻病为主要特征的一组疾病,其主要临床表现为血磷减少、尿磷增多、佝偻病和骨软化症等,在新生儿中的发病率约为两万分之一。遗传性低血磷性佝偻病具有明显遗传异质性,根据遗传方式可以分为以下几种:1)X连锁低血磷性佝偻病(X-linked hypophosphatemic rickets, XLHR, MIM 307800),其致病基因是PHEX(phosphate regulating endopeptidase homolog, X-linked); 2)常染色体显性低血磷性佝偻病(autosomal dominant hypophosphatemic rickets, ADHR, MIM193100),其致病基因是FGF23 (Fibroblast Growth Factor 23); 3)常染色体隐性低血磷性佝偻病(autosomal recessive hypophosphatemic rickets, ARHR,MIM 241520和613312),其致病基因是DMP1 (Dentin Matrix Protein 1)或ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1);4)伴有高尿钙症的遗传性低血磷性佝偻病(hereditary hypophosphatemic rickets with hypercalciuria, HHRH, MIM 241530),其致病基因是SLC34A3 (solute carrier family 34, member 3)
     DMPl基因的编码产物是一种酸性非胶原细胞外基质蛋白,属于SIBLING (Small Integrin-Binding LIgand N-linked Glycoprotein)家族成员。该家族成员不仅具有相似的生物学特性,而且在染色体上成簇排列。DMP1基因在人类染色体上位于4q21-22,在小鼠染色体上位于5q21。DMP1在骨骼和牙齿中表达较高,在多个非矿化的组织中也有表达,但表达水平较低。DMP1蛋白在翻译后被水解成两个片段:N末端的37 kDa大小的片段和C末端的57 kDa大小的片段,然而目前并不清楚哪一个片段在骨骼和牙齿发育过程中发挥更重要的作用。
     Dmp1基因敲除小鼠在胚胎期和刚出生时没有明显的异常表型,提示Dmp1基因不是小鼠早期骨骼和牙齿发育所必需的。在出生后,Dmp1基因敲除小鼠表现出明显的牙齿发育异常,具体表现为前牙本质向牙本质成熟过程缺陷、牙髓腔和牙根管变大、前牙本质变宽、牙本质变窄并且矿化不全。Dmp1基因敲除小鼠还表现出第3磨牙的缺损或发育迟缓,以及牙周缺陷,包括牙槽骨疏松和牙骨质缺陷等。Dmp1基因敲除小鼠在骨骼方面表现出矿化程度降低、骨软化症和佝偻病等症状,具体表现为椎骨和长骨长度变短、直径变大、次级骨化中心发育迟缓和畸形、生长板变宽并且不规则(由于增殖区细胞增殖活性升高和肥大软骨细胞区细胞凋亡降低引起)和骨骺区变大(由于血管侵入受损引起)。Dmp1基因敲除小鼠同时伴有肾磷代谢异常和Fgf23含量升高,但是尿钙含量正常。本课题组曾在一个ARHR家系的患者中检测到DMP1基因第1484-1490位核苷酸纯合缺失,这7个碱基的缺失引起移码突变,使该蛋白C末端最后18个氨基酸残基被33个新的氨基酸残基取代,且被替代的18个氨基酸残基在种属间高度保守。本课题分析了该家系ARHR患者的牙齿表型,并分析了突变蛋白的体外功能。为进一步研究该DMP1突变的分子和病理生理学机制,我们制作了含有该突变的小鼠模型并对其进行了表型分析。
     第一,分析DMP1 C末端缺失患者牙齿表型发现,患者具有明显的牙齿发育异常:对该家系患者的口腔X光片分析结果发现,患者的乳牙和恒牙都表现出明显的异常,包括牙髓腔和牙根管变大,牙本质变薄,牙釉质的缺损等。
     第二,体外分析提示突变蛋白保留DMP1蛋白的部分功能:对比分析由DMP1基因突变导致的ARHR患者和Dmp1基因敲除小鼠表型特点发现,两者具有一些类似表型,如低血磷症等;但也存在一些差异。这些差异可能是由于人和小鼠之间的种属特异性造成的,也可能是由于突变的DMP1蛋白仍保留有部分功能。为明确C末端缺失突变对DMP1功能的影响及其致病机制,本课题首先在体外分析了该缺失突变对DMP1蛋白水解和分泌的影响,并分析了该突变对ERK磷酸化活性的影响。结果发现DMP1蛋白的C末端突变不影响该蛋白的正常分泌和水解,C末端突变的DMP1蛋白仍保留有部分的激活ERK信号通路的功能,表明突变蛋白没有完全丧失功能。
     第三,构建了具有与ARHR患者相同突变的Dmp1突变小鼠模型:为分析DMP1C末端突变的致病机制,我们首先采用转基因方法构建了一种转基因小鼠,该转基因小鼠在3.6 kb Collal启动子的启动下表达含有与ARHR患者相同突变的全长Dmp1基因。我们成功得到了11只founder小鼠,并选取了其中3个独立的品系,用RT-PCR和原位杂交的方法对其进行了表达分析,转基因在骨骼和牙齿中的表达模式与内源性的Dmp1基因基本一致,表达量高于内源性的Dmp1基因。X光片结果显示,与对照小鼠相比,表达突变型Dmp1基因的转基因小鼠没有明显的骨骼和牙齿表型。在此基础上,我们将该转基因小鼠与Dmp1基因敲除小鼠杂交,获得了仅表达外源性突变型Dmp1基因而不表达内源性野生型Dmp1基因的小鼠,即Dmp1基因突变小鼠模型。
     第四,Dmp1基因突变小鼠模型从骨骼、牙齿和生化指标等多方面再现了人类突变患者的表型特征:我们利用组织学、X光片、Micro-CT、扫描电子显微镜、双荧光标记和血清生化分析等技术系统全面地分析了Dmp1基因突变小鼠的表型,并与ARHR患者的症状和Dmp1基因敲除小鼠的表型进行比较。
     1)骨骼表型:小鼠全身X光片和后肢X光片显示,Dmp1基因突变小鼠表现出佝偻病表型,包括股骨和胫骨长度变短,干垢端变大、生长板变宽和骨骼形态改变。定量分析结果显示,Dmp1基因突变小鼠的胫骨长度与正常对照相比变短,但是变短程度不如Dmp1基因敲除小鼠明显。骨骼石蜡切片的Safranin-O染色也进一步验证了佝偻病特征,生长板明显变宽,其中肥大软骨细胞层的变宽程度最大,静止层和增殖层也有一定程度的变宽。Goldner染色结果显示Dmp1基因突变小鼠骨皮质中含有非常多的类骨质,表现出骨骼矿化不全和骨软化症。双荧光标记实验显示骨骼矿化速率降低、矿化过程紊乱。扫描电子显微镜结果显示Dmp1基因突变小鼠的骨细胞lacuna-canalicular系统异常,骨细胞体积变大,表面粗糙,突触变短并且变少。这些异常的骨骼表型严重程度明显低于Dmp1基因敲除小鼠,但是与ARHR患者骨骼异常一致,表明Dmp1基因突变小鼠模型较好地模拟了人类突变的骨骼方面表型。
     2)牙齿表型:小鼠牙齿的X光片和Micro-CT分析结果显示,Dmp1基因突变小鼠牙本质变薄,牙髓腔和牙根管体积变大,但是表型程度比Dmp1基因敲除小鼠要轻。牙齿切片的H&E染色结果也进一步验证了X光片和Micro-CT的分析结果,Dmp1基因突变小鼠的前牙本质变宽,而牙本质变窄。双荧光标记实验显示Dmp1基因突变小鼠牙本质矿化形成的速度明显变慢、牙本质矿化过程出现异常。此外,Dmp1基因突变小鼠还表现出下颌骨节发育异常。然而以上实验结果以及反向散射扫描电子显微镜结果都没有发现Dmp1基因突变小鼠中有任何的牙釉质缺陷,这一结果与ARHR患者的牙釉质缺陷症状不同。这些结果提示Dmp1基因突变小鼠模型较好地模拟了人类突变的牙本质方面表型,而ARHR患者中发现的牙釉质缺陷可能是由于DMP1基因突变之外的其他原因导致。
     3)血清生化指标分析:Dmp1基因突变小鼠血清中Fgf23分子含量升高,磷的含量降低,但是改变程度较小;血清中钙的含量没有明显变化。这一结果与ARHR患者非常一致,但改变程度比Dmp1基因敲除小鼠的改变程度小很多。
     综上所述,Dmp1基因突变小鼠在以上三方面再现了人类突变表型特征,但是与Dmp1基因敲除小鼠相比,该突变所引起的表型效应较轻,也提示该突变蛋白仍保留了部分功能。
     Dmp1基因突变小鼠模型的成功构建不仅为研究该突变的致病机制及寻找该疾病治疗手段奠定了基础,而且也为研究DMP1基因的其它突变提供了重要参考。
Hypophosphatemic rickets (HR) is characterized by hypomineralization of bone, rickets and osteomalacia due to abnormal Pi reabsorption in renal tubules. The clinical features of HR include hypophosphatemia, phosphaturia, rickets and osteomalacia, with an incidence of 1 in 20,000 newborns. Hypophosphatemic rickets can be inherited in autosomal dominant, autosomal recessive, or X-linked pattern. X-linked hypophosphatemic rickets (XLHR, MIM 307800) is caused by mutation in the PHEX gene (phosphate regulating endopeptidase homolog, X-linked). Autosomal dominant hypophosphatemic rickets (ADHR, MIM 193100) is caused by mutation in the FGF23 gene (Fibroblast Growth Factor 23). Autosomal recessive hypophosphatemic rickets (ARHR, MIM 241520 and 613312) is caused by mutation in the DMP1 gene (Dentin Matrix Protein 1) or in the ENPP1 gene (ectonucleotide pyrophosphatase/phosphodiesterase 1). Hereditary hypophosphatemic rickets with hypercalciuria (HHRH, MIM 241530) is caused by mutation in the SLC34A3 gene (solute carrier family 34, member 3).
     DMP1 gene encodes an acidic non-collagen extracellular matrix protein, a member of the SIBLING (Small Integrin-Binding LIgand N-linked Glycoprotein) family whose members share similar features in both biological properties and genomic structure. DMP1 gene was mapped to human chromosome 4q21-22 and mouse chromosome 5q21, respectively. DMP1 is highly expressed in bone and dentin, and lower expressed in non-mineralized tissues. DMP1 is cleaved into the 37 kDa N-terminal and the 57 kDa C-terminal fragments, but it is not clear which fragment is functionally critical for bone and tooth formation both in vivo and in vitro.
     Dmpl null embryos and newborns display no apparent gross abnormal phenotype, suggesting that Dmpl is not essential for early mouse skeletal or dental development. Dmpl null mice postnatally developed a profound tooth phenotype characterized by partial failure of maturation of predentin into dentin, enlarged pulp chambers and root canals, increased width of predentin zone with reduced dentin wall, and hypomineralization. Dmpl null mice also showed absence or delayed development of the third molar and periodontal breakdown, including porous alveolar and defective cementum. Dmpl null mice manifested decreased bone mineralization and osteomalacia, as well as rickets, which was characterized by shorter and wider vertebrae and long bones, delayed and malformed secondary ossification centers, irregular and highly expanded growth plate (due to increased cell proliferation in proliferating zone and reduced apoptosis in the hypertrophic zone) and increased epiphyses area (due to impaired blood vessel invasion). The rickets and osteomalacia phenotypes of Dmpl null mice were associated with isolated renal phosphate-wasting, elevated Fgf23 levels and normal calciuria.
     In the patients of one of our previously reported ARHR kindreds, a homozygous deletion of nucleotides 1484-1490 in DMP1 gene was detected. The deletion of the 7 nucleotides resulted in a frameshift that replaced the conserved C-terminal 18 residues with 33 novel residues. In the present study, we characterized the tooth phenotypes of the patients, and analyzed the function of mutant protein in vitro. To further understand the molecular and pathophysiologic mechanism of this DMP1 mutation, we generated and characterized a mouse model with this specific mutation.
     Firstly, we examined the tooth phenotype of the patients with DMP1 C-terminal mutation, and found that the patients displayed obvious abnormalities during tooth development:the radiographs from the patient teeth (both primary and permanent teeth) showed significantly enlarged pulps and root canals with extremely thin dentin and loss of enamel.
     Secondly, in vitro function assays suggested that the mutant protein maintained partial function of DMP1:ARHR patients with DMP1 mutation and Dmpl null mice share some common features, such as hypophosphatemia. However, minor differences exist between the mouse model and the human ARHR patients. These differences could be due to species-specificity of human versus mouse, or that the mutant DMP1 in human may maintain partial function of DMP1. To determine the function of the C-terminal mutant DMP1 and the mechanism in which it causes ARHR, we examined the cleavage and secretion of the C-terminal mutant DMP1, and its function on ERK phosphorylation. The C-terminal mutant DMP1 can be secreted and cleaved normally and maintained partial function on ERK phosphorylation. These data suggested that the mutant protein did not completely lose its function.
     Thirdly, we genetated a mouse model harboring the human DMP1 1481-1490 deletion mutation. To study the mechanism in which DMP1 C-terminal mutation cause ARHR, we generated transgenic mice harboring the full-length Dmpl cDNA with the same deletion mutation as observed in ARHR patients under control of the 3.6 kb Collal promoter. Eleven founder mice were got and 3 independent lines were used for expression analyses by RT-PCR and in situ hybridization. The expression pattern of the transgene in bone and teeth is the same as endogenous Dmpl gene, and the expression level is higher than endogenous Dmpl gene. Radiographs showed that the transgenic mice expressing the mutant Dmpl gene did not show an apparent bone and teeth phenotype compared to the WT control mice. Then, these transgenic lines were crossed to Dmpl null mice, and the homozygous mice with Dmpl mutation but without endogenous Dmpl gene were obtained.
     Fourthly, the Dmpl mutant mice recaptured the human ARHR patients' phenotypes, including bone, tooth and serum markers:The phenotypes of Dmpl mutant mice were characterized and compared with those of ARHR patients and Dmpl null mice using several assays including histology, radiography, Micro-CT, SEM, calcein/alizarin red double labeling, and serum biochemistry.
     1) Bone phenotype:As showed in radiographs of the whole bodies and hind limbs, Dmpl mutant mice displayed rickets phenotype, including shorter femur and tibia, expanded metaphyses, enlarged growth plates and malformed bone shape. Quantitative analyses of tibia length confirmed that the long bones in Dmpl mutant mice are shorter compared to the control mice, but are not as severe as Dmpl null mice. Histological data of Safranin-O staining further confirmed the rickets phenotype such as striking expansion of the growth plate, including resting zone, proliferation zone and hypertrophic zone with the last one expanded most. Goldner assay showed abundant osteoid in the mineral of cortical bone in Dmpl mutant mice, a significant sign of hypo-mineralization and osteomalacia phenotype. Double fluorochrome labeling assay showed slow rate and disruption of bone mineralization in Dmpl mutant mice. Dmpl mutant mice also showed abnormalities in the osteocyte lacuna-canalicular system by SEM, such as enlarged size and buckled surface of the osteocytes, and fewer and shorter synapses. These phenotypes of Dmpl mutant mice were consistent with observations in samples from ARHR patients, but milder than those in Dmpl null mice, suggesting that the Dmpl mutant mice can recapture the human ARHR bone phenotype.
     2) Tooth phenotype:Dmpl mutant mice showed thin dentin and enlarged pulp cavities and root canals with radiograph and Micro-CT analyses, but the phenotype is milder than that in Dmpl null mice. Histological data of H&E staining further confirmed the dentin phenotype in Dmpl mutant mice:the expanded predentin and the thin dentin. The double labeling assay also showed reduction of the dentin formation rate and diffused labeling lines in Dmpl mutant mice. Dmpl mutant mice also showed defects in condyle formation. However, all these analyses as well as backscattered SEM results did not show any enamel defects in Dmpl mutant mice, which is different from the enamel defects in ARHR patients. These data suggested that the Dmpl mutant mice can recapture the human ARHR tooth phenotype, and the enamel defects in ARHR patients may be due to reasons other than DMP1 mutation.
     3) Serum biochemistry:we also showed a mild increase of serum Fgf23 in the Dmpl mutant mice compared to the control. Similarly, the decrease in serum Pi level was also mild in all three age groups tested. The serum calcium level is largely unchanged in the Dmpl mutant mice. These data of Dmpl mutant mice were consistent with those in ARHR patients, but milder than those of Dmpl null mice.
     In summary, Dmpl mutant mice recaptured the phenotype of the human ARHR patients in all 3 aspects mentioned above. However, the phenotype of Dmpl mutant mice is milder that that of Dmpl null mice, suggesting that the mutant DMP1 molecule maintained a partial function of this protein.
     Successful generation and characterization of the DMP1 C-terminal mutant mice model will provide a foundation for studies on the mechanism in which DMP1 mutation causes ARHR, a powerful tool for studies of clinical therapy of this disease, and an important clue for the studies on other mutations of DMP1 gene.
引文
1. ADHRConsortium.2000. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345-348.
    2. Kruse, K., Woelfel, D., and Strom, T.M.2001. Loss of renal phosphate wasting in a child with autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation. Horm Res 55:305-308.
    3. Shimada, T., Kakitani, M., Yamazaki, Y., Hasegawa, H., Takeuchi, Y., Fujita, T., Fukumoto, S., Tomizuka, K., and Yamashita, T.2004. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. JClin Invest 113:561-568.
    4. Sitara, D., Razzaque, M.S., Hesse, M., Yoganathan, S., Taguchi, T., Erben, R.G., Juppner, H., and Lanske, B.2004. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 23:421-432.
    5. Liu, S., Zhou, J., Tang, W., Jiang, X., Rowe, D.W., and Quarles, L.D.2006. Pathogenic role of Fgf23 in Hyp mice. Am JPhysiol Endocrinol Metab 291:E38-49.
    6. Quarles, L.D.2008. Endocrine functions of bone in mineral metabolism regulation.J Clin Invest 118:3820-3828.
    7. Strom, T.M., and Juppner, H.2008. PHEX, FGF23, DMP1 and beyond. Curr Opin Nephrol Hypertens 17:357-362.
    8. White, K.E., Larsson, T.E., and Econs, M.J.2006. The roles of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis:frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 23. Endocr Rev 27:221-241.
    9. Shimada, T., Mizutani, S., Muto, T., Yoneya, T., Hino, R., Takeda, S., Takeuchi, Y., Fujita, T., Fukumoto, S., and Yamashita, T.2001. Cloning and
    characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98:6500-6505.
    10. Shimada, T., Muto, T., Urakawa, I., Yoneya, T., Yamazaki, Y., Okawa, K., Takeuchi, Y., Fujita, T., Fukumoto, S., and Yamashita, T.2002. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 143:3179-3182.
    11. Benet-Pages, A., Lorenz-Depiereux, B., Zischka, H., White, K.E., Econs, M.J., and Strom, T.M.2004. FGF23 is processed by proprotein convertases but not by PHEX.Bone 35:455-462.
    12. The_HYP_Consortium.1995. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets.. Nat Genet 11:130-136.
    13. Holm, I.A., Huang, X., and Kunkel, L.M.1997. Mutational analysis of the PEX gene in patients with X-linked hypophosphatemic rickets. Am J Hum Genet 60:790-797.
    14. Turner, A.J., and Tanzawa, K.1997. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J 11:355-364.
    15. Tenenhouse, H.S., and Sabbagh, Y.2002. Novel phosphate-regulating genes in the pathogenesis of renal phosphate wasting disorders. Pflugers Arch 444:317-326.
    16. Jonsson, K.B., Zahradnik, R., Larsson, T., White, K.E., Sugimoto, T., Imanishi, Y., Yamamoto, T., Hampson, G., Koshiyama, H., Ljunggren, O., et al.2003. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. NEngl J Med 348:1656-1663.
    17. Weber, T.J., Liu, S., Indridason, O.S., and Quarles, L.D.2003. Serum FGF23 levels in normal and disordered phosphorus homeostasis. JBone Miner Res 18:1227-1234.
    18. Yamazaki, Y., Okazaki, R., Shibata, M., Hasegawa, Y., Satoh, K., Tajima, T., Takeuchi, Y., Fujita, T., Nakahara, K., Yamashita, T., et al.2002. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87:4957-4960.
    19. Feng, J.Q., Ward, L.M., Liu, S., Lu, Y., Xie, Y., Yuan, B., Yu, X., Rauch, F., Davis, S.I., Zhang, S., et al.2006. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310-1315.
    20. Lorenz-Depiereux, B., Bastepe, M., Benet-Pages, A., Amyere, M., Wagenstaller, J., Muller-Barth, U., Badenhoop, K., Kaiser, S.M., Rittmaster, R.S., Shlossberg, A.H., et al.2006. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38:1248-1250.
    21. Farrow, E.G., Davis, S.I., Ward, L.M., Summers, L.J., Bubbear, J.S., Keen, R., Stamp, T.C., Baker, L.R., Bonewald, L.F., and White, K.E.2009. Molecular analysis of DMP1 mutants causing autosomal recessive hypophosphatemic rickets. Bone 44:287-294.
    22. Turan, S., Aydin, C., Bereket, A., Akcay, T., Guran, T., Yaralioglu, B.A., Bastepe, M., and Juppner, H.2010. Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone 46:402-409.
    23. Koshida, R., Yamaguchi, H., Yamasaki, K., Tsuchimochi, W., Yonekawa, T., and Nakazato, M.2010. A novel nonsense mutation in the DMP1 gene in a Japanese family with autosomal recessive hypophosphatemic rickets. JBone Miner Metab.
    24. Lorenz-Depiereux, B., Schnabel, D., Tiosano, D., Hausler, G., and Strom, T.M. 2010. Loss-of-Function ENPP1 Mutations Cause Both Generalized Arterial Calcification of Infancy and Autosomal-Recessive Hypophosphatemic Rickets. The American Journal of Human Genetics 86:267-272.
    25. Levy-Litan, V., Hershkovitz, E., Avizov, L., Leventhal, N., Bercovich, D., Chalifa-Caspi, V., Manor, E., Buriakovsky, S., Hadad, Y., Goding, J., et al. 2010. Autosomal-Recessive Hypophosphatemic Rickets Is Associated with an
    Inactivation Mutation in the ENPP1 Gene. The American Journal of Human Genetics 86:273-278.
    26. van Driel, I.R., and Goding, J.W.1987. Plasma cell membrane glycoprotein PC-1. Primary structure deduced from cDNA clones. JBiol Chem 262:4882-4887.
    27. Takahashi, T., Old, L.J., and Boyse, E.A.1970. Surface alloantigens of plasma cells. J Exp Med 131:1325-1341.
    28. Goding, J.W., Grobben, B., and Slegers, H.2003. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta 1638:1-19.
    29. Rutsch, F., Ruf, N., Vaingankar, S., Toliat, M.R., Suk, A., Hohne, W., Schauer, G., Lehmann, M., Roscioli, T., Schnabel, D., et al.2003. Mutations in ENPP1 are associated with 'idiopathic' infantile arterial calcification. Nat Genet 34:379-381.
    30. Lorenz-Depiereux, B., Benet-Pages, A., Eckstein, G., Tenenbaum-Rakover, Y., Wagenstaller, J., Tiosano, D., Gershoni-Baruch, R., Albers, N., Lichtner, P., Schnabel, D., et al.2006. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 78:193-201.
    31. Bergwitz, C., Roslin, N.M., Tieder, M., Loredo-Osti, J.C., Bastepe, M., Abu-Zahra, H., Frappier, D., Burkett, K., Carpenter, T.O., Anderson, D., et al.2006. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-Ⅱc in maintaining phosphate homeostasis. Am J Hum Genet 78:179-192.
    32. Ichikawa, S., Sorenson, A.H., Imel, E.A., Friedman, N.E., Gertner, J.M., and Econs, M.J.2006. Intronic deletions in the SLC34A3 gene cause hereditary hypophosphatemic rickets with hypercalciuria. J Clin Endocrinol Metab 91:4022-4027.
    33. Fisher, L.W., Torchia, D.A., Fohr, B., Young, M.F., and Fedarko, N.S.2001. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 280:460-465.
    34. Fisher, L.W., and Fedarko, N.S.2003. Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44 Suppl 1:33-40.
    35. Hirst, K.L., Simmons, D., Feng, J., Aplin, H., Dixon, M.J., and MacDougall, M.1997. Elucidation of the sequence and the genomic organization of the human dentin matrix acidic phosphoprotein 1 (DMP1) gene:exclusion of the locus from a causative role in the pathogenesis of dentinogenesis imperfecta type Ⅱ. Genomics 42:38-45.
    36. Toyosawa, S., O'HUigin, C., Tichy, H., and Klein, J.1999. Characterization of dentin matrix protein 1 gene in crocodilia. Gene 234:307-314.
    37. Toyosawa, S., Sato, A., O'HUigin, C., Tichy, H., and Klein, J.2000. Expression of the dentin matrix protein 1 gene in birds. JMol Evol 50:31-38.
    38. MacDougall, M., Gu, T.T., Luan, X., Simmons, D., and Chen, J.1998. Identification of a novel isoform of mouse dentin matrix protein 1:spatial expression in mineralized tissues. J Bone Miner Res 13:422-431.
    39. Thotakura, S.R., Karthikeyan, N., Smith, T., Liu, K., and George, A.2000. Cloning and characterization of rat dentin matrix protein 1 (DMP1) gene and its 5'-upstream region. JBiol Chem 275:10272-10277.
    40. Kim, J.W., Yamakoshi, Y., Iwata, T., Hu, Y.Y., Zhang, H., Hu, J.C., and Simmer, J.P.2006. Porcine dentin matrix protein 1:gene structure, cDNA sequence, and expression in teeth. Eur J Oral Sci 114:33-41.
    41. Hirst, K.L., Ibaraki-O'Connor, K., Young, M.F., and Dixon, M. J.1997. Cloning and expression analysis of the bovine dentin matrix acidic phosphoprotein gene. JDent Res 76:754-760.
    42. Lu, Y., Xie, Y., Zhang, S., Dusevich, V., Bonewald, L.F., and Feng, J.Q.2007. DMP1-targeted Cre expression in odontoblasts and osteocytes. J Dent Res 86:320-325.
    43. Qin, C., Brunn, J.C., Cook, R.G., Orkiszewski, R.S., Malone, J.P., Veis, A., and Butler, W.T.2003. Evidence for the proteolytic processing of dentin matrix protein 1. Identification and characterization of processed fragments and cleavage sites. JBiol Chem 278:34700-34708.
    44. Steiglitz, B.M., Ayala, M., Narayanan, K., George, A., and Greenspan, D.S. 2004. Bone morphogenetic protein-1/Tolloid-like proteinases process dentin matrix protein-1. JBiol Chem 279:980-986.
    45. Qin, C., Baba, O., and Butler, W.T.2004. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med 15:126-136.
    46. Qin, C., Huang, B., Wygant, J.N., McIntyre, B.W., McDonald, C.H., Cook, R.G., and Butler, W.T.2006. A chondroitin sulfate chain attached to the bone dentin matrix protein 1 NH2-terminal fragment. JBiol Chem 281:8034-8040.
    47. George, A., Sabsay, B., Simonian, P.A., and Veis, A.1993. Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. JBiol Chem 268:12624-12630.
    48. Feng, J.Q., Huang, H., Lu, Y., Ye, L., Xie, Y., Tsutsui, T.W., Kunieda, T., Castranio, T., Scott, G., Bonewald, L.B., et al.2003. The Dentin matrix protein 1 (Dmpl) is specifically expressed in mineralized, but not soft, tissues during development. JDent Res 82:776-780.
    49. Baba, O., Qin, C., Brunn, J.C., Wygant, J.N., McIntyre, B.W., and Butler, W.T. 2004. Colocalization of dentin matrix protein 1 and dentin sialoprotein at late stages of rat molar development. Matrix Biol 23:371-379.
    50. D'Souza, R.N., Cavender, A., Sunavala, G., Alvarez, J., Ohshima, T., Kulkarni, A.B., and MacDougall, M.1997. Gene expression patterns of murine dentin matrix protein 1 (Dmpl) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res 12:2040-2049.
    51. Feng, J.Q., Zhang, J., Dallas, S.L., Lu, Y., Chen, S., Tan, X., Owen, M., Harris, S.E., and MacDougall, M.2002. Dentin matrix protein 1, a target molecule for Cbfal in bone, is a unique bone marker gene. J Bone Miner Res 17:1822-1831.
    52. Toyosawa, S., Shintani, S., Fujiwara, T., Ooshima, T., Sato, A., Ijuhin, N., and Komori, T.2001. Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. JBone Miner Res 16:2017-2026.
    53. Butler, W.T., Brunn, J.C., Qin, C., and McKee, M.D.2002. Extracellular matrix proteins and the dynamics of dentin formation. Connect Tissue Res 43:301-307.
    54. Terasawa, M., Shimokawa, R., Terashima, T., Ohya, K., Takagi, Y., and Shimokawa, H.2004. Expression of dentin matrix protein 1 (DMP1) in nonmineralized tissues. JBone Miner Metab 22:430-438.
    55. Ogbureke, K.U., and Fisher, L.W.2004. Expression of SIBLINGS and their partner MMPs in salivary glands. JDent Res 83:664-670.
    56. Ogbureke, K.U., and Fisher, L.W.2005. Renal expression of SIBLING proteins and their partner matrix metalloproteinases (MMPs). Kidney Int 68:155-166.
    57. Chaplet, M., De Leval, L., Waltregny, D., Detry, C., Fornaciari, G., Bevilacqua, G., Fisher, L.W., Castronovo, V., and Bellahcene, A.2003. Dentin matrix protein 1 is expressed in human lung cancer. J Bone Miner Res 18:1506-1512.
    58. Toyosawa, S., Tomita, Y., Kishino, M., Hashimoto, J., Ueda, T., Tsujimura, T., Aozasa, K., Ijuhin, N., and Komori, T.2004. Expression of dentin matrix protein 1 in tumors causing oncogenic osteomalacia. Mod Pathol 17:573-578.
    59. Fisher, L.W., Jain, A., Tayback, M., and Fedarko, N.S.2004. Small integrin binding ligand N-linked glycoprotein gene family expression in different cancers. Clin Cancer Res 10:8501-8511.
    60. Ogbureke, K.U., and Fisher, L.W.2007. SIBLING expression patterns in duct epithelia reflect the degree of metabolic activity. JHistochem Cytochem 55:403-409.
    61. Ogbureke, K.U., Nikitakis, N.G., Warburton, G., Ord, R.A., Sauk, J.J., Waller, J.L., and Fisher, L.W.2007. Up-regulation of SIBLING proteins and correlation with cognate MMP expression in oral cancer. Oral Oncol.
    62. Karadag, A., Fedarko, N.S., and Fisher, L.W.2005. Dentin matrix protein 1 enhances invasion potential of colon cancer cells by bridging matrix metalloproteinase-9 to integrins and CD44. Cancer Res 65:11545-11552.
    63. Boskey, A.L.1992. Mineral-matrix interactions in bone and cartilage. Clin Orthop Relat Res:244-274.
    64. Embery, G., Hall, R., Waddington, R., Septier, D., and Goldberg, M.2001. Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med 12:331-349.
    65. Murshed, M., Schinke, T., McKee, M.D., and Karsenty, G.2004. Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 165:625-630.
    66. Veis, A., Sfeir, C., and Wu, C.B.1997. Phosphorylation of the proteins of the extracellular matrix of mineralized tissues by casein kinase-like activity. Crit Rev Oral Biol Med 8:360-379.
    67. Addadi, L., and Weiner, S.1985. Interactions between acidic proteins and crystals:stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82:4110-4114.
    68. Moradian-Oldak, J., Frolow, F., Addadi, L., and Weiner, S.1992. Interactions between acidic matrix macromolecules and calcium phosphate ester crystals: relevance to carbonate apatite formation in biomineralization. Proc Biol Sci 247:47-55.
    69. Furedi-Milhofer, H., Moradian-Oldak, J., Weiner, S., Veis, A., Mintz, K.P., and Addadi, L.1994. Interactions of matrix proteins from mineralized tissues with octacalciium phosphate. Connect Tissue Res 30:251-264.
    70. Ye, L., MacDougall, M., Zhang, S., Xie, Y., Zhang, J., Li, Z., Lu, Y., Mishina, Y., and Feng, J.Q.2004. Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem 279:19141-19148.
    71. Ye, L., Zhang, S., Ke, H., Bonewald, L.F., and Feng, J.Q.2008. Periodontal breakdown in the Dmpl null mouse model of hypophosphatemic rickets. J Dent Res 87:624-629.
    72. Ling, Y., Rios, H.F., Myers, E.R., Lu, Y., Feng, J.Q., and Boskey, A.L.2005. DMP1 depletion decreases bone mineralization in vivo:an FTIR imaging analysis. JBone Miner Res 20:2169-2177.
    73. Ye, L., Mishina, Y., Chen, D., Huang, H., Dallas, S.L., Dallas, M.R., Sivakumar, P., Kunieda, T., Tsutsui, T.W., Boskey, A., et al.2005. Dmp1-deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. JBiol Chem 280:6197-6203.
    74. Wu, H., Li, J., Teng, P.N., Lee, P.J., Feng, J.Q., and Sfeir, C.2008. DMP-1 Signaling Role in hMSC, MC3T3 and MDPC23 cells. The American Society of Dental Research 37th Annual Metting.
    75. Lu, Y., Qin, C., Xie, Y., Bonewald, L.F., and Feng, J.Q.2009. Studies of the DMP157-kDa functional domain both in vivo and in vitro. Cells Tissues Organs 189:175-185.
    76. Priam, F., Ronco, V., Locker, M., Bourd, K., Bonnefoix, M., Duchene, T., Bitard, J., Wurtz, T., Kellermann, O., Goldberg, M., et al.2005. New cellular models for tracking the odontoblast phenotype. Arch Oral Biol 50:271-277.
    77. Goldberg, H.A., and Warner, K.J.1997. The staining of acidic proteins on polyacrylamide gels:enhanced sensitivity and stability of "Stains-all" staining in combination with silver nitrate. Anal Biochem 251:227-233.
    78. Huang, B., Maciejewska, I., Sun, Y., Peng, T., Qin, D., Lu, Y., Bonewald, L., Butler, W.T., Feng, J., and Qin, C.2008. Identification of full-length dentin matrix protein 1 in dentin and bone. Calcif Tissue Int 82:401-410.
    79. Makitie, O., Pereira, R.C., Kaitila, I., Turan, S., Bastepe, M., Laine, T., Kroger, H., Cole, W.G., and Juppner, H.2010. Long-term clinical outcome and carrier phenotype in autosomal recessive hypophosphatemia caused by a novel DMP1 mutation. Journal of Bone and Mineral Research Published online on Apr 07, 2010.
    80. Lu, Y., Ye, L., Yu, S., Zhang, S., Xie, Y., McKee, M.D., Li, Y.C., Kong, J., Eick, J.D., Dallas, S.L., et al.2007. Rescue of odontogenesis in Dmp1-deficient mice by targeted re-expression of DMP1 reveals roles for DMP1 in early odontogenesis and dentin apposition in vivo. Dev Biol 303:191-201.
    81. Xiao, S., Yu, C., Chou, X., Yuan, W., Wang, Y., Bu, L., Fu, G., Qian, M., Yang, J., Shi, Y., et al.2001. Dentinogenesis imperfecta 1 with or without
    progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet 27:201-204.
    82. Zhang, X., Zhao, J., Li, C., Gao, S., Qiu, C., Liu, P., Wu, G., Qiang, B., Lo, W.H., and Shen, Y.2001. DSPP mutation in dentinogenesis imperfecta Shields type II. Nat Genet 27:151-152.
    83. Sreenath, T., Thyagarajan, T., Hall, B., Longenecker, G., D'Souza, R., Hong, S., Wright, J.T., MacDougall, M., Sauk, J., and Kulkarni, A.B.2003. Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type Ⅲ. JBiol Chem 278:24874-24880.
    1. Sabbagh, Y., Carpenter, T.O., and Demay, M.B.2005. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102:9637-9642.
    2. Forster, I.C., Hernando, N., Biber, J., and Murer, H.2006. Proximal tubular handling of phosphate:A molecular perspective. Kidney Int 70:1548-1559.
    3. Tenenhouse, H.S.2007. Phosphate transport:molecular basis, regulation and pathophysiology. J Steroid Biochem Mol Biol 103:572-577.
    4. Miyamoto, K., Ito, M., Tatsumi, S., Kuwahata, M., and Segawa, H.2007. New aspect of renal phosphate reabsorption:the type Ⅱc sodium-dependent phosphate transporter. Am JNephrol 27:503-515.
    5. Mensenkamp, A.R., Hoenderop, J.G., and Bindels, R.J.2007. TRPV5, the gateway to Ca2+ homeostasis. Handb Exp Pharmacol:207-220.
    6. Holick, M.F.2007. Vitamin D deficiency. NEngl J Med 357:266-281.
    7. Bianchine, J.W., Stambler, A.A., and Harrison, H.E.1971. Familial hypophosphatemic rickets showing autosomal dominant inheritance. Birth Defects Orig Artic Ser 7:287-295.
    8. Econs, M.J., and McEnery, P.T.1997. Autosomal dominant hypophosphatemic rickets/osteomalacia:clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab 82:674-681.
    9. Econs, M.J., McEnery, P.T., Lennon, F., and Speer, M.C.1997. Autosomal dominant hypophosphatemic rickets is linked to chromosome 12p13. J Clin Invest 100:2653-2657.
    10. Imel, E.A., Hui, S.L., and Econs, M.J.2007. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. JBone Miner Res 22:520-526.
    11. ADHRConsortium.2000. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345-348.
    12. Kruse, K., Woelfel, D., and Strom, T.M.2001. Loss of renal phosphate wasting in a child with autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation. Horm Res 55:305-308.
    13. Shimada, T., Kakitani, M., Yamazaki, Y., Hasegawa, H., Takeuchi, Y., Fujita, T., Fukumoto, S., Tomizuka, K., and Yamashita, T.2004. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561-568.
    14. Sitara, D., Razzaque, M.S., Hesse, M., Yoganathan, S., Taguchi, T., Erben, R.G., Juppner, H., and Lanske, B.2004. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 23:421-432.
    15. Liu, S., Zhou, J., Tang, W., Jiang, X., Rowe, D.W., and Quarles, L.D.2006. Pathogenic role of Fgf23 in Hyp mice. Am JPhysiol Endocrinol Metab 291:E38-49.
    16. Quarles, L.D.2008. Endocrine functions of bone in mineral metabolism regulation. JClin Invest 118:3820-3828.
    17. Strom, T.M., and Juppner, H.2008. PHEX, FGF23, DMP1 and beyond. Curr Opin Nephrol Hypertens 17:357-362.
    18. Saito, H., Maeda, A., Ohtomo, S., Hirata, M., Kusano, K., Kato, S., Ogata, E., Segawa, H., Miyamoto, K., and Fukushima, N.2005. Circulating FGF-23 is regulated by lalpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 280:2543-2549.
    19. Yu, X., Ibrahimi, O.A., Goetz, R., Zhang, F., Davis, S.I., Garringer, H.J., Linhardt, R.J., Ornitz, D.M., Mohammadi, M., and White, K.E.2005. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Endocrinology 146:4647-4656.
    20. Shimada, T., Hasegawa, H., Yamazaki, Y., Muto, T., Hino, R., Takeuchi, Y., Fujita, T., Nakahara, K., Fukumoto, S., and Yamashita, T.2004. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. JBone Miner Res 19:429-435.
    21. Larsson, T., Marsell, R., Schipani, E., Ohlsson, C., Ljunggren, O., Tenenhouse, H.S., Juppner, H., and Jonsson, K.B.2004. Transgenic mice expressing fibroblast growth factor 23 under the control of the alphal(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145:3087-3094.
    22. Miyamoto, K., Ito, M., Kuwahata, M., Kato, S., and Segawa, H.2005. Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23. Ther Apher Dial 9:331-335.
    23. Inoue, Y., Segawa, H., Kaneko, I., Yamanaka, S., Kusano, K., Kawakami, E., Furutani, J., Ito, M., Kuwahata, M., Saito, H., et al.2005. Role of the vitamin D receptor in FGF23 action on phosphate metabolism. Biochem J 390:325-331.
    24. White, K.E., Larsson, T.E., and Econs, M.J.2006. The roles of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis:frizzled related protein-4, matrix extracellular phosphoglycoprotein, and fibroblast growth factor 23. Endocr Rev 27:221-241.
    25. Shimada, T., Mizutani, S., Muto, T., Yoneya, T., Hino, R., Takeda, S., Takeuchi, Y., Fujita, T., Fukumoto, S., and Yamashita, T.2001. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 98:6500-6505.
    26. Shimada, T., Muto, T., Urakawa, I., Yoneya, T., Yamazaki, Y., Okawa, K., Takeuchi, Y., Fujita, T., Fukumoto, S., and Yamashita, T.2002. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 143:3179-3182.
    27. Benet-Pages, A., Lorenz-Depiereux, B., Zischka, H., White, K.E., Econs, M.J., and Strom, T.M.2004. FGF23 is processed by proprotein convertases but not by PHEX. Bone 35:455-462.
    28. Bai, X., Miao, D., Li, J., Goltzman, D., and Karaplis, A.C.2004. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a
    putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology 145:5269-5279.
    29. The HYP_Consortium.1995. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets.. Nat Genet 11:130-136.
    30. Holm, I.A., Huang, X., and Kunkel, L.M.1997. Mutational analysis of the PEX gene in patients with X-linked hypophosphatemic rickets. Am JHum Genet 60:790-797.
    31. Turner, A.J., and Tanzawa, K.1997. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J 11:355-364.
    32. Tenenhouse, H.S., and Sabbagh, Y.2002. Novel phosphate-regulating genes in the pathogenesis of renal phosphate wasting disorders. Pflugers Arch 444:317-326.
    33. Jonsson, K.B., Zahradnik, R., Larsson, T., White, K.E., Sugimoto, T., Imanishi, Y., Yamamoto, T., Hampson, G., Koshiyama, H., Ljunggren, O., et al.2003. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. NEngl J Med 348:1656-1663.
    34. Weber, T.J., Liu, S., Indridason, O.S., and Quarles, L.D.2003. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res 18:1227-1234.
    35. Yamazaki, Y., Okazaki, R., Shibata, M., Hasegawa, Y., Satoh, K., Tajima, T., Takeuchi, Y., Fujita, T., Nakahara, K., Yamashita, T., et al.2002. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab 87:4957-4960.
    36. Eicher, E.M., Southard, J.L., Scriver, C.R., and Glorieux, F.H.1976. Hypophosphatemia:mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci USA 73:4667-4671.
    37. Beck, L., Soumounou, Y., Martel, J., Krishnamurthy, G., Gauthier, C., Goodyer, C.G., and Tenenhouse, H.S.1997. Pex/PEX tissue distribution and
    evidence for a deletion in the 3' region of the Pex gene in X-linked hypophosphatemic mice. J Clin Invest 99:1200-1209.
    38. Lyon, M.F., Scriver, C.R., Baker, L.R., Tenenhouse, H.S., Kronick, J., and Mandla, S.1986. The Gy mutation:another cause of X-linked hypophosphatemia in mouse. Proc Natl Acad Sci U S A 83:4899-4903.
    39. Meyer, R.A., Jr., Henley, C.M., Meyer, M.H., Morgan, P.L., McDonald, A.G., Mills, C., and Price, D.K.1998. Partial deletion of both the spermine synthase gene and the Pex gene in the X-linked hypophosphatemic, gyro (Gy) mouse. Genomics 48:289-295.
    40. Carpinelli, M.R., Wicks, I.P., Sims, N.A., O'Donnell, K., Hanzinikolas, K., Burt, R., Foote, S.J., Bahlo, M., Alexander, W.S., and Hilton, D.J.2002. An ethyl-nitrosourea-induced point mutation in phex causes exon skipping, x-linked hypophosphatemia, and rickets. Am J Pathol 161:1925-1933.
    41. Yuan, B., Takaiwa, M., Clemens, T.L., Feng, J.Q., Kumar, R., Rowe, P.S., Xie, Y., and Drezner, M.K.2008. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J Clin Invest 118:722-734.
    42. Liu, S., Brown, T.A., Zhou, J., Xiao, Z.S., Awad, H., Guilak, F., and Quarles, L.D.2005. Role of matrix extracellular phosphoglycoprotein in the pathogenesis of X-linked hypophosphatemia. J Am Soc Nephrol 16:1645-1653.
    43. Bowe, A.E., Finnegan, R., Jan de Beur, S.M., Cho, J., Levine, M.A., Kumar, R., and Schiavi, S.C.2001. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 284:977-981.
    44. Campos, M., Couture, C., Hirata, I.Y., Juliano, M.A., Loisel, T.P., Crine, P., Juliano, L., Boileau, G., and Carmona, A.K.2003. Human recombinant endopeptidase PHEX has a strict S1' specificity for acidic residues and cleaves peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein. Biochem J 373:271-279.
    45. Liu, S., Guo, R., Simpson, L.G., Xiao, Z.S., Burnham, C.E., and Quarles, L.D. 2003. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. JBiol Chem 278:37419-37426.
    46. Feng, J.Q., Ward, L.M., Liu, S., Lu, Y., Xie, Y., Yuan, B., Yu, X., Rauch, F., Davis, S.I., Zhang, S., et al.2006. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 38:1310-1315.
    47. Lorenz-Depiereux, B., Bastepe, M., Benet-Pages, A., Amyere, M., Wagenstaller, J., Muller-Barth, U., Badenhoop, K., Kaiser, S.M., Rittmaster, R.S., Shlossberg, A.H., et al.2006. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 38:1248-1250.
    48. Farrow, E.G., Davis, S.I., Ward, L.M., Summers, L.J., Bubbear, J.S., Keen, R., Stamp, T.C., Baker, L.R., Bonewald, L.F., and White, K.E.2009. Molecular analysis of DMP1 mutants causing autosomal recessive hypophosphatemic rickets. Bone 44:287-294.
    49. Turan, S., Aydin, C., Bereket, A., Akcay, T., Guran, T., Yaralioglu, B.A., Bastepe, M., and Juppner, H.2010. Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone 46:402-409.
    50. Koshida, R., Yamaguchi, H., Yamasaki, K., Tsuchimochi, W., Yonekawa, T., and Nakazato, M.2010. A novel nonsense mutation in the DMP1 gene in a Japanese family with autosomal recessive hypophosphatemic rickets. J Bone Miner Metab.
    51. Lorenz-Depiereux, B., Schnabel, D., Tiosano, D., Hausler, G., and Strom, T.M. 2010. Loss-of-Function ENPP1 Mutations Cause Both Generalized Arterial Calcification of Infancy and Autosomal-Recessive Hypophosphatemic Rickets. The American Journal of Human Genetics 86:267-272.
    52. Levy-Litan, V., Hershkovitz, E., Avizov, L., Leventhal, N., Bercovich, D., Chalifa-Caspi, V., Manor, E., Buriakovsky, S., Hadad, Y., Goding, J., et al. 2010. Autosomal-Recessive Hypophosphatemic Rickets Is Associated with an Inactivation Mutation in the ENPP1 Gene. The American Journal of Human Genetics 86:273-278.
    53. van Driel, I.R., and Goding, J.W.1987. Plasma cell membrane glycoprotein PC-1. Primary structure deduced from cDNA clones. JBiol Chem 262:4882-4887.
    54. Takahashi, T., Old, L.J., and Boyse, E.A.1970. Surface alloantigens of plasma cells. J Exp Med 131:1325-1341.
    55. Goding, J.W., Grobben, B., and Slegers, H.2003. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta 1638:1-19.
    56. Rutsch, F., Ruf, N., Vaingankar, S., Toliat, M.R., Suk, A., Hohne, W., Schauer, G., Lehmann, M., Roscioli, T., Schnabel, D., et al.2003. Mutations in ENPP1 are associated with 'idiopathic' infantile arterial calcification. Nat Genet 34:379-381.
    57. Okawa, A., Nakamura, I., Goto, S., Moriya, H., Nakamura, Y., and Ikegawa, S. 1998. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 19:271-273.
    58. Lorenz-Depiereux, B., Benet-Pages, A., Eckstein, G., Tenenbaum-Rakover, Y., Wagenstaller, J., Tiosano, D., Gershoni-Baruch, R., Albers, N., Lichtner, P., Schnabel, D., et al.2006. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 78:193-201.
    59. Bergwitz, C., Roslin, N.M., Tieder, M., Loredo-Osti, J.C., Bastepe, M., Abu-Zahra, H., Frappier, D., Burkett, K., Carpenter, T.O., Anderson, D., et al.2006. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-Ⅱc in maintaining phosphate homeostasis. Am JHum Genet 78:179-192.
    60. Ichikawa, S., Sorenson, A.H., Imel, E.A., Friedman, N.E., Gertner, J.M., and Econs, M.J.2006. Intronic deletions in the SLC34A3 gene cause hereditary hypophosphatemic rickets with hypercalciuria. J Clin Endocrinol Metab 91:4022-4027.
    61. Boskey, A.L.1992. Mineral-matrix interactions in bone and cartilage. Clin Orthop Relat Res:244-274.
    62. Embery, G., Hall, R., Waddington, R., Septier, D., and Goldberg, M.2001. Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med 12:331-349.
    63. Murshed, M., Schinke, T., McKee, M.D., and Karsenty, G.2004. Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 165:625-630.
    64. Fisher, L.W., Torchia, D.A., Fohr, B., Young, M.F., and Fedarko, N.S.2001. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 280:460-465.
    65. Fisher, L.W., and Fedarko, N.S.2003. Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44 Suppl 1:33-40.
    66. Hirst, K.L., Simmons, D., Feng, J., Aplin, H., Dixon, M.J., and MacDougall, M.1997. Elucidation of the sequence and the genomic organization of the human dentin matrix acidic phosphoprotein 1 (DMP1) gene:exclusion of the locus from a causative role in the pathogenesis of dentinogenesis imperfecta type II. Genomics 42:38-45.
    67. Toyosawa, S., O'HUigin, C., Tichy, H., and Klein, J.1999. Characterization of dentin matrix protein 1 gene in crocodilia. Gene 234:307-314.
    68. Toyosawa, S., Sato, A., O'HUigin, C., Tichy, H., and Klein, J.2000. Expression of the dentin matrix protein 1 gene in birds. J Mol Evol 50:31-38.
    69. MacDougall, M., Gu, T.T., Luan, X., Simmons, D., and Chen, J.1998. Identification of a novel isoform of mouse dentin matrix protein 1:spatial expression in mineralized tissues. J Bone Miner Res 13:422-431.
    70. Thotakura, S.R., Karthikeyan, N., Smith, T., Liu, K., and George, A.2000. Cloning and characterization of rat dentin matrix protein 1 (DMP1) gene and its 5'-upstream region. JBiol Chem 275:10272-10277.
    71. Kim, J.W., Yamakoshi, Y., Iwata, T., Hu, Y.Y., Zhang, H., Hu, J.C., and Simmer, J.P.2006. Porcine dentin matrix protein 1:gene structure, cDNA sequence, and expression in teeth. Eur J Oral Sci 114:33-41.
    72. Hirst, K.L., Ibaraki-O'Connor, K., Young, M.F., and Dixon, M.J.1997. Cloning and expression analysis of the bovine dentin matrix acidic phosphoprotein gene. JDent Res 76:754-760.
    73. Lu, Y., Xie, Y., Zhang, S., Dusevich, V., Bonewald, L.F., and Feng, J.Q.2007. DMP1-targeted Cre expression in odontoblasts and osteocytes. JDent Res 86:320-325.
    74. George, A., Sabsay, B., Simonian, P.A., and Veis, A.1993. Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. JBiol Chem 268:12624-12630.
    75. Feng, J.Q., Huang, H., Lu, Y., Ye, L., Xie, Y., Tsutsui, T.W., Kunieda, T., Castranio, T., Scott, G., Bonewald, L.B., et al.2003. The Dentin matrix protein 1 (Dmp1) is specifically expressed in mineralized, but not soft, tissues during development. JDent Res 82:776-780.
    76. Baba, O., Qin, C., Brunn, J.C., Wygant, J.N., McIntyre, B.W., and Butler, W.T. 2004. Colocalization of dentin matrix protein 1 and dentin sialoprotein at late stages of rat molar development. Matrix Biol 23:371-379.
    77. D'Souza, R.N., Cavender, A., Sunavala, G., Alvarez, J., Ohshima, T., Kulkarni, A.B., and MacDougall, M.1997. Gene expression patterns of murine dentin matrix protein 1 (Dmpl) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res 12:2040-2049.
    78. Feng, J.Q., Zhang, J., Dallas, S.L., Lu, Y., Chen, S., Tan, X., Owen, M., Harris, S.E., and MacDougall, M.2002. Dentin matrix protein 1, a target molecule for Cbfal in bone, is a unique bone marker gene. J Bone Miner Res 17:1822-1831.
    79. Toyosawa, S., Shintani, S., Fujiwara, T., Ooshima, T., Sato, A., Ijuhin, N., and Komori, T.2001. Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. JBone Miner Res 16:2017-2026.
    80. Butler, W.T., Brunn, J.C., Qin, C., and McKee, M.D.2002. Extracellular matrix proteins and the dynamics of dentin formation. Connect Tissue Res 43:301-307.
    81. Qin, C., Brunn, J.C., Cook, R.G., Orkiszewski, R.S., Malone, J.P., Veis, A., and Butler, W.T.2003. Evidence for the proteolytic processing of dentin matrix protein 1. Identification and characterization of processed fragments and cleavage sites. JBiol Chem 278:34700-34708.
    82. Terasawa, M., Shimokawa, R., Terashima, T., Ohya, K., Takagi, Y., and Shimokawa, H.2004. Expression of dentin matrix protein 1 (DMP1) in nonmineralized tissues. J Bone Miner Metab 22:430-438.
    83. Ogbureke, K.U., and Fisher, L. W.2004. Expression of SIBLINGs and their partner MMPs in salivary glands. JDent Res 83:664-670.
    84. Ogbureke, K.U., and Fisher, L. W.2005. Renal expression of SIBLING proteins and their partner matrix metalloproteinases (MMPs). Kidney Int 68:155-166.
    85. Chaplet, M., De Leval, L., Waltregny, D., Detry, C., Fornaciari, G., Bevilacqua, G., Fisher, L.W., Castronovo, V., and Bellahcene, A.2003. Dentin matrix protein 1 is expressed in human lung cancer. J Bone Miner Res 18:1506-1512.
    86. Toyosawa, S., Tomita, Y., Kishino, M., Hashimoto, J., Ueda, T., Tsujimura, T., Aozasa, K., Ijuhin, N., and Komori, T.2004. Expression of dentin matrix protein 1 in tumors causing oncogenic osteomalacia. Mod Pathol 17:573-578.
    87. Fisher, L.W., Jain, A., Tayback, M., and Fedarko, N.S.2004. Small integrin binding ligand N-linked glycoprotein gene family expression in different cancers. Clin Cancer Res 10:8501-8511.
    88. Ogbureke, K.U., and Fisher, L.W.2007. SIBLING expression patterns in duct epithelia reflect the degree of metabolic activity. JHistochem Cytochem 55:403-409.
    89. Ogbureke, K.U., Nikitakis, N.G., Warburton, G., Ord, R.A., Sauk, J.J., Waller, J.L., and Fisher, L.W.2007. Up-regulation of SIBLING proteins and correlation with cognate MMP expression in oral cancer. Oral Oncol.
    90. Karadag, A., Fedarko, N.S., and Fisher, L.W.2005. Dentin matrix protein 1 enhances invasion potential of colon cancer cells by bridging matrix metalloproteinase-9 to integrins and CD44. Cancer Res 65:11545-11552.
    91. Veis, A., Sfeir, C., and Wu, C.B.1997. Phosphorylation of the proteins of the extracellular matrix of mineralized tissues by casein kinase-like activity. Crit Rev Oral Biol Med 8:360-379.
    92. Addadi, L., and Weiner, S.1985. Interactions between acidic proteins and crystals:stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82:4110-4114.
    93. Moradian-Oldak, J., Frolow, F., Addadi, L., and Weiner, S.1992. Interactions between acidic matrix macromolecules and calcium phosphate ester crystals: relevance to carbonate apatite formation in biomineralization. Proc Biol Sci 247:47-55.
    94. Furedi-Milhofer, H., Moradian-Oldak, J., Weiner, S., Veis, A., Mintz, K.P., and Addadi, L.1994. Interactions of matrix proteins from mineralized tissues with octacalcium phosphate. Connect Tissue Res 30:251-264.
    95. Guo, R., Rowe, P.S., Liu, S., Simpson, L.G., Xiao, Z.S., and Quarles, L.D. 2002. Inhibition of MEPE cleavage by Phex. Biochem Biophys Res Commun 297:38-45.
    96. Butler, W.T., Bhown, M., DiMuzio, M.T., Cothran, W.C., and Linde, A.1983. Multiple forms of rat dentin phosphoproteins. Arch Biochem Biophys 225:178-186.
    97. MacDougall, M., Zeichner-David, M., and Slavkin, H.C.1985. Production and characterization of antibodies against murine dentine phosphoprotein. Biochem J 232:493-500.
    98. Butler, W.T., Bhown, M., Brunn, J.C., D'Souza, R.N., Farach-Carson, M.C., Happonen, R.P., Schrohenloher, R.E., Seyer, J.M., Somerman, M.J., Foster, R.A., et al.1992. Isolation, characterization and immunolocalization of a 53-kDal dentin sialoprotein (DSP). Matrix 12:343-351.
    99. Ritchie, H.H., Hou, H., Veis, A., and Butler, W.T.1994. Cloning and sequence determination of rat dentin sialoprotein, a novel dentin protein. J Biol Chem 269:3698-3702.
    100. Ritchie, H.H., Berry, J.E., Somerman, M.J., Hanks, C.T., Bronckers, A.L., Hotton, D., Papagerakis, P., Berdal, A., and Butler, W.T.1997. Dentin sialoprotein (DSP) transcripts:developmentally-sustained expression in odontoblasts and transient expression in pre-ameloblasts. Eur J Oral Sci 105:405-413.
    101. MacDougall, M., Simmons, D., Luan, X., Nydegger, J., Feng, J., and Gu, T.T. 1997. Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. JBiol Chem 272:835-842.
    102. Qin, C., Brunn, J.C., Baba, O., Wygant, J.N., McIntyre, B.W., and Butler, W.T. 2003. Dentin sialoprotein isoforms:detection and characterization of a high molecular weight dentin sialoprotein. Eur J Oral Sci 111:235-242.
    103. Gu, K., Chang, S., Ritchie, H.H., Clarkson, B.H., and Rutherford, R.B.2000. Molecular cloning of a human dentin sialophosphoprotein gene. Eur J Oral Sci 108:35-42.
    104. Ritchie, H.H., Wang, L.H., and Knudtson, K.2001. A novel rat 523 amino acid phosphophoryn:nucleotide sequence and genomic organization. Biochim Biophys Acta 1520:212-222.
    105. Yamakoshi, Y., Hu, J.C., Liu, S., Zhang, C., Oida, S., Fukae, M., and Simmer, J.P.2003. Characterization of porcine dentin sialoprotein (DSP) and dentin sialophosphoprotein (DSPP) cDNA clones. Eur J Oral Sci 111:60-67.
    106. Qin, C., Cook, R.G., Orkiszewski, R.S., and Butler, W.T.2001. Identification and characterization of the carboxyl-terminal region of rat dentin sialoprotein. JBiol Chem 276:904-909.
    107. Huang, B., Maciejewska, I., Sun, Y., Peng, T., Qin, D., Lu, Y., Bonewald, L. Butler, W.T., Feng, J., and Qin, C.2008. Identification of full-length dentin matrix protein 1 in dentin and bone. Calcif Tissue Int 82:401-410.
    108. Qin, C., Baba, O., and Butler, W.T.2004. Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med 15:126-136.
    109. Steiglitz, B.M., Ayala, M., Narayanan, K., George, A., and Greenspan, D.S. 2004. Bone morphogenetic protein-1/Tolloid-like proteinases process dentin matrix protein-1. JBiol Chem 279:980-986.
    110. Qin, C., Huang, B., Wygant, J.N., McIntyre, B.W., McDonald, C.H., Cook, R.G., and Butler, W.T.2006. A chondroitin sulfate chain attached to the bone dentin matrix protein 1 NH2-terminal fragment. JBiol Chem 281:8034-8040.
    111. Ye, L., MacDougall, M., Zhang, S., Xie, Y., Zhang, J., Li, Z., Lu, Y., Mishina, Y., and Feng, J.Q.2004. Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem 279:19141-19148.
    112. Ye, L., Zhang, S., Ke, H., Bonewald, L.F., and Feng, J.Q.2008. Periodontal breakdown in the Dmp1 null mouse model of hypophosphatemic rickets. J Dent Res 87:624-629.
    113. Ling, Y., Rios, H.F., Myers, E.R., Lu, Y., Feng, J.Q., and Boskey, A.L.2005. DMP1 depletion decreases bone mineralization in vivo:an FTIR imaging analysis. JBone Miner Res 20:2169-2177.
    114. Ye, L., Mishina, Y., Chen, D., Huang, H., Dallas, S.L., Dallas, M.R., Sivakumar, P., Kunieda, T., Tsutsui, T.W., Boskey, A., et al.2005. Dmp1-deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. JBiol Chem 280:6197-6203.
    115. Makitie, O., Pereira, R.C., Kaitila, I., Turan, S., Bastepe, M., Laine, T., Kroger, H., Cole, W.G., and Jiippner, H.2010. Long-term clinical outcome and carrier phenotype in autosomal recessive hypophosphatemia caused by a novel DMP1 mutation. Journal of Bone and Mineral Research Published online on Apr 07, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700