用户名: 密码: 验证码:
再生障碍性贫血患者骨髓间充质干细胞生物学特性及功能的系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:再生障碍性贫血(aplastic anemia, AA)是一种免疫介导的骨髓衰竭综合征,是血液科常见病、多发病及难治性疾病,其显著特点是骨髓造血衰竭。以往研究更多集中于造血干/祖细胞损伤机制方面,但因其数量显著减少、功能缺陷、体外不易扩增却容易分化等缺点限制此方面研究,目前处于相对停滞状态。寻找一种全新的研究方向势在必行。而再生障碍性贫血患者骨髓脂肪化、血管新生能力降低、骨皮质变薄等现象提示骨髓造血微环境同样存在缺陷。因此,研究骨髓造血微环境中各种细胞成分的前体细胞——骨髓间充质干细胞(bone marrow mesenchymal stem cells, BM-MSCs)的生物学特性及其功能具有重要意义。
     目的:本研究旨在系统、全面地比较研究再生障碍性贫血患者BM-MSCs和正常人BM-MSCs生物学特性及功能的差异,为探讨再生障碍性贫血BM-MSCs损伤机制提供实验基础及理论依据,亦为再生障碍性贫血的发病机制研究探讨新思路。
     方法:(1)采用贴壁、传代培养的方法从AA患者和正常人骨髓组织中获取相对纯化的骨髓间充质干细胞;(2)倒置显微镜及共聚焦荧光显微镜观察骨架蛋白β-tubulin染色后BM-MSCs的形态变化;(3)流式细胞仪检测培养的BM-MSCs表面标志;(4)定向诱导BM-MSCs向脂肪细胞、内皮细胞和成骨细胞分化,进行相应染色及分化标志鉴定,比较成脂、成骨、成内皮的分化潜能;(5)测定BM-MSCs成纤维细胞样的集落形成能力(CFU-F)及增殖曲线;(6)流式细胞仪方法检测BM-MSCs细胞周期及细胞凋亡;(7)采用Affymetrix基因表达谱检测方法比较分析AA患者与正常BM-MSCs基因表达谱间的差异;(8)磁珠分选脐血来源的CD34+细胞,建立BM-MSCs与CD34+细胞共培养的二种培养体系(LTC assay和MK assay),比较研究AA患者和正常BM-MSCs扩增CD34+细胞能力和促进造血克隆(CFU-G、CFU-M、CFU-GM、CFU-Mix、BFU-E和CFU-MK)形成的能力;同时比较了二种BM-MSCs表达造血生长因子(SCF、IL-3、EPO、TPO、IL-11、G-CSF、M-CSF和GM-CSF)的异同。(9)磁珠分选健康人外周血CD4+细胞,同时采用贴壁法去除CD4-细胞中的贴壁细胞以获得相对高比例的CD4-淋巴细胞(大多数为CD8+细胞),建立BM-MSCs与CD4+/CD4-细胞共培养体系,比较研究BM-MSCs对CD4+/CD4-细胞的克隆形成能力、增殖、分泌TNF-α和IFN-7的影响,以及BM-MSCs促进CD4+细胞向Treg细胞分化能力。
     结果:(1)成功培养并获取高纯度的再生障碍性贫血患者骨髓间充质干细胞;(2)AA患者BM-MSCs与正常BM-MSCs存在形态学差异,正常BM-MSCs细胞体积小纤细、呈长梭形,规则排列生长;AA患者BM-MSCs细胞体积较大,呈短梭形、多角形、不规则形,边缘不整齐,部分细胞见双核、多核。(3)AA患者BM-MSCs除了更高表达CD90外,其余表达标志CD73、CD105、CD90、CD44、CD29、CD49e、CD166以及MHC-Ⅰ类分子HLA-ABC无显著差别。二者均不表达造血细胞标志CD34、CD45及MHC-Ⅱ类分子HLA-DR。(4)AA患者BM-MSCs更易向脂肪细胞分化,但分化为内皮细胞和成骨细胞能力弱于正常BM-MSCs。(5)AA患者BM-MSCs形成CFU-F的能力和增殖能力明显弱于正常BM-MSCs。(6)AA患者和正常人BM-MSCs 90%以上均处于G0/G1期,但AA患者BM-MSCs细胞凋亡水平明显增加。(7)Affymetrix基因表达谱检测结果显示,AA患者和正常人BM-MSCs间存在差异表达的基因多达314个(Fold change≥2倍),涉及造血调控、免疫调节、细胞周期、细胞凋亡、细胞粘附、成脂分化等多方面基因。(8)与脐血来源的CD34+细胞共培养结果显示,AA患者BM-MSCs扩增CD34+细胞能力和促进造血克隆形成能力(尤其支持长期造血能力和巨核细胞系造血能力)减弱。另外,二种BM-MSCs均不表达IL-3和EPO,AA患者BM-MSCs表达SCF、TPO、IL-11 mRNA水平低于正常者,而表达G-CSF和GM-CSF mRNA水平高于正常者,M-CSF差异不显著。(9)与外周血来源的CD4+/CD4-细胞共培养结果显示,AA患者BM-MSCs抑制CD4+/CD4细胞克隆形成、增殖和分泌TNF-a/IFN-γ的能力存在缺陷、促进CD4+细胞向Treg细胞分化能力减弱。
     结论:(1)再生障碍性贫血患者骨髓间充质干细胞存在多方面、多层次的缺陷。(2)再生障碍性贫血患者BM-MSCs的多种生物学特性异常,包括形态异常、增殖和CFU-F形成能力减弱、多向分化能力异常(易成脂,不易向成骨细胞和内皮细胞方向分化)、细胞凋亡增加、基因表达谱异常。(3)再生障碍性贫血患者BM-MSCs通过分化为成骨细胞和内皮细胞构成HSC龛的能力减弱。(4)再生障碍性贫血患者BM-MSCs支持造血能力(尤其支持长期造血能力和巨核细胞系造血能力)减弱。(5)再生障碍性贫血患者BM-MSCs抑制CD4+/CD4-细胞增殖和分泌TNF-a/IFN-γ能力缺陷、促进CD4+细胞向Treg细胞分化能力减弱。
     背景:再生障碍性贫血是一种免疫介导的骨髓衰竭性疾病,其发病机制涉及大量异常的免疫细胞和免疫分子。其中,IFN-γ,、TNF-α和多种白细胞介素(ILs)发挥着主要作用。IL-27是近年发现的一种IL-6/IL-12细胞因子家族成员,在机体内发挥着促进和抑制炎症的双重作用。IL-27可以诱导Th1细胞极化,促进淋巴细胞产生IFN-γ。然而,目前尚无IL-27在再生障碍性贫血发病机制中的相关报道。
     目的:本研究旨在检测再生障碍性贫血患者骨髓中IL-27及其受体的表达水平,探讨其在再生障碍性贫血发病机制中的作用。
     方法:(1)采用Ficoll密度梯度离心法分离骨髓单个核细胞(BMMNC):(2)Real-timePCR方法检测BMMNC中IL-27(p28和EBI3)及其受体(WSX-1/TCCR和gp130)mRNA表达水平;(3)流式细胞术检测IL-27刺激前后骨髓CD4+和CD8+T淋巴细胞内IFN-γ、TNF-a的表达水平;(4)ELISA方法检测骨髓上清中IL-27、IFN-γ和TNF-a的水平以及IL-27刺激前后BMMNC培养上清中IFN-γ和TNF-a的水平变化。
     结果:(1)再生障碍性贫血患者骨髓BMMNC中IL-27(p28和EB13)和IL-27R的亚单位gp130 mRNA表达水平高于正常对照组(P<0.05),WSX-1/TCCR的表达水平虽然高于正常对照,但无统计学意义(P)>0.05)。(2)再生障碍性贫血患者骨髓上清中IL-27的浓度均高于正常对照(P<0.05),且与疾病的严重程度密切相关。(3)再生障碍性贫血患者骨髓上清中IFN-γ和TNF-a的浓度和CD4+和CD8+T淋巴细胞内IFN-γ和TNF-α的表达水平均高于正常对照,除了CD8+T淋巴细胞内IFN--γ的表达水平无统计学意义外,其余均具有显著性差异(P<0.05)。(4)rhIL-27促进正常对照和再生障碍性贫血患者骨髓CD4+和CD8+T淋巴细胞产生更多的TNF-a和IFN-γ(P<0.05)。(5)rhIL-27促进再生障碍性贫血患者BMMNC产生更多的TNF-a和IFN-γ(P<0.05)。
     结论:再生障碍性贫血患者骨髓中增高的IL-27可能通过促进TNF-a和IFN-γ产生参与其发病机制。
Background:Aplastic anaemia (AA) is mostly considered as an immune-mediated bone marrow failure syndrome, characterized by hypoplasia and pancytopenia with fatty bone marrow and reduced angiogenesis. Previous studies have demonstrated that hematopoietic stem cells (HSCs) from AA patients are defective in multiple biological properties and functions. However, too little is known about bone marrow mesenchymal stem cells (BM-MSCs) from patients with aplastic anemia.
     Objective:This study aims to assess systematically and thoroughly the biological properties and functions of BM-MSCs from patients with aplastic anemia.
     Methods:(1) BM-MSCs were isolated and purified from bone marrow by adherent culture and passaging in the culture medium (DMEM/DF12 and 2% fetal bovine serum) in vitro. (2) The morphology of BM-MSCs was stained with (3-tubulin and observed by confocal microscopy. (3) The immunophenotype markers of BM-MSCs were detected using flow cytometry. (4) BM-MSCs were induced to differentiate into adipocytes, osteoblasts and endothelial cells, which were identified with corresponding staining and detection of specific genes. (5) The capacity of forming CFU-F and proliferation of BM-MSCs were detected. (6) The cell cycle and apoptosis of BM-MSCs were detected using flow cytometry. (7) The gene profile of BM-MSCs was identified and compared using Affymetrix method. (8) CD34+ cells were purified from umbilical cord by miniMACS immunomagenetic method and co-cultured with BM-MSCs to assess the hematopoiesis-supportive function of BM-MSCs in the amplification of hematopoietic cells and clonogenic potential of CFUs (CFU-G, CFU-M, CFU-GM, CFU-Mix, BFU-E and CFU-MK). The expression of hematopoietic growth factors such as SCF, IL-3, EPO, TPO, IL-11, G-CSF, M-CSF and GM-CSF mRNA were detected by reverse transcriptase-polymerase chain reaction (RT-PCR) method. (9) CD4+ cells were purified from peripheral blood by miniMACS immunomagenetic method and CD4- cells were further purified by adherent culture to remove monocytes, macrophages and dentritic cells. CD4+ cells and CD4- cells were then co-cultured with BM-MSCs to assess the suppression capacity of BM-MSCs in the clonogenic potential and proliferation of lymphocytes and the production of TNF-a and IFN-y by lymphocytes. CD4+ cells were also co-cultured with BM-MSCs to assess the contribution of BM-MSCs in promoting the proliferation of Tregs.
     Results:(1) We successively isolated and purified BM-MSCs from patients with aplastic anemia. (2) We showed abnormal morphology with irregular appearance using P-tubulin staining, reduced proliferation and clonogenic potential and increased apoptosis of BM-MSCs from AA patients. (3) We demonstrated that BM-MSCs from AA patients were susceptible to be induced to adipocytes but more difficult to osteoblasts and endothelial cells than healthy controls. (4) We also compared the gene expression profile in BM-MSCs from AA patients and healthy controls. A large number of genes associated with hematopoiesis, immune regulation, adipogenesis, apoptosis and cell cycle showed markedly differences between AA patients and healthy controls. (5) Furthermore, we showed that both BM-MSCs from AA patients and healthy controls had the potential of supporting hematopoiesis. But, BM-MSCs from AA patients had reduced potential to amplify CD34+ cells, maintain long-term hematopoiesis. It is more prominent that MSCs from AA patients were markedly defective in supporting the development of megakaryocytes. In addition, we showed that BM-MSCs from AA patients expressed lower levels SCF, TPO and IL-11 mRNA, but higher levels G-CSF and GM-CSF than healthy controls. (6) Finally, we found BM-MSCs from AA were defective in the suppression of proliferation of and clonogenic potential of T cells, TNF-αand IFN-γproduction by CD4+ and CD4- cells.
     Conclusion:(1) BM-MSCs from AA patients were multiply defective both in biological properties and functions, which might aggravate the bone marrow failure. (2) BM-MSCs from AA were abnormal in morphology and gene profile, defective in clonogenic potential, proliferation and differentiation with increased apoptosis. (3) BM-MSCs from AA were defective in the differentiation into endothelial cells and osteoblasts, which might be the precursor cells in modelling HSC niche. (4) BM-MSCs from AA were defective in maintaining hematopoiesis and supporting the development of megakaryocytes. (5) BM-MSCs from AA were defective in maintaining immune homeostasis.
     Background:Aplastic anaemia (AA) is considered as an immune-mediated bone marrow failure syndrome. The mechanism is involved with a variety of immune molecules including IFN-y, TNF-a and interleukins (ILs). IL-27 is a novel member of IL-12 family which mediates T cell response and enhances the production of IFN-y. However, little is known about the role of IL-27 in the development of AA.
     Objective:The present study was aimed to detect the expression of IL-27/IL-27R in bone marrow of patients with aplastic anemia and evaluate the role of IL-27/IL-27R in the pathogenesis of AA.
     Methods:(1) Bone marrow mononuclear cells (BMMNCs) were isolated from bone marrow using Ficoll-Hypaque gradients centrifugation and cultured in the culture medium (RPMI-1640 and 2% fetal bovine serum) in vitro. (2) The mRNA expression of IL-27 (p28 and EBI3) and IL-27 receptor components (WSX-1/TCCR and gp130) in BMMNCs were detected by real-time reverse transcription polymerase chain reaction (Real-time RT-PCR). (3) The intracellular levels of IFN-y and TNF-a in bone marrow T lymphocytes of patients with AA and healthy controls were measured by flow cytometry. (4) The concentrations of IFN-y and TNF-a in the bone marrow plasma and supernatants of BMMNCs from patients with AA were measured by ELISA.
     Results:(1) We demonstrated that both the mRNA expression of IL-27/IL-27R subunits in the bone marrow mononuclear cells (BMMNCs) and the levels of IL-27 in the marrow plasma in AA were higher than that observed in controls. (2) Increased IL-27 correlated with the disease severity of AA. (3) Subsequently, we stimulated marrow T lymphocytes with rhIL-27 and found that IL-27 dramatically enhanced the production of TNF-a and IFN-y in both CD4+ and CD8+ T lymphocytes from AA patients. (4) We also detected increased TNF-a and IFN-y in the supernatants of BMMNCs from AA patients after IL-27 stimulation.
     Conclusion:In conclusion, our data suggest that IL-27 might play an important role in the pathogenesis of AA through enhancing the overproduction of IFN-y and TNF-a.
引文
[1]Montane E, Ibanez L, Vidal X, Ballarin E, Puig R, Garcia N, et al. Epidemiology of aplastic anaemia:a prospective multicenter study. Haematologica 2008; 93:518-23.
    [2]Kaufman DW, Kelly JP, Levy M, Shapiro S. The drug etiology of agranulocytosis and aplastic anemia. New York:Oxford; 1991.
    [3]Mary JY, Baumelou E, Guiguet M. Epidemiology of aplastic anemia in France:a prospective multicenter study. Blood 1990;75:1646-53.
    [4]Cartwright RA, McKinney PA, Williams L, Miller JG, Evans DIK, Bentley DP, et al. Aplastic anaemic incidence in parts of the United Kingdom in 1985. Leuk Res 1988; 12:459-63.
    [5]Clausen N, Kreuger A, Salmi T, Stonn-Mathisen I, Johannesson G. Severe aplastic anaemia in the Nordic countries:a population based study of incidence, presentation, course, and outcome. Arch Dis Child 1996; 74:319-22.
    [6]Issaragrisil S, Kaufman DW, Anderson T, Chansung K, Leaverton P, Shapiro S, et al. The epidemiology of aplastic anemia in Thailand. Blood 2006;107:1299-307.
    [7]Yang C, Zhang X. Incidence survey of aplastic anemia in China. Chin Med Sci J 1991;6:203-7.
    [8]Yong AS, Goh M, Rahman J, Menon V, Purushothaman V. Epidemiology of aplastic anemia in the state of Sabah, Malaysia. Cell Immunol 1996;1284:S75.
    [9]Neal S. Young, Rodrigo T. Calado and Phillip Scheinberg. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood 2006; 108:2509-2519.
    [10]Li JP, Zheng CL, Han ZC. Abnormal immunity and stem/progenitor cells in acquired aplastic anemia. Crit Rev Oncol Hematol.2009 Dec 30. [Epub ahead of print]
    [11]Li Z, Li L. Understanding hematopoietic stem-cell microenvironments. Trends Biochem Sci. 2006 Oct;31(10):589-95.
    [12]Raaijmakers MH, Scadden DT. Evolving concepts on the microenvironmental niche for hematopoietic stem cells. Curr Opin Hematol.2008 Jul;15(4):301-6.
    [13]Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, Eckstein V, Ho AD, Wagner W. Co-Culture with Mesenchymal Stromal Cells Increases Proliferation and Maintenance of Hematopoietic Progenitor Cells. J Cell Mol Med.2009 May 11. [Epub ahead of print]
    [14]Gottschling S, Saffrich R, Seckinger A, Krause U, Horsch K, Miesala K, Ho AD. Human mesenchymal stromal cells regulate initial self-renewing divisions of hematopoietic progenitor cells by a betal-integrin-dependent mechanism. Stem Cells.2007 Mar;25(3):798-806.
    [15]Ida Rasmusson. Immune modulation by mesenchymal stem cells. Exp Cell Res.2006 Jul 15;312(12):2169-79.
    [16]Chen X, Armstrong MA, Li G. Mesenchymal stem cells in immunoregulation. Immunol Cell Biol.2006 Oct;84(5):413-21.
    [17]Wolfgang Fureder, Maria-Theresa Krauth, Wolfgang R. Sperr, et al. Evaluation of angiogenesis and vascular endothelia growth factor expression in the bone marrow of patients with aplastic anemia. Am J Pathol 2006; 168:123-130.
    [18]岳寒,陈磊,李静等.再生障碍性贫血.患者骨髓间充质干细胞生物学特性的初步研究.中国生物工程杂志,2005,25(6):20-24.
    [19]Bacigalupo A, Valle M, Podesta M,et,al.T-cell suppression mediated by mesen-chymal stem. cells is deficient in patients with severe aplastic anemia. Exp Hematol.2005 Jul;33 (7):819-27.
    [20]Juneja HS, Gardner FH. Functionally abnormal marrow stromal cells in aplastic anemia. Exp Hematol.1985 Mar; 13(3):194-9.
    [21]Wang HY, Ding TL, Xie Y, Xu XP, Yu L, Chen T. [Osteogenic and adipogenic differentiation of bone marrow-derived mesenchymal stem cells in patients with aplastic anemia]. Zhonghua Nei Ke Za Zhi.2009 Jan;48(1):39-43.
    [22]Camitta BM, Thomas ED, Nathan DG, et al. A prospective study of androgens and bone marrow transplantation for treatment of severe aplastic anemia. Blood 1979;53(3):504-14.
    [23]Marsh JC, Ball SE, Cavenagh J, et al. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol 2009;147(1):43-70.
    [24]Solomou EE, Rezvani K, Mielke S, Malide D, Keyvanfar K, Visconte V, Kajigaya S, Barrett AJ, Young NS:Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia. Blood 110(5):1603,2007.
    [25]Maciejewski JP, Selleri C, Sato T, Anderson S, Young NS. A severe and consistent deficit in marrow and circulating primitive hematopoietic cells (long-term culture-initiating cells) in acquired aplastic anemia. Blood 1996;88:1983-1991.
    [26]Podesta M, Piaggio G, Frassoni F, Pitto A, Zikos P, Sessarego M, et al. The assessment of the hematopoietic reservoir after immunosuppressive therapy or bone marrow transplantation in severe aplastic anemia. Blood 1998;91:1959-1965.
    [27]Rizzo S, Scopes J, Elebute MO, Papadaki HA, Gordon-Smith EC, Gibson FM. Stem cell defect in aplastic anemia:reduced long term culture-initiating cells (LTC-IC) in CD34+ cells isolated from aplastic anemia patient bone marrow. Hematol J 2002;3:230-236.
    [28]Manz CY, Nissen C, Wodnar-Filipowicz A. Deficiency of CD34+ c-kit+ and CD34+38-hematopoietic precursors in aplastic anemia after immunosuppressive treatment. Am J Hematol 1996;52:264-274.
    [29]Rizzo S, Scopes J, Draycott GS, Pocock C, Foukaneli T, Rutherford TR, et al. Quiescent (5-fluorouracil-resistant) aplastic anemia hematopoietic cells in vitro. Exp Hematol 2004;32:665-672.
    [30]Matsui WH, Brodsky RA, Smith BD, Borowitz MJ, Jones RJ. Quantitative analysis of bone marrow CD34 cells in aplastic anemia and hypoplastic myelodysplastic syndromes. Leukemia 2006;20:458-462.
    [31]Scopes J, Daly S, Atkinson R, Ball SE, Gordon-Smith EC, Gibson FM. Aplastic anemia: evidence for dysfunctional bone marrow progenitor cells and the corrective effect of granulocyte colony-stimulating factor in vitro. Blood 1996;87:3179-3185.
    [32]Schrezenmeier H, Jenal M, Herrmann F, Heimpel H, Raghavachar A. Quantitative analysis of cobblestone area-forming cells in bone marrow of patients with aplastic anemia by limiting dilution assay. Blood 1996;88:4474-4480.
    [33]Bacigalupo A, Piaggio G, Podesta M, Tong J, Pitto A, Figari O, et al. Early hemopoietic progenitors in the peripheral blood of patients with severe aplastic anemia (SAA) after treatment with antilymphocyte globulin (ALG), cyclosporin-A and G-CSF. Haematologica 1997;82:133-137.
    [34]Cox CV, Killick SB, Patel S, Elebute MO, Marsh JC, Gordon-Smith EC, et al. In vitro proliferation and differentiation of megakaryocytic progenitors in patients with aplastic anemia, paroxysmal nocturnal hemoglobinuria, and the myelodysplastic syndromes. Stem cells (Dayton, Ohio) 2000; 18:428-434.
    [35]Marsh JC, Chang J, Testa NG, Hows JM, Dexter TM. The hematopoietic defect in aplastic anemia assessed by long-term marrow culture. Blood 1990;76:1748-1757.
    [36]Bacigalupo A, Figari O, Tong J, Piaggio G, Miceli S, Frassoni F, et al. Long-term marrow culture in patients with aplastic anemia compared with marrow transplant recipients and normal controls. Experimental hematology 1992;20:425-430.
    [37]Scopes J, Bagnara M, Gordon-Smith EC, Ball SE, Gibson FM. Haemopoietic progenitor cells are reduced in aplastic anaemia. Br J Haematol 1994;86:427-430.
    [38]Philpott NJ, Scopes J, Marsh JC, Gordon-Smith EC, Gibson FM. Increased apoptosis in aplastic anemia bone marrow progenitor cells:possible pathophysiologic significance. Exp Hematol 1995;23:1642-1648.
    [39]Timeus F, Crescenzio N, Doria A, et al. Flow cytometric evaluation of circulating CD34+ cell counts and apoptotic rate in children with acquired aplastic anemia and myelodysplasia. Exp Hematol 2005;33:597-604.
    [40]Callera F, Falcao RP. Increased apoptotic cells in bone marrow biopsies from patients with aplastic anaemia. Br J Haematol 1997;98:18-20.
    [41]Killick SB, Cox CV, Marsh JC, Gordon-Smith EC, Gibson FM. Mechanisms of bone marrow progenitor cell apoptosis in aplastic anaemia and the effect of anti-thymocyte globulin: examination of the role of the Fas-Fas-L interaction. Br J Haematol 2000;111:1164-1169.
    [42]Zeng W, Chen G, Kajigaya S, et al. Gene expression profiling in CD34 cells to identify differences between aplastic anemia patients and healthy volunteers. Blood 2004;103:325-332.
    [43]Lu LL, Liu YJ, Yang SQ et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006;91:1017-26.
    [44]Liu M, Yang SG, Shi L, et al. Mesenchymal stem cells from bone marrow show a stronger stimulating effect on megakaryocyte progenitor expansion than those from non-hematopoietic tissues. Platelets 2010;21 (3):199-210.
    [45]Juneja HS, Gardner FH. Functionally abnormal marrow stromal cells in aplastic anemia. Exp Hematol.1985;13(3):194-9.
    [1]Brodsky RA, Jones RJ. Aplastic anaemia. Lancet 2005;365:1647-1656.
    [2]Li JP, Zheng CL, Han ZC. Abnormal immunity and stem/progenitor cells in acquired aplastic anemia. Crit Rev Oncol Hematol 2009.
    [3]Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood 2006; 108:2509-2519.
    [4]Zoumbos NC, Gascon P, Djeu JY, Young NS. Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo. Proc Natl Acad Sci U S A 1985;82:188-192.
    [5]Hara T, Ando K, Tsurumi H, Moriwaki H. Excessive production of tumor necrosis factor-alpha by bone marrow T lymphocytes is essential in causing bone marrow failure in patients with aplastic anemia. Eur J Haematol 2004;73:10-16.
    [6]Dufour C, Corcione A, Svahn J, Haupt R, Battilana N, Pistoia V. Interferon gamma and tumour necrosis factor alpha are overexpressed in bone marrow T lymphocytes from paediatric patients with aplastic anaemia. Br J Haematol 2001; 115:1023-1031.
    [7]Gascon P, Zoumbos NC, Scala G, Djeu JY, Moore JG, Young NS. Lymphokine abnormalities in aplastic anemia:implications for the mechanism of action of antithymocyte globulin. Blood 1985;65:407-413.
    [8]Tripathy NK, Nityanand S. Bone marrow and blood plasma levels of IL-8 in aplastic anemia and their relationship with disease severity. Am J Hematol 2005;79:240-242.
    [9]Gu Y, Zhang J, Peng J, Hu X, Xu C. Elevated expression of IL-12 and IL-23 in patients with aplastic anemia. Int J Lab Hematol 2009;31:207-214.
    [10]Gu Y, Hu X, Liu C, Qv X, Xu C. Interleukin (IL)-17 promotes macrophages to produce IL-8, IL-6 and tumour necrosis factor-alpha in aplastic anaemia. Br J Haematol 2008;142:109-114.
    [11]Solomou EE, Rezvani K, Mielke S, Malide D, Keyvanfar K, Visconte V, Kajigaya S, Barrett AJ, Young NS. Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia. Blood 2007;110:1603-1606.
    [12]Gascon P, Zoumbos N, Young N. Analysis of natural killer cells in patients with aplastic anemia. Blood 1986;67:1349-1355.
    [13]Zeng W, Maciejewski JP, Chen G, Risitano AM, Kirby M, Kajigaya S, Young NS. Selective reduction of natural killer T cells in the bone marrow of aplastic anaemia. Br J Haematol 2002; 119:803-809.
    [14]Batten M, Ghilardi N. The biology and therapeutic potential of interleukin 27. J Mol Med 2007;85:661-672.
    [15]Gee K, Guzzo C, Che Mat NF, Ma W, Kumar A. The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Targets 2009;8:40-52.
    [16]Pflanz S, Timans JC, Cheung J, Rosales R, Kanzler H, Gilbert J, Hibbert L, Churakova T, Travis M, Vaisberg E, Blumenschein WM, Mattson JD, Wagner JL, To W, Zurawski S, McClanahan TK, Gorman DM, Bazan JF, de Waal Malefyt R, Rennick D, Kastelein RA. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity 2002; 16:779-790.
    [17]Larousserie F, Bardel E, Pflanz S, Arnulf B, Lome-Maldonado C, Hermine O, Bregeaud L, Perennec M, Brousse N, Kastelein R, Devergne O. Analysis of interleukin-27 (EBI3/p28) expression in Epstein-Barr virus- and human T-cell leukemia virus type 1-associated lymphomas:heterogeneous expression of EBI3 subunit by tumoral cells. Am J Pathol 2005;166:1217-1228.
    [18]Wirtz S, Becker C, Fantini MC, Nieuwenhuis EE, Tubbe I, Galle PR, Schild HJ, Birkenbach M, Blumberg RS, Neurath ME EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappa B activation. J Immunol 2005; 174:2814-2824.
    [19]Schuetze N, Schoeneberger S, Mueller U, Freudenberg MA, Alber G, Straubinger RK. IL-12 family members:differential kinetics of their TLR4-mediated induction by Salmonella enteritidis and the impact of IL-10 in bone marrow-derived macrophages. International immunology 2005;17:649-659.
    [20]Hasan M, Lopez-Herrera G, Blomberg KE, Lindvall JM, Berglof A, Smith CI, Vargas L. Defective Toll-like receptor 9-mediated cytokine production in B cells from Bruton's tyrosine kinase-deficient mice. Immunology 2008; 123:239-249.
    [21]Pflanz S, Hibbert L, Mattson J, Rosales R, Vaisberg E, Bazan JF, Phillips JH, McClanahan TK, de Waal Malefyt R, Kastelein RA. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol 2004; 172:2225-2231.
    [22]Chen Q, Ghilardi N, Wang H, Baker T, Xie MH, Gurney A, Grewal IS, de Sauvage FJ. Development of Th1-type immune responses requires the type I cytokine receptor TCCR. Nature 2000;407:916-920.
    [23]Schmidt C, Giese T, Ludwig B, Mueller-Molaian I, Marth T, Zeuzem S, Meuer SC, Stallmach A. Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn's disease but not in ulcerative colitis. Inflamm Bowel Dis 2005;11:16-23.
    [24]Chiyo M, Shimozato O, Yu L, Kawamura K, Iizasa T, Fujisawa T, Tagawa M. Expression of IL-27 in murine carcinoma cells produces antitumor effects and induces protective immunity in inoculated host animals. Int J Cancer 2005;115:437-442.
    [25]Wittmann M, Zeitvogel J, Wang D, Werfel T. IL-27 is expressed in chronic human eczematous skin lesions and stimulates human keratinocytes. J Allergy Clin Immunol 2009;124:81-89.
    [26]Troy AE, Zaph C, Du Y, Taylor BC, Guild KJ, Hunter CA, Saris CJ, Artis D. IL-27 regulates homeostasis of the intestinal CD4+ effector T cell pool and limits intestinal inflammation in a murine model of colitis. J Immunol 2009; 183:2037-2044.
    [27]Yoshimoto T, Morishima N, Mizoguchi I, Shimizu M, Nagai H, Oniki S, Oka M, Nishigori C, Mizuguchi J. Antiproliferative activity of IL-27 on melanoma. J Immunol 2008;180:6527-6535.
    [28]Weiss JM, Subleski JJ, Wigginton JM, Wiltrout RH. Immunotherapy of cancer by IL-12-based cytokine combinations. Expert Opin Biol Ther 2007;7:1705-1721.
    [29]Camitta BM, Thomas ED, Nathan DG, Gale RP, Kopecky KJ, Rappeport JM, Santos G, Gordon-Smith EC, Storb R. A prospective study of androgens and bone marrow transplantation for treatment of severe aplastic anemia. Blood 1979;53:504-514.
    [30]Marsh JC, Ball SE, Cavenagh J, Darbyshire P, Dokal I, Gordon-Smith EC, Keidan J, Laurie A, Martin A, Mercieca J, Killick SB, Stewart R, Yin JA. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol 2009; 147:43-70.
    [31]Zhou B, Bi YY, Han ZB, Ren H, Fang ZH, Yu XF, Poon MC, Han ZC. G-CSF-mobilized peripheral blood mononuclear cells from diabetic patients augment neovascularization in ischemic limbs but with impaired capability. J Thromb Haemost 2006;4:993-1002.
    [32]Feng XM, Chen XL, Liu N, Chen Z, Zhou YL, Han ZB, Zhang L, Han ZC. Interleukin-27 upregulates major histocompatibility complex class Ⅱ expression in primary human endothelial cells through induction of major histocompatibility complex class Ⅱ transactivator. Human immunology 2007;68:965-972.
    [33]Sloand E, Kim S, Maciejewski JP, Tisdale J, Follmann D, Young NS. Intracellular interferon-gamma in circulating and marrow T cells detected by flow cytometry and the response to immunosuppressive therapy in patients with aplastic anemia. Blood 2002;100:1185-1191.
    [34]Dubey S, Shukla P, Nityanand S. Expression of interferon-gamma and tumor necrosis factor-alpha in bone marrow T cells and their levels in bone marrow plasma in patients with aplastic anemia. Ann Hematol 2005;84:572-577.
    [35]Nistico A, Young NS. gamma-Interferon gene expression in the bone marrow of patients with aplastic anemia. Ann Intern Med 1994; 120:463-469.
    [36]Schultz JC, Shahidi NT. Detection of tumor necrosis factor-alpha in bone marrow plasma and peripheral blood plasma from patients with aplastic anemia. Am J Hematol 1994;45:32-38.
    [37]Takeda A, Hamano S, Yamanaka A, Hanada T, Ishibashi T, Mak TW, Yoshimura A, Yoshida H. Cutting edge:role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Thl commitment. J Immunol 2003;170:4886-4890.
    [38]Villarino AV, Huang E, Hunter CA. Understanding the pro-and anti-inflammatory properties of IL-27. J Immunol 2004; 173:715-720.
    [39]Cao Y, Doodes PD, Glant TT, Finnegan A. IL-27 induces a Thl immune response and susceptibility to experimental arthritis. J Immunol 2008; 180:922-930.
    [40]He GS, Shao ZH, He H, Liu H, Fu R, Bai J, Shi J, Cao YR, Tu MF, Sun J, Jia HR. [Changes of subsets of DC1 in the bone marrow of severe aplastic anemia patients.]. Zhonghua Xue Ye Xue Za Zhi 2004;25:649-652.
    [41]Lucas S, Ghilardi N, Li J, de Sauvage FJ. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Statl-dependent and-independent mechanisms. Proc Natl Acad Sci U S A 2003;100:15047-15052.
    [42]Kamiya S, Owaki T, Morishima N, Fukai F, Mizuguchi J, Yoshimoto T. An indispensable role for STAT1 in IL-27-induced T-bet expression but not proliferation of naive CD4+ T cells. J Immunol 2004;173:3871-3877.
    [43]Solomou EE, Keyvanfar K, Young NS. T-bet, a Th1 transcription factor, is up-regulated in T cells from patients with aplastic anemia. Blood 2006;107:3983-3991. of stem/progenitor cells including hematopoietic stem/progenitor cells, mesenchymal stem cells and angioblasts/endothelial progenitor cells. Furthermore, decreased cytokines including TGF-β, IL-1,3, 11, SCF and damaged mesenchymal stem cells diminish the capacity of immune regulation and aggravate the impairment of hematopoiesis. As a result, a variety of stem/progenitor cells are impaired significantly due to the destruction of proliferation and differentiation capacity, the induction of apoptosis and even shortening telomere. Impaired stem/progenitor cells develop to hypoplasia, reduced angiogenesis and fatty bone marrow during the pathogenesis of acquired aplastic anemia.
    However, it is not sufficient for us to enhance the rest normal stem/progenitor cells in bone marrow of AA patients to reconstitution the hematopoiesis. More effective and convenient therapies based on the definite pathogenesis of acquired AA are expected. The patient-specific pluripotent iPS cells, which can differentiate into HSCs, MSCs and angioblasts and maintain immune homeostasis, may be the novel stem/progenitor candidates for the treatment of acquired AA.
    References
    [1]Shimamura A. Inherited bone marrow failure syndromes:molecular features. Hematology (Am Soc Hematol Educ Program)2006:63-71.
    [2]Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood 2006;108:2509-2519.
    [3]Morley A, Blake J. An animal model of chronic aplastic marrow failure. I. Late marrow failure after busulfan. Blood 1974;44:49-56.
    [4]Knospe WH, Crosby WH. Aplastic anaemia:a disorder of the bone-marrow sinusoidal microcirculation rather than stem-cell failure? Lancet 1971; 1:20-22.
    [5]Pugsley CA, Forbes IJ, Morley AA. Immunologic abnormalities in an animal model of chronic hypoplastic marrow failure induced by busulfan. Blood 1978;51:601-610.
    [6]Steiner RM, Mitchell DG, Rao VM, Murphy S, Rifkin MD, Burk DL, Jr., et al. Magnetic resonance imaging of bone marrow:diagnostic value in diffuse hematologic disorders. Magn Reson Q 1990;6:17-34.
    [7]Negendank W, Weissman D, Bey TM, de Planque MM, Karanes C, Smith MR, et al. Evidence for clonal disease by magnetic resonance imaging in patients with hypoplastic marrow disorders. Blood 1991;78:2872-2879.
    [8]Elghetany MT, Hudnall SD, Gardner FH. Peripheral blood picture in primary hypocellular refractory anemia and idiopathic acquired aplastic anemia:an additional tool for differential diagnosis. Haematologica 1997;82:21-24.
    [9]Keidan AJ, Tsatalas C, Cohen J, Cousins S, Gordon-Smith EC. Infective complications of aplastic anaemia. Br J Haematol 1986;63:503-508.
    [10]Twomey JJ, Douglass CC, Sharkey O, Jr. The monocytopenia of aplastic anemia. Blood 1973;41:187-195.
    [11]Gascon P, Zoumbos N, Young N. Analysis of natural killer cells in patients with aplastic anemia. Blood 1986;67:1349-1355.
    [12]Porwit A, Hast R, Stenke L, Wasserman J, Reizenstein P. Decreased blood natural killer cell activity and immunoglobulin synthesis in vitro in aplastic anemia. Acta Med Scand 1988;224:391-397.
    [13]Taga T, Kariya Y, Shimada M, Uchida A. Suppression of natural killer cell activity by granulocytes in patients with aplastic anemia:role of granulocyte colony-stimulating factor. Immunol Lett 1993;39:65-70.
    [14]Zeng W, Maciejewski JP, Chen G, Risitano AM, Kirby M, Kajigaya S, et al. Selective reduction of natural killer T cells in the bone marrow of aplastic anaemia. Br J Haematol 2002;119:803-809.
    [15]Wang Y, Hu X, Guo C, Zhang Q, Peng J, Zhang J, et al. Polarization of natural killer T cells towards an NKT2 subpopulation occurs after stimulation with alpha-galactosylceramide and rhG-CSF in aplastic anemia. Acta Haematol 2008;119:178-186.
    [16]Maciejewski JP, Hibbs JR, Anderson S, Katevas P, Young NS. Bone marrow and peripheral blood lymphocyte phenotype in patients with bone marrow failure. Exp Hematol 1994;22:1102-1110.
    [17]Tu MF, Shao ZH, Liu H, He GS, Shi J, Bai J, et al. [Study on the peripheral blood dendritic cells subtypes and the expression of co-stimulating molecules on dendritic cells and B cells in severe aplastic anemia patients]. Zhonghua Xue Ye Xue Za Zhi 2006;27:611-615.
    [18]He GS, Shao ZH, He H, Liu H, Fu R, Bai J, et al. [Changes of subsets of DC1 in the bone marrow of severe aplastic anemia patients.]. Zhonghua Xue Ye Xue Za Zhi 2004;25:649-652.
    [19]Wang J, Shao ZH, Fu R, Ruan EB, Qu W, Liang Y, et al. [Study on the dendritic cell subsets in peripheral blood and its relationship with the expressions of T-bet and GATA-3 in lymphocytes in severe aplastic anemia]. Zhonghua Xue Ye Xue Za Zhi 2008;29:733-736.
    [20]Mentzel U, Vogt H, Rossol R, Geissler RG, Maurer A, Ganser A, et al. Analysis of lymphocyte subsets in patients with aplastic anemia before and during immunosuppressive therapy. Ann Hematol 1993;66:127-129.
    [21]Maciejewski JP, Risitano A, Kook H, Zeng W, Chen G, Young NS. Immune pathophysiology of aplastic anemia. Int J Hematol 2002;76 (Suppl. 1):207-214.
    [22]de Planque MM, Brand A, Kluin-Nelemans HC, Eernisse JG, van der Burgh F, Natarajan AT, et al. Haematopoietic and immunologic abnormalities in severe aplastic anaemia patients treated with anti-thymocyte globulin. Br J Haematol 1989;71:421-430.
    [23]Falcao RP, Voltarelli JC, Bottura C. Some immunological studies in aplastic anaemia. J Clin Lab Immunol 1983;10:25-28.
    [24]Sabbe LJ, Haak HL, Te Velde J, Bradley BA, de Bode L, Blom J, et al. Immunological investigations in aplastic anemia patients. Acta Haematol 1984;71:178-188.
    [25]Callera F, Garcia AB, Falcao RP. Fas-mediated apoptosis with normal expression of bcl-2 and p53 in lymphocytes from aplastic anaemia. Br J Haematol 1998;100:698-703.
    [26]Faisal M, Cumberland W, Champlin R, Fahey JL. Effect of recombinant human granulocyte-macrophage colony-stimulating factor administration on the lymphocyte subsets of patients with refractory aplastic anemia. Blood 1990;76:1580-1585.
    [27]Lum LG, Seigneuret MC, Doney KC, Storb R. In vitro immunoglobulin production, proliferation, and cell markers before and after antithymocyte globulin therapy in patients with aplastic anemia. Am J Hematol 1987;26:1-15.
    [28]Hirano N, Butler MO, Von Bergwelt-Baildon MS, Maecker B, Schultze JL, O'Connor KC, et al. Autoantibodies frequently detected in patients with aplastic anemia. Blood 2003;102:4567-4575.
    [29]Feng X, Chuhjo T, Sugimori C, Kotani T, Lu X, Takami A, et al. Diazepam-binding inhibitor-related protein 1:a candidate autoantigen in acquired aplastic anemia patients harboring a minor population of paroxysmal nocturnal hemoglobinuria-type cells. Blood 2004; 104:2425-2431.
    [30]Takamatsu H, Feng X, Chuhjo T, Lu X, Sugimori C, Okawa K, et al. Specific antibodies to moesin, a membrane-cytoskeleton linker protein, are frequently detected in patients with acquired aplastic anemia. Blood 2007;109:2514-2520.
    [31]Takamatsu H, Espinoza JL, Lu X, Qi Z, Okawa K, Nakao S. Anti-moesin antibodies in the serum of patients with aplastic anemia stimulate peripheral blood mononuclear cells to secrete TNF-alpha and IFN-gamma. J Immunol 2009; 182:703-710.
    [32]Melenhorst JJ, van Krieken JH, Dreef E, Landegent JE, Willemze R, Fibbe WE. T cells selectively infiltrate bone marrow areas with residual haemopoiesis of patients with acquired aplastic anaemia. Br J Haematol 1997;99:517-519.
    [33]Zoumbos NC, Ferris WO, Hsu SM, Goodman S, Griffith P, Sharrow SO, et al. Analysis of lymphocyte subsets in patients with aplastic anaemia. Br J Haematol 1984;58:95-105.
    [34]Zeng W, Maciejewski JP, Chen G, Young NS. Limited heterogeneity of T cell receptor BV usage in aplastic anemia. J Clin Invest 2001;108:765-773.
    [35]Zeng W, Nakao S, Takamatsu H, Yachie A, Takami A, Kondo Y, et al. Characterization of T-cell repertoire of the bone marrow in immune-mediated aplastic anemia:evidence for the involvement of antigen-driven T-cell response in cyclosporine-dependent aplastic anemia. Blood 1999;93:3008-3016.
    [36]Melenhorst JJ, Fibbe WE, Struyk L, van der Elsen PJ, Willemze R, Landegent JE. Analysis of T-cell clonality in bone marrow of patients with acquired aplastic anaemia. Br J Haematol 1997;96:85-91.
    [37]Nakao S, Yamaguchi M, Shiobara S, Yokoi T, Miyawaki T, Taniguchi T, et al. Interferon-gamma gene expression in unstimulated bone marrow mononuclear cells predicts a good response to cyclosporine therapy in aplastic anemia. Blood 1992;79:2532-2535.
    [38]Nistico A, Young NS. gamma-Interferon gene expression in the bone marrow of patients with aplastic anemia. Ann Intern Med 1994; 120:463-469.
    [39]Franzke A, Geffers R, Hunger JK, Pfortner S, Piao W, Ivanyi P, et al. Identification of novel regulators in T-cell differentiation of aplastic anemia patients. BMC Genomics 2006;7:263.
    [40]Zeng W, Kajigaya S, Chen G, Risitano AM, Nunez O, Young NS. Transcript profile of CD4+ and CD8+ T cells from the bone marrow of acquired aplastic anemia patients. Exp Hematol 2004;32:806-814.
    [41]Giannakoulas NC, Karakantza M, Theodorou GL, Pagoni M, Galanopoulos A, Kakagianni T, et al. Clinical relevance of balance between type 1 and type 2 immune responses of lymphocyte subpopulations in aplastic anaemia patients. Br J Haematol 2004; 124:97-105.
    [42]Solomou EE, Keyvanfar K, Young NS. T-bet, a Thl transcription factor, is up-regulated in T cells from patients with aplastic anemia. Blood 2006;107:3983-3991.
    [43]Zhang J, Gu Y, Xu C, Qu X. Increased T cell immunoglobulin mucin-3 and its ligand in acquired aplastic anemia. Eur J Haematol 2008;81:130-139.
    [44]Nakao S, Takamatsu H, Yachie A, Itoh T, Yamaguchi M, Ueda M, et al. Establishment of a CD4+ T cell clone recognizing autologous hematopoietic progenitor cells from a patient with immune-mediated aplastic anemia. Exp Hematol 1995;23:433-438.
    [45]Zoumbos NC, Gascon P, Djeu JY, Trost SR, Young NS. Circulating activated suppressor T lymphocytes in aplastic anemia. N Engl J Med 1985;312:257-265.
    [46]Solomou EE, Gibellini F, Stewart B, Malide D, Berg M, Visconte V, et al. Perforin gene mutations in patients with acquired aplastic anemia. Blood 2007; 109:5234-5237.
    [47]Solomou EE, Rezvani K, Mielke S, Malide D, Keyvanfar K, Visconte V, et al. Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia. Blood 2007;110:1603-1606.
    [48]Zoumbos NC, Gascon P, Djeu JY, Young NS. Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo. Proc Natl Acad Sci U S A 1985;82:188-192.
    [49]Sloand E, Kim S, Maciejewski JP, Tisdale J, Follmann D, Young NS. Intracellular interferon-gamma in circulating and marrow T cells detected by flow cytometry and the response to immunosuppressive therapy in patients with aplastic anemia. Blood 2002;100:1185-1191.
    [50]Dubey S, Shukla P, Nityanand S. Expression of interferon-gamma and tumor necrosis factor-alpha in bone marrow T cells and their levels in bone marrow plasma in patients with aplastic anemia. Ann Hematol 2005;84:572-577.
    [51]Dufour C, Corcione A, Svahn J, Haupt R, Battilana N, Pistoia V. Interferon gamma and tumour necrosis factor alpha are overexpressed in bone marrow T lymphocytes from paediatric patients with aplastic anaemia. Br J Haematol 2001; 115:1023-1031.
    [52]Rose DM, Winston BW, Chan ED, Riches DW, Henson PM. Interferon-gamma and transforming growth factor-beta modulate the activation of mitogen-activated protein kinases and tumor necrosis factor-alpha production induced by Fc gamma-receptor stimulation in murine macrophages. Biochem Biophys Res Commun 1997;238:256-260.
    [53]Kakagianni T, Giannakoulas NC, Thanopoulou E, Galani A, Michalopoulou S, Kouraklis-Symeonidis A, et al. A probable role for trail-induced apoptosis in the pathogenesis of marrow failure. Implications from an in vitro model and from marrow of aplastic anemia patients. Leuk Res 2006;30:713-721.
    [54]Maciejewski J, Selleri C, Anderson S, Young NS. Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 1995;85:3183-3190.
    [55]Verma A, Deb DK, Sassano A, Kambhampati S, Wickrema A, Uddin S, et al. Cutting edge: activation of the p38 mitogen-activated protein kinase signaling pathway mediates cytokine-induced hemopoietic suppression in aplastic anemia. J Immunol 2002;168:5984-5988.
    [56]Schultz JC, Shahidi NT. Detection of tumor necrosis factor-alpha in bone marrow plasma and peripheral blood plasma from patients with aplastic anemia. Am J Hematol 1994;45:32-38.
    [57]Hsu HC, Tsai WH, Chen LY, Hsu ML, Ho CH, Lin CK, et al. Overproduction of inhibitory hematopoietic cytokines by lipopolysaccharide-activated peripheral blood mononuclear cells in patients with aplastic anemia. Ann Hematol 1995;71:281-286.
    [58]Hsu HC, Tsai WH, Chen LY, Hsu ML, Ing-Tiau Kuo B, Ho CH, et al. Production of hematopoietic regulatory cytokines by peripheral blood mononuclear cells in patients with aplastic anemia. Exp Hematol 1996;24:31-36.
    [59]Hara T, Ando K, Tsurumi H, Moriwaki H. Excessive production of tumor necrosis factor-alpha by bone marrow T lymphocytes is essential in causing bone marrow failure in patients with aplastic anemia. Eur J Haematol 2004;73:10-16.
    [60]Kasahara S, Hara T, Itoh H, Ando K, Tsurumi H, Sawada M, et al. Hypoplastic myelodysplastic syndromes can be distinguished from acquired aplastic anaemia by bone marrow stem cell expression of the tumour necrosis factor receptor. Br J Haematol 2002;118:181-188.
    [61]Demeter J, Messer G, Schrezenmeier H. Clinical relevance of the TNF-alpha promoter/enhancer polymorphism in patients with aplastic anemia. Ann Hematol 2002;81:566-569.
    [62]Gascon P, Scala G Decreased interleukin-1 production in aplastic anemia. Am J Med 1988;85:668-674.
    [63]Nakao S, Matsushima K, Young N. Decreased interleukin 1 production in aplastic anaemia. Br J Haematol 1989;71:431-436.
    [64]Holmberg LA, Seidel K, Leisenring W, Torok-Storb B. Aplastic anemia:analysis of stromal cell function in long-term marrow cultures. Blood 1994;84:3685-3690.
    [65]Kawano Y, Takaue Y, Hirao A, Watanabe T, Abe T, Shimizu T, et al. Production of interleukin 3 and granulocyte-macrophage colony-stimulating factor from stimulated blood mononuclear cells in patients with aplastic anemia. Exp Hematol 1992;20:1125-1128.
    [66]Gibson FM, Scopes J, Daly S, Ball S, Gordon-Smith EC. Haemopoietic growth factor production by normal and aplastic anaemia stroma in long-term bone marrow culture. Br J Haematol 1995;91:551-561.
    [67]Cockrell EM, Gorman J, Hord JD. Endogenous interleukin-11 (IL-11) levels in newly diagnosed children with acquired severe aplastic anemia (SAA). Cytokine 2004;28:55-58.
    [68]Gascon P, Zoumbos NC, Scala G, Djeu JY, Moore JG, Young NS. Lymphokine abnormalities in aplastic anemia:implications for the mechanism of action of antithymocyte globulin. Blood 1985;65:407-413.
    [69]Nissen C, Moser Y, Weis J, Wursch A, Gratwohl A, Speck B. The release of interleukin-2 (IL-2) and colony stimulating activity (CSA) in aplastic anemia patients:opposite behaviour with improvement of bone marrow function. Blut 1986;52:221-230.
    [70]Gu Y, Hu X, Liu C, Qv X, Xu C. Interleukin (IL)-17 promotes macrophages to produce IL-8, IL-6 and tumour necrosis factor-alpha in aplastic anaemia. Br J Haematol 2008; 142:109-114.
    [71]Tripathy NK, Nityanand S. Bone marrow and blood plasma levels of IL-8 in aplastic anemia and their relationship with disease severity. Am J Hematol 2005;79:240-242.
    [72]Gu Y, Zhang J, Peng J, Hu X, Xu C. Elevated expression of IL-12 and IL-23 in patients with aplastic anemia. Int J Lab Hematol 2009;31:207-214.
    [73]Dirksen U, Asadi-Moghaddam K, Fuhrer M, Burdach S. Defunct hematopoietic progenitor growth and heterogeneous immunological phenotypes in acquired aplastic anemia of childhood:identification of subsets with decreased hematopoietic progenitors and increased IL15 or IL10 production. Klin Padiatr 1998;210:167-172.
    [74]Wenxin L, Jinxiang F, Yong W, Wenxiang L, Wenbiao S, Xueguang Z. Expression of membrane-bound IL-15 by bone marrow fibroblast-like stromal cells in aplastic anemia. Int Immunol 2005;17:429-437.
    [75]Dilloo D, Vohringer R, Josting A, Habersang K, Scheidt A, Burdach S. Bone marrow fibroblasts from children with aplastic anemia exhibit reduced interleukin-6 production in response to cytokines and viral challenge. Pediatr Res 1995;38:716-721.
    [76]Mayer A, Podlech J, Kurz S, Steffens HP, Maiberger S, Thalmeier K, et al. Bone marrow failure by cytomegalovirus is associated with an in vivo deficiency in the expression of essential stromal hemopoietin genes. J Virol 1997;71:4589-4598.
    [77]Kojima S, Matsuyama T, Kodera Y. Hematopoietic growth factors released by marrow stromal cells from patients with aplastic anemia. Blood 1992;79:2256-2261.
    [78]Dinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996;87:2095-2147.
    [79]Brugger W, Mocklin W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L. Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta), IL-6, IL-3, interferon-gamma, and erythropoietin. Blood 1993;81:2579-2584.
    [80]Jacobsen SE, Ruscetti FW, Okkenhaug C, Lien E, Ortiz M, Veiby OP, et al. Distinct and direct synergistic effects of IL-1 and IL-6 on proliferation and differentiation of primitive murine hematopoietic progenitor cells in vitro. Exp Hematol 1994;22:1064-1069.
    [81]Farese AM, Williams DE, Seiler FR, MacVittie TJ. Combination protocols of cytokine therapy with interleukin-3 and granulocyte-macrophage colony-stimulating factor in a primate model of radiation-induced marrow aplasia. Blood 1993;82:3012-3018.
    [82]Lindemann A, Mertelsmann R. Interleukin-3 and its receptor. Cancer Treat Res 1995;80:107-142.
    [83]Eder M, Geissler G, Ganser A. IL-3 in the clinic. Stem Cells 1997;15:327-333.
    [84]Metcalf D, Begley CG, Johnson GR, Nicola NA, Lopez AF, Williamson DJ. Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood 1986;68:46-57.
    [85]Kaushansky K. Thrombopoietin. N Engl J Med 1998;339:746-754.
    [86]Kurzrock R. Thrombopoietic factors in chronic bone marrow failure states:the platelet problem revisited. Clin Cancer Res 2005;11:1361-1367.
    [87]Cork BA, Tuckerman EM, Li TC, Laird SM. Expression of interleukin (IL)-11 receptor by the human endometrium in vivo and effects of IL-11, IL-6 and LIF on the production of MMP and cytokines by human endometrial cells in vitro. Mol Hum Reprod 2002;8:841-848.
    [88]Wu HH, Talpaz M, Champlin RE, Pilat SR, Kurzrock R. Sequential interleukin 3 and granulocyte-macrophage-colony stimulating factor therapy in patients with bone marrow failure with long-term follow-up of responses. Cancer 2003;98:2410-2419.
    [89]Raghavachar A, Ganser A, Freund M, Heimpel H, Herrmann F, Schrezenmeier H. Long-term interleukin-3 and intensive immunosuppression in the treatment of aplastic anemia. Cytokines Mol Ther 1996;2:215-223.
    [90]Kurzrock R, Cortes J, Thomas DA, Jeha S, Pilat S, Talpaz M. Pilot study of low-dose interleukin-11 in patients with bone marrow failure. J Clin Oncol 2001; 19:4165-4172.
    [91]Tsimberidou AM, Giles FJ, Khouri I, Bueso-Ramos C, Pilat S, Thomas DA, et al. Low-dose interleukin-11 in patients with bone marrow failure:update of the M. D. Anderson Cancer Center experience. Ann Oncol 2005;16:139-145.
    [92]Walsh CE, Liu JM, Anderson SM, Rossio JL, Nienhuis AW, Young NS. A trial of recombinant human interleukin-1 in patients with severe refractory aplastic anaemia. Br J Haematol 1992;80:106-110.
    [93]Nemunaitis J, Ross M, Meisenberg B, O'Reilly R, Lilleby K, Buckner CD, et al. Phase I study of recombinant human interleukin-1 beta (rhIL-1 beta) in patients with bone marrow failure. Bone Marrow Transplant 1994;14:583-588.
    [94]Ganser A, Lindemann A, Seipelt G, Ottmann OG, Eder M, Falk S, et al. Effects of recombinant human interleukin-3 in aplastic anemia. Blood 1990;76:1287-1292.
    [95]Kishimoto T. The biology of interleukin-6. Blood 1989;74:1-10.
    [96]Ulich TR, del Castillo J, Guo KZ. In vivo hematologic effects of recombinant interleukin-6 on hematopoiesis and circulating numbers of RBCs and WBCs. Blood 1989;73:108-110.
    [97]Carrington PA, Hill RJ, Stenberg PE, Levin J, Corash L, Schreurs J, et al. Multiple in vivo effects of interleukin-3 and interleukin-6 on murine megakaryocytopoiesis. Blood 1991;77:34-41.
    [98]Schrezenmeier H, Marsh JC, Stromeyer P, Muller H, Heimpel H, Gordon-Smith EC, et al. A phase Ⅰ/Ⅱ trial of recombinant human interleukin-6 in patients with aplastic anaemia. Br J Haematol 1995;90:283-292.
    [99]Fermo E, Bianchi P, Barcellini W, Pedotti P, Boschetti C, Alfinito F, et al. Immunoregulatory cytokine polymorphisms in Italian patients affected by paroxysmal nocturnal haemoglobinuria and aplastic anaemia. Eur J Immunogenet 2004;31:267-269.
    [100]Gidvani V, Ramkissoon S, Sloand EM, Young NS. Cytokine gene polymorphisms in acquired bone marrow failure. Am J Hematol 2007;82:721-724.
    [101]Hinterberger W, Adolf G, Bettelheim P, Geissler K, Huber C, Irschick E, et al. Lymphokine overproduction in severe aplastic anemia is not related to blood transfusions. Blood 1989;74:2713-2717.
    [102]Azogui O, Gluckman E, Fradelizi D. Inhibiton of IL 2 production after human allogeneic bone marrow transplantation. J Immunol 1983;131:1205-1208.
    [103]Platanias L, Gascon P, Bielory L, Griffith P, Nienhuis A, Young N. Lymphocyte phenotype and lymphokines following anti-thymocyte globulin therapy in patients with aplastic anaemia. Br J Haematol 1987;66:437-443.
    [104]Maciejewski JP, Sloand EM, Nunez O, Boss C, Young NS. Recombinant humanized anti-IL-2 receptor antibody (daclizumab) produces responses in patients with moderate aplastic anemia. Blood 2003; 102:3584-3586.
    [105]Geissler K, Kabrna E, Kollars M, Ohler L, Berer A, Burgmann H, et al. Interleukin-10 inhibits in vitro hematopoietic suppression and production of interferon-gamma and tumor necrosis factor-alpha by peripheral blood mononuclear cells from patients with aplastic anemia. Hematol J 2002;3:206-213.
    [106]Asano Y, Shibata S, Kobayashi S, Okamura S, Niho Y. Effect of interleukin 10 on the hematopoietic progenitor cells from patients with aplastic anemia. Stem Cells 1999;17:147-151.
    [107]Maciejewski JP, Liu JM, Green SW, Walsh CE, Plumb M, Pragnell IB, et al. Expression of stem cell inhibitor (SCI) gene in patients with bone marrow failure. Exp Hematol 1992;20:1112-1117.
    [108]Taketazu F, Miyagawa K, Ichijo H, Oshimi K, Mizoguchi H, Hirai H, et al. Decreased level of transforming growth factor-beta in blood lymphocytes of patients with aplastic anemia. Growth Factors 1992;6:85-90.
    [109]Rizzo S, Killick SB, Patel S, Ball SE, Wadhwa M, Dilger P, et al. Reduced TGF-betal in patients with aplastic anaemia in vivo and in vitro. Br J Haematol 1999;107:797-803.
    [110]Wodnar-Filipowicz A, Yancik S, Moser Y, dalle Carbonare V, Gratwohl A, Tichelli A, et al. Levels of soluble stem cell factor in serum of patients with aplastic anemia. Blood 1993;81:3259-3264.
    [111]Das RE, Milne A, Rowley M, Smith EC, Cotes PM. Serum immunoreactive erythropoietin in patients with idiopathic aplastic and Fanconi's anaemias. British journal of haematology 1992;82:601-607.
    [112]Schrezenmeier H, Noe G, Raghavachar A, Rich IN, Heimpel H, Kubanek B. Serum erythropoietin and serum transferrin receptor levels in aplastic anaemia. British journal of haematology 1994;88:286-294.
    [113]Marsh JC, Gibson FM, Prue RL, Bowen A, Dunn VT, Hornkohl AC, et al. Serum thrombopoietin levels in patients with aplastic anaemia. British journal of haematology 1996;95:605-610.
    [114]Schrezenmeier H, Griesshammer M, Hornkohl A, Nichol JL, Hecht T, Heimpel H, et al. Thrombopoietin serum levels in patients with aplastic anaemia:correlation with platelet count and persistent elevation in remission. British journal of haematology 1998;100:571-576.
    [115]Kojima S, Matsuyama T, Kodera Y, Tahara T, Kato T. Measurement of endogenous plasma thrombopoietin in patients with acquired aplastic anaemia by a sensitive enzyme-linked immunosorbent assay. British journal of haematology 1997;97:538-543.
    [116]Watari K, Asano S, Shirafuji N, Kodo H, Ozawa K, Takaku F, et al. Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood 1989;73:117-122.
    [117]Xu H, Li A, Yu Y, Li J, Liu X, Wang X, et al. Comparative analysis of G-CSFR and GM-CSFR expressions on CD(34)(+) cells in patients with aplastic anemia and myelodysplastic syndrome. International journal of laboratory hematology 2008.
    [118]Marsh JC, Ganser A, Stadler M. Hematopoietic growth factors in the treatment of acquired bone marrow failure states. Seminars in hematology 2007;44:138-147.
    [119]Li Z, Li L. Understanding hematopoietic stem-cell microenvironments. Trends Biochem Sci 2006;31:589-595.
    [120]Shiozawa Y, Havens AM, Pienta KJ, Taichman RS. The bone marrow niche:habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 2008;22:941-950.
    [121]Maciejewski JP, Selleri C, Sato T, Anderson S, Young NS, A severe and consistent deficit in marrow and circulating primitive hematopoietic cells (long-term culture-initiating cells) in acquired aplastic anemia. Blood 1996;88:1983-1991.
    [122]Podesta M, Piaggio G, Frassoni F, Pitto A, Zikos P, Sessarego M, et al. The assessment of the hematopoietic reservoir after immunosuppressive therapy or bone marrow transplantation in severe aplastic anemia. Blood 1998;91:1959-1965.
    [123]Rizzo S, Scopes J, Elebute MO, Papadaki HA, Gordon-Smith EC, Gibson FM. Stem cell defect in aplastic anemia:reduced long term culture-initiating cells (LTC-IC) in CD34+ cells isolated from aplastic anemia patient bone marrow. Hematol J 2002;3:230-236.
    [124]Manz CY, Nissen C, Wodnar-Filipowicz A. Deficiency of CD34+ c-kit+ and CD34+38-hematopoietic precursors in aplastic anemia after immunosuppressive treatment. Am J Hematol 1996;52:264-274.
    [125]Rizzo S, Scopes J, Draycott GS, Pocock C, Foukaneli T, Rutherford TR, et al. Quiescent (5-fluorouracil-resistant) aplastic anemia hematopoietic cells in vitro. Exp Hematol 2004;32:665-672.
    [126]Matsui WH, Brodsky RA, Smith BD, Borowitz MJ, Jones RJ. Quantitative analysis of bone marrow CD34 cells in aplastic anemia and hypoplastic myelodysplastic syndromes. Leukemia 2006;20:458-462.
    [127]Scopes J, Daly S, Atkinson R, Ball SE, Gordon-Smith EC, Gibson FM. Aplastic anemia: evidence for dysfunctional bone marrow progenitor cells and the corrective effect of granulocyte colony-stimulating factor in vitro. Blood 1996;87:3179-3185.
    [128]Schrezenmeier H, Jenal M, Herrmann F, Heimpel H, Raghavachar A. Quantitative analysis of cobblestone area-forming cells in bone marrow of patients with aplastic anemia by limiting dilution assay. Blood 1996;88:4474-4480.
    [129]Bacigalupo A, Piaggio G, Podesta M, Tong J, Pitto A, Figari O, et al. Early hemopoietic progenitors in the peripheral blood of patients with severe aplastic anemia (SAA) after treatment with antilymphocyte globulin (ALG), cyclosporin-A and G-CSF. Haematologica 1997;82:133-137.
    [130]Cox CV, Killick SB, Patel S, Elebute MO, Marsh JC, Gordon-Smith EC, et al. In vitro proliferation and differentiation of megakaryocytic progenitors in patients with aplastic anemia, paroxysmal nocturnal hemoglobinuria, and the myelodysplastic syndromes. Stem cells (Dayton, Ohio) 2000; 18:428-434.
    [131]Marsh JC, Chang J, Testa NG, Hows JM, Dexter TM. The hematopoietic defect in aplastic anemia assessed by long-term marrow culture. Blood 1990;76:1748-1757.
    [132]Bacigalupo A, Figari O, Tong J, Piaggio G, Miceli S, Frassoni F, et al. Long-term marrow culture in patients with aplastic anemia compared with marrow transplant recipients and normal controls. Experimental hematology 1992;20:425-430.
    [133]Scopes J, Bagnara M, Gordon-Smith EC, Ball SE, Gibson FM. Haemopoietic progenitor cells are reduced in aplastic anaemia. Br J Haematol 1994;86:427-430.
    [134]Philpott NJ, Scopes J, Marsh JC, Gordon-Smith EC, Gibson FM. Increased apoptosis in aplastic anemia bone marrow progenitor cells:possible pathophysiologic significance. Experimental hematology 1995;23:1642-1648.
    [135]Timeus F, Crescenzio N, Doria A, Foglia L, Linari A, Giaccone M, et al. Flow cytometric evaluation of circulating CD34+ cell counts and apoptotic rate in children with acquired aplastic anemia and myelodysplasia. Experimental hematology 2005;33:597-604.
    [136]Callera F, Falcao RP. Increased apoptotic cells in bone marrow biopsies from patients with aplastic anaemia. British journal of haematology 1997;98:18-20.
    [137]Killick SB, Cox CV, Marsh JC, Gordon-Smith EC, Gibson FM. Mechanisms of bone marrow progenitor cell apoptosis in aplastic anaemia and the effect of anti-thymocyte globulin: examination of the role of the Fas-Fas-L interaction. British journal of haematology 2000; 111:1164-1169.
    [138]Zeng W, Chen G, Kajigaya S, Nunez O, Charrow A, Billings EM, et al. Gene expression profiling in CD34 cells to identify differences between aplastic anemia patients and healthy volunteers. Blood 2004;103:325-332.
    [139]Maciejewski JP, Selleri C, Sato T, Anderson S, Young NS. Increased expression of Fas antigen on bone marrow CD34+ cells of patients with aplastic anaemia. Br J Haematol 1995;91:245-252.
    [140]Ismail M, Gibson FM, Gordon-Smith EC, Ruthorford TR. Bcl-2 and Bcl-x expression in the CD34+ cells of aplastic anaemia patients:relationship with increased apoptosis and upregulation of Fas antigen. British journal of haematology 2001;113:706-712.
    [141]Calado RT, Garcia AB, Gallo DA, Falcao RP. Reduced function of the multidrug resistance P-glycoprotein in CD34+ cells of patients with aplastic anaemia. British journal of haematology 2002; 118:320-326.
    [142]Kaito K, Otsubo H, Ogasawara Y, Shimada T, Usui N, Kobayashi M. Adhesion molecule expression by bone marrow CD34-positive cells in aplastic anemia before and after immunosuppressive therapy. Clinical and laboratory haematology 2003;25:393-396.
    [143]Fujimaki S, Harigae H, Sugawara T, Takasawa N, Sasaki T, Kaku M. Decreased expression of transcription factor GATA-2 in haematopoietic stem cells in patients with aplastic anaemia. British journal of haematology 2001;113:52-57.
    [144]Ball SE, Gibson FM, Rizzo S, Tooze JA, Marsh JC, Gordon-Smith EC. Progressive telomere shortening in aplastic anemia. Blood 1998;91:3582-3592.
    [145]Brummendorf TH, Maciejewski JP, Mak J, Young NS, Lansdorp PM. Telomere length in leukocyte subpopulations of patients with aplastic anemia. Blood 2001;97:895-900.
    [146]Calado RT, Young NS. Telomere maintenance and human bone marrow failure. Blood 2008;111:4446-4455.
    [147]Fogarty PF, Yamaguchi H, Wiestner A, Baerlocher GM, Sloand E, Zeng WS, et al. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet 2003;362:1628-1630.
    [148]Yamaguchi H. Mutations of telomerase complex genes linked to bone marrow failures. Journal of Nippon Medical School=Nihon Ika Daigaku zasshi 2007;74:202-209.
    [149]Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. The New England journal of medicine 2005;352:1413-1424.
    [150]Savage SA, Calado RT, Xin ZT, Ly H, Young NS, Chanock SJ. Genetic variation in telomeric repeat binding factors 1 and 2 in aplastic anemia. Experimental hematology 2006;34:664-671.
    [151]Islam A. Do bone marrow fat cells or their precursors have a pathogenic role in idiopathic aplastic anaemia? Medical hypotheses 1988;25:209-217.
    [152]Le Blanc K, Samuelsson H, Gustafsson B, Remberger M, Sundberg B, Arvidson J, et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 2007;21:1733-1738.
    [153]Fang B, Li N, Song Y, Li J, Zhao RC, Ma Y. Cotransplantation of haploidentical mesenchymal stem cells to enhance engraftment of hematopoietic stem cells and to reduce the risk of graft failure in two children with severe aplastic anemia. Pediatr Transplant 2008.
    [154]Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nature reviews 2008;8:726-736.
    [155]Juneja HS, Gardner FH. Functionally abnormal marrow stromal cells in aplastic anemia. Exp Hematol 1985; 13:194-199.
    [156]Xu Y, Takahashi Y, Wang Y, Hama A, Nishio N, Muramatsu H, et al. Downregulation of GATA-2 and overexpression of adipogenic gene-PPARgamma in mesenchymal stem cells from patients with aplastic anemia. Exp Hematol 2009;37:1393-1399.
    [157]Wang HY, Ding TL, Xie Y, Xu XP, Yu L, Chen T. [Osteogenic and adipogenic differentiation of bone marrow-derived mesenchymal stem cells in patients with aplastic anemia]. Zhonghua Nei Ke Za Zhi 2009;48:39-43.
    [158]Wu X, Li Y, Zhu K, Wang Z, Chen S, Yang L. GATA-1,-2 and-3 genes expression in bone marrow microenviroment with chronic aplastic anemia. Hematology 2007;12:331-335.
    [159]Bacigalupo A, Valle M, Podesta M, Pitto A, Zocchi E, De Flora A, et al. T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Exp Hematol 2005;33:819-827.
    [160]Chen J, Lipovsky K, Ellison FM, Calado RT, Young NS. Bystander destruction of hematopoietic progenitor and stem cells in a mouse model of infusion-induced bone marrow failure. Blood 2004; 104:1671-1678.
    [161]Scopes J, Ismail M, Marks KJ, Rutherford TR, Draycott GS, Pocock C, et al. Correction of stromal cell defect after bone marrow transplantation in aplastic anaemia. British journal of haematology 2001; 115:642-652.
    [162]Fouillard L, Bensidhoum M, Bories D, Bonte H, Lopez M, Moseley AM, et al. Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia 2003; 17:474-476.
    [163]Urbich C, Dimmeler S. Endothelial progenitor cells:characterization and role in vascular biology. Circ Res 2004;95:343-353.
    [164]Schatteman GC, Awad O. Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anat Rec A Discov Mol Cell Evol Biol 2004;276:13-21.
    [165]Fureder W, Krauth MT, Sperr WR, Sonneck K, Simonitsch-Klupp I, Mullauer L, et al. Evaluation of angiogenesis and vascular endothelial growth factor expression in the bone marrow of patients with aplastic anemia. Am J Pathol 2006; 168:123-130.
    [166]Gupta P, Khurana N, Singh T, Gupta D, Dhingra KK. Bone marrow angiogenesis in aplastic anemia--a study of CD 34 and VEGF expression in bone marrow biopsies. Hematology 2009; 14:16-21.
    [167]Mesa RA, Hanson CA, Rajkumar SV, Schroeder G, Tefferi A. Evaluation and clinical correlations of bone marrow angiogenesis in myelofibrosis with myeloid metaplasia. Blood 2000;96:3374-3380.
    [168]Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000;96:2240-2245.
    [169]Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007;318:1920-1923.
    [170]Ye L, Chang JC, Lin C, Sun X, Yu J, Kan YW. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci U S A 2009; 106:9826-9830.
    [171]Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 2009;460:53-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700