半导体薄膜的制备及其光催化和光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源枯竭和能源大量使用带来的环境问题日益严峻,寻找新型清洁能源已经成为全球热点问题,太阳能的利用代表着未来能源发展的主要途径。从1839年至今,光电转化研究已取得了一系列重要进展,不仅奠定了坚实的理论基础,而且在应用方面也取得了重大突破。光催化和染料敏化太阳能电池始于上世纪70年代和90年代,其基本原理是光子激发半导体禁带产生光生电子和空穴,从而产生氧化还原物种或光致电流。
     本论文着重研制新型可见光响应半导体薄膜材料、研究半导体薄膜材料形貌结构与光学吸收的内在联系、探究半导体薄膜材料光学吸收与光电转化效率的关系以及考察石墨烯对半导体薄膜电子转移效率的影响,具体研究内容分为以下四个方面:
     (1)采用TiF4乙醇溶液浸渍涂布在玻璃基底表面,由挥发诱导自组装制备介孔薄膜TiOF2可见光催化剂。通过浓度和温度调变对薄膜进行优化,结合能谱、红外、核磁等表征,探索薄膜形成机理。该薄膜具有较高结晶度,同时与玻璃基底具有化学键键合作用,从而导致良好的结合稳定度,在降解染料废水罗丹明B中显示高可见光催化活性和良好的使用寿命。薄膜同时也可以拓展到其它硅系的载体,并表现了良好的成膜性能和潜在应用功能。
     (2)采用钛片、四氟化钛和叔丁醇溶剂在160oC条件下发生溶剂热反应,制备出具有光增强吸收作用的TiO2光子晶体薄膜。通过调变反应时间、TiF4及HF酸含量,控制并优化光子晶体薄膜的生长,促进对光的选择性增强吸收。分别考察其在不同可控光区光源照射下,光催化降解染料废水中罗丹明B和亚甲基蓝的性能,发现光增强吸收作用显著提高光催化活性,结合相关表征,对其内在关系进行了探索。
     (3)采用乙醇、丙三醇和乙醚混合溶剂,以硫酸氧钛为钛源,控制反应时间来制备具有球型、核壳型和空壳型TiO2纳米球,并将之应用于染料敏化太阳能电池的散射层,考察了不同结构散射层对光的利用效率及光电转化效率的影响,发现空腔结构TiO2纳米球散射层能够显著提高光的利用率,结合多种表征手段,证明光的多次反射有利于提高了光的利用率,进而提高了光电转换效率。
     (4)将石墨作为双烯体,马来酸酣作为亲二烯体,采用微波辅助加热狄尔斯-阿尔德反应剥离石墨制备羧基功能化的石墨烯溶液,考察了温度与配体浓度对石墨烯结构的影响,确定最佳条件为温度180oC,石墨与马来酸酣的质量比为1:1.5。将石墨烯进行低温真空加热,发生狄尔斯-阿尔德反应逆反应,可以恢复石墨烯的导电性能,使石墨烯的薄膜方块电阻降低一个数量级,并利用功能化的石墨烯的羧基作为石墨烯与半导体薄膜TiO2的桥梁,提高染料敏化太阳能电池电子的传输速率,提高染料敏化太阳能电池的光电转化效率,结合多种表征手段,对石墨烯的形成机理以及光电转化构效关系进行了探索。
Environment problem is becoming more and more serious, because of theexcess consumption of fossil energy and its decreasing resources. Consequently,finding new and clean energies has been a global issue. Solar energy is one of theimportant main routes to develop future sustainable energy. Since its first discoveryin1839, photoelectric conversion has achieved a series of important progressesincluding both fundamental theories and practical applications. Photocatalysis anddye-sensitized solar cells were proposed in the1970s and1990s, respectively. Theyfollow the same basic theory that photons excite the bandgap of semiconductor toproduce the photo-generated electrons (negative charge) and holes (positive charge),which then lead to redox species or photocurrent in the circuit.
     This thesis focuses on the following topics: synthesis of novel semiconductorfilms with visible light response, exploration of the relationship between themorphology of semiconductor films and its light absorbency, study on therelationship of light absorbency and photoelectric conversion, and investigation ofthe promoting effect on the electron mobility by adding functional graphene into thesemiconductor films. The main work can be divided into following4parts.
     (1) TiOF2mesoporous films were prepared by dipping-coating alcohol solutioncontaining TiF4onto a glass surface, followed by evaporation induced self-assemble.The formation mechanism was also revealed through characterizations of mapping,FT-IR, NMR and so on. Such TiOF2mesoporous films could be activated by visiblelights. Meanwhile, they also showed the high crystallization and binding strength dueto chemical bonding between TiOF2film and the SiO2substrate. As a result, theyshowed high activity and durability during photocatalytic degradation of RhodamineB in aqueous solution under visible light irradiation, which could be further optimizedby adjusting the TiF4concentration and reaction temperatures during preparation ofTiOF2films. These TiOF2films could also be coated onto other Si-base substrates bycovalently bonding, showing good potential in practical applications.
     (2) The TiO2photonic films were synthesized by solvothermal reaction of Ti foil, TiF4and tert-butyl alcohol at160oC. Such TiO2films showed enhanced lightabsorbance ability in certain wavelength. By optimizing reaction period, TiF4and/orHF amount, the TiO2films displayed strongly selective absorbance of lights withcharacteristic wavelengths. During photocatalytic degradation of rhodamine B andmethylene blue under visible lightirradiation, the TiO2films showed enhancedactivity at the irradiation of lights with characteristic wavelengths corresponding tothe strong light absorbance. The relationship between the selective light absorbanceand photocatalytic activity were investigated based on detailed characterizations.
     (3) TiO2microspheres with tunable chamber space (solid spheres, core shellspheres and hollow spheres) were synthesized by solvothermal reaction of mixedsolvents (alcohol, glycerin, diethyl ether) and TiOSO4at desired reaction periods.These microspheres were introduced into the dye sensitized solar cells (DSSCs) as ascattering layer encapsulated by two TiO2films comprised of uniform tiny TiO2nanoparticles, which exhibited the promoting effect on the light harvesting and cellefficiency owing to the multiple light-reflections in the microsphere chambers andthe internal light reflections within the TiO2films, together with the reduced electricresistance for the electron-transfer.
     (4) Carboxyl-functionalized graphene was synthesized by Diels-Alder reactionunder microwave irradiation in which the graphite played the role as diene and themaleic anhydride was used as dienophile. Based on the investigation of the influenceof either the reaction temperature or the maleic anhydride concentration on thegraphene growth, the optimum conditions were determined as the reactiontemperature of180oC and the graphite/maleic anhydride weight ratio of1/1.5. Whenthe as-received graphene were treated under vacuum at elevated temperatures, thereverse Diels-Alder reaction took place, leading to the recovery of the conductivity.The square resistance measurements showed the recovered graphene’s conductivitywas as10times as the functional graphene. Such carboxyl functional group played arole as a bridge between graphene and TiO2semiconductor films, leading to thegreat increase of electron mobility of the TiO2films, which could remarkablypromote photoelectric conversion efficiency. The formation mechanism of carboxyl functional graphene was examined based on detailed characterizations. Meanwhile,the correlation of photoelectric conversion efficiency to the graphene compositionand structure was also explored.
引文
[1]. Fujishima, A.; Zhang, X. T., Solid-State Dye-Sensitized Solar Cells. Proceedings of theJapan Academy Series B-Physical and Biological Sciences2005,81(2),33-42.
    [2]. Xu, Y. B., Indentation-Induced Plasticity, Damage and Fracture in Si and Gaas SingleCrystals. Journal of Inorganic Materials2009,24(6),1081-1089.
    [3]. Sobolev, N. A., Defect Engineering in Implantation Technology of Silicon Light-EmittingStructures with Dislocation-Related Luminescence. Semiconductors2010,44(1),1-23.
    [4]. Kost, D.; Kalikhman, I., Hypercoordinate Silicon Complexes Based on Hydrazide Ligands.A Remarkably Flexible Molecular System. Accounts of Chemical Research2009,42(2),303-314.
    [5]. Kalyanasundaram, K.; Gr tzel, M., Applications of Functionalized Transition MetalComplexes in Photonic and Optoelectronic Devices. Coordination Chemistry Reviews1998,177,347-414.
    [6]. Hagfeldt, A.; Gr tzel, M., Molecular Photovoltaics. Accounts of Chemical Research2000,33(5),269-277.
    [7]. Gr tzel, M., Recent Advances in Sensitized Mesoscopic Solar Cells. Accounts of ChemicalResearch2009,42(11),1788-1798.
    [8]. Gr tzel, M., Mesoscopic Solar Cells for Electricity and Hydrogen Production from Sunlight.Chemistry Letters2005,34(1),8-13.
    [9]. Zakeeruddin, S. M.; Gr tzel, M., Solvent-Free Ionic Liquid Electrolytes for MesoscopicDye-Sensitized Solar Cells. Advanced Functional Materials2009,19(14),2187-2202.
    [10]. Yum, J. H.; Chen, P.; Gr tzel, M.; Nazeeruddin, M. K., Recent Developments inSolid-State Dye-Sensitized Solar Cells. Chemsuschem2008,1(8-9),699-707.
    [11]. Nazeeruddin, M. K.; Gr tzel, M., Transition Metal Complexes for Photovoltaic and LightEmitting Applications. In Photofunctional Transition Metals Complexes,2007; Vol.123,113-175.
    [12]. Murakami, T. N.; Gr tzel, M., Counter Electrodes for DSSCs: Application of FunctionalMaterials as Catalysts. Inorganica Chimica Acta2008,361(3),572-580.
    [13]. Kukushkin, V. Y.; Oskarsson, A.; Elding, L. I.; Farrell, N.; Vicente, J.; Chicote, M. T.;Kauffman, G. B.; Houghten, R. A.; Likins, R. E.; Posson, P. L.; Ray, R. K.; Tkachuk, V. M.;Vorobiov-Desiatovsky, N. V.; Hill, G. S.; Irwin, M. J.; Levy, C. J.; Rendina, L. M.; Puddephatt, R.J.; Romeo, R.; Monsu'scolaro, L.; Ruffo, F.; De Renzi, A.; Panunzi, A.; Byers, P. K.; Canty, A. J.;Jin, H.; Kruis, D.; Markies, B. A.; Boersma, J.; van Koten, G.; Nazeeruddin, K.; Kalyanasundaram,R.; Gr tzel, M.; Bessel, C. A.; Leising, R. A.; Szczepura, L. F.; Perez, W. J.; Huyhn, M. H. V.;Takeuchi, K. J.; Poli, R.; Krueger, S. T.; Mattamana, S. P.; Jacobsen, C. J. H.; Klinke, K. K.;Hyldtoft, J.; Villadsen, J.; Abernethy, C. D.; Botommley, F.; Chen, J.; Kemp, M. F.; Mallais, T. C.;Womiloju, O. O.; Morris, R. J.; Shaw, S. L.; Jefferis, J. M.; Storhoff, J. J.; Goedde, D. M.;Hakanson, M., Transition Metal Complexes and Precursors. Inorganic Syntheses, Vol32,1998;Vol.32,141-228.
    [14]. Alfano, O. M.; Bahnemann, D.; Cassano, A. E.; Dillert, R.; Goslich, R., Photocatalysis inWater Environments Using Artificial and Solar Light. Catalysis Today2000,58(2-3),199-230.
    [15]. Anpo, M.; Che, M., Applications of Photoluminescence Techniques to the Characterizationof Solid Surfaces in Relation to Adsorption, Catalysis, and Photocatalysis. Advances in Catalysis,Vol44,1999; Vol.44,119-257.
    [16]. Burrows, H. D.; Canle, M.; Santaballa, J. A.; Steenken, S., Reaction Pathways andMechanisms of Photodegradation of Pesticides. Journal of Photochemistry and PhotobiologyB-Biology2002,67(2),71-108.
    [17]. Hiskia, A.; Mylonas, A.; Papaconstantinou, E., Comparison of the Photoredox Propertiesof Polyoxometallates and Semiconducting Particles. Chemical Society Reviews2001,30(1),62-69.
    [18]. Malato, S.; Blanco, J.; Vidal, A.; Richter, C., Photocatalysis with Solar Energy at aPilot-Plant Scale: An Overview. Applied Catalysis B-Environmental2002,37(1),1-15.
    [19]. Maldotti, A.; Molinari, A.; Amadelli, R., Photocatalysis with Organized Systems for theOxofunctionalization of Hydrocarbons by O2. Chemical Reviews2002,102(10),3811-3836.
    [20]. Pirkanniemi, K.; Sillanpaa, M., Heterogeneous Water Phase Catalysis as an EnvironmentalApplication: A Review. Chemosphere2002,48(10),1047-1060.
    [21]. Rajeshwar, K.; de Tacconi, N. R.; Chenthamarakshan, C. R., Semiconductor-BasedComposite Materials: Preparation, Properties, and Performance. Chemistry of Materials2001,13(9),2765-2782.
    [22]. Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J., CrystallographicallyOriented Mesoporous WO3Films: Synthesis, Characterization, and Applications. Journal of theAmerican Chemical Society2001,123(43),10639-10649.
    [23]. Suresh, A. K.; Sharma, M. M.; Sridhar, T., Engineering Aspects of Industrial Liquid-PhaseAir Oxidation of Hydrocarbons. Industrial&Engineering Chemistry Research2000,39(11),3958-3997.
    [24]. Tryk, D. A.; Fujishima, A.; Honda, K., Recent Topics in Photoelectrochemistry:Achievements and Future Prospects. Electrochimica Acta2000,45(15-16),2363-2376.
    [25]. Zhang, J. Z., Interfacial Charge Carrier Dynamics of Colloidal SemiconductorNanoparticles. J. Phys. Chem. B2000,104(31),7239-7253.
    [26]. Ashokkumar, M., An Overview on Semiconductor Particulate Systems forPhotoproduction of Hydrogen. International Journal of Hydrogen Energy1998,23(6),427-438.
    [27]. Anpo, M.; Takeuchi, M., The Design and Development of Highly Reactive TitaniumOxide Photocatalysts Operating under Visible Light Irradiation. Journal of Catalysis2003,216(1-2),505-516.
    [28]. Carp, O.; Huisman, C. L.; Reller, A., Photoinduced Reactivity of Titanium Dioxide.Progress in Solid State Chemistry2004,32(1-2),33-177.
    [29]. Gogate, P. R.; Pandit, A. B., A Review of Imperative Technologies for WastewaterTreatment I: Oxidation Technologies at Ambient Conditions. Advances in EnvironmentalResearch2004,8(3-4),501-551.
    [30]. Kasprzyk-Hordern, B.; Ziolek, M.; Nawrocki, J., Catalytic Ozonation and Methods ofEnhancing Molecular Ozone Reactions in Water Treatment. Applied Catalysis B-Environmental2003,46(4),639-669.
    [31]. Pera-Titus, M.; Garcia-Molina, V.; Banos, M. A.; Gimenez, J.; Esplugas, S., Degradationof Chlorophenols by Means of Advanced Oxidation Processes: A General Review. AppliedCatalysis B-Environmental2004,47(4),219-256.
    [32]. Ishibashi, K.; Nosaka, Y.; Hashimoto, K.; Fujishima, A., Time-Dependent Behavior ofActive Oxygen Species Formed on Photoirradiated TiO2Films in Air. J. Phys. Chem. B1998,102(12),2117-2120.
    [33]. Yamakata, A.; Ishibashi, T.; Onishi, H., Water-and Oxygen-Induced Decay Kinetics ofPhotogenerated Electrons in TiO2and Pt/TiO2: A Time-Resolved Infrared Absorption Study. J.Phys. Chem. B2001,105(30),7258-7262.
    [34]. Ishibashi, K.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Quantum Yields of ActiveOxidative Species Formed on TiO2Photocatalyst. Journal of Photochemistry and Photobiologya-Chemistry2000,134(1-2),139-142.
    [35]. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., EnvironmentalApplications of Semiconductor Photocatalysis. Chemical Reviews1995,95(1),69-96.
    [36]. Beranek, R.; Kisch, H., Tuning the Optical and Photoelectrochemical Properties ofSurface-Modified TiO2. Photochemical&Photobiological Sciences2008,7(1),40-48.
    [37]. Han, S. T.; Xi, H. L.; Shi, R. X.; Fu, X. Z.; Wang, X. X., Prospect and Progress in theSemiconductor Photocatalysis. Chinese Journal of Chemical Physics2003,16(5),339-349.
    [38]. Korzhak, A. V.; Ermokhina, N. I.; Stroyuk, A. L.; Bukhtiyarov, V. K.; Raevskaya, A. E.;Litvin, V. I.; Kuchmiy, S. Y.; Ilyin, V. G.; Manorik, P. A., Photocatalytic Hydrogen Evolutionover Mesoporous TiO2/Metal Nanocomposites. Journal of Photochemistry and Photobiologya-Chemistry2008,198(2-3),126-134.
    [39]. Abrams, B. L.; Wilcoxon, J. P., Nanosize Semiconductors for Photooxidation. CriticalReviews in Solid State and Materials Sciences2005,30(3),153-182.
    [40]. Yu, H. T.; Quan, X., Nano-Heterojunction Photocatalytic Materials in EnvironmentalPollution Controlling. Progress in Chemistry2009,21(2-3),406-419.
    [41]. Sheng, G. D.; Li, J. X.; Wang, S. W.; Wang, X. K., Modification to Promote Visible-LightCatalytic Activity of TiO2. Progress in Chemistry2009,21(12),2492-2504.
    [42]. Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P.,TiO2Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications. CurrentOpinion in Solid State&Materials Science2007,11(1-2),3-18.
    [43]. Kitano, M.; Matsuoka, M.; Ueshima, M.; Anpo, M., Recent Developments in TitaniumOxide-Based Photocatalysts. Applied Catalysis A-General2007,325(1),1-14.
    [44]. Palmisano, G.; Augugliaro, V.; Pagliaro, M.; Palmisano, L., Photocatalysis: A PromisingRoute for21st Century Organic Chemistry. Chemical Communications2007,(33),3425-3437.
    [45]. Gaya, U. I.; Abdullah, A. H., Heterogeneous Photocatalytic Degradation of OrganicContaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems.Journal of Photochemistry and Photobiology C-Photochemistry Reviews2008,9(1),1-12.
    [46]. Aprile, C.; Corma, A.; Garcia, H., Enhancement of the Photocatalytic Activity of TiO2through Spatial Structuring and Particle Size Control: From Subnanometric to SubmillimetricLength Scale. Physical Chemistry Chemical Physics2008,10(6),769-783.
    [47]. Galoppini, E., Linkers for Anchoring Sensitizers to Semiconductor Nanoparticles.Coordination Chemistry Reviews2004,248(13-14),1283-1297.
    [48]. Gombac, V.; De Rogatis, L.; Gasparotto, A.; Vicario, G.; Montini, T.; Barreca, D.;Balducci, G.; Fornasiero, P.; Tondello, E.; Graziani, M., TiO2Nanopowders Doped with Boronand Nitrogen for Photocatalytic Applications. Chemical Physics2007,339(1-3),111-123.
    [49]. Fujishima, A.; Zhang, X. T.; Tryk, D. A., TiO2Photocatalysis and Related SurfacePhenomena. Surface Science Reports2008,63(12),515-582.
    [50]. Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H., Photoinduced Activation of CO2onTi-Based Heterogeneous Catalysts: Current State, Chemical Physics-Based Insights and Outlook.Energy&Environmental Science2009,2(7),745-758.
    [51]. Tryba, B., Increase of the Photocatalytic Activity of TiO2by Carbon and IronModifications. International Journal of Photoenergy2008.
    [52]. Rengifo-Herrera, J. A.; Pierzchala, K.; Sienkiewicz, A.; Forro, L.; Kiwi, J.; Moser, J. E.;Pulgarin, C., Synthesis, Characterization, and Photocatalytic Activities of Nanoparticulate N,S-Codoped TiO2Having Different Surface-to-Volume Ratios. Journal of Physical Chemistry C2010,114(6),2717-2723.
    [53]. Rengifo-Herrera, J. A.; Pulgarin, C., Photocatalytic Activity of N, S Co-Doped andN-Doped Commercial Anatase TiO2Powders Towards Phenol Oxidation and E. Coli Inactivationunder Simulated Solar Light Irradiation. Solar Energy2010,84(1),37-43.
    [54]. Serpone, N., Is the Band Gap of Pristine TiO2Narrowed by Anion-and Cation-Doping ofTitanium Dioxide in Second-Generation Photocatalysts. J. Phys. Chem. B2006,110(48),24287-24293.
    [55]. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-Light Photocatalysis inNitrogen-Doped Titanium Oxides. Science2001,293(5528),269-271.
    [56]. Huo, Y. N.; Jin, Y.; Zhu, J.; Li, H. X., Highly Active TiO2-X-Y Visible PhotocatalystPrepared under Supercritical Conditions in NH4+/EtOH Fluid. Applied Catalysis B-Environmental2009,89(3-4),543-550.
    [57]. Li, H. X.; Li, J. X.; Huo, Y. I., Highly Active TiO2Photocatalysts Prepared by TreatingTiO2Precursors in NH3/Ethanol Fluid under Supercritical Conditions. J. Phys. Chem. B2006,110(4),1559-1565.
    [58]. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K., A Review and RecentDevelopments in Photocatalytic Water-Splitting Using TiO2for Hydrogen Production. Renewable&Sustainable Energy Reviews2007,11(3),401-425.
    [59]. Pearton, S. J.; Heo, W. H.; Ivill, M.; Norton, D. P.; Steiner, T., Dilute MagneticSemiconducting Oxides. Semiconductor Science and Technology2004,19(10),59-74.
    [60]. Chatterjee, D.; Mahata, A., Visible Light Induced Photodegradation of Organic Pollutantson Dye Adsorbed TiO2Surface. Journal of Photochemistry and Photobiology a-Chemistry2002,153(1-3),199-204.
    [61]. Davydov, L.; Reddy, E. P.; France, P.; Smirniotis, P. G., Transition-Metal-SubstitutedTitania-Loaded MCM-41as Photocatalysts for the Degradation of Aqueous Organics in VisibleLight. Journal of Catalysis2001,203(1),157-167.
    [62]. Iliev, V., Phthalocyanine-Modified Titania Catalyst for Photooxidation of Phenols byIrradiation with Visible Light. Journal of Photochemistry and Photobiology a-Chemistry2002,151(1-3),195-199.
    [63]. Levy, B., Photochemistry of Nanostructured Materials for Energy Applications. Journal ofElectroceramics1997,1(3),239-272.
    [64]. Yoon, M.; Chang, J. A.; Kim, Y.; Choi, J. R.; Kim, K.; Lee, S. J., HeteropolyAcid-Incorporated TiO2Colloids as Novel Photocatalytic Systems Resembling the PhotosyntheticReaction Center. J. Phys. Chem. B2001,105(13),2539-2545.
    [65]. Rogach, A. L.; Nagesha, D.; Ostrander, J. W.; Giersig, M.; Kotov, N. A.,"RaisinBun"-Type Composite Spheres of Silica and Semiconductor Nanocrystals. Chemistry of Materials2000,12(9),2676-2685.
    [66]. Adhikari, B.; Majumdar, S., Polymers in Sensor Applications. Progress in PolymerScience2004,29(7),699-766.
    [67]. Shinohara, H., Endohedral Metallofullerenes. Reports on Progress in Physics2000,63(6),843-892.
    [68]. Reimann, S. M.; Manninen, M., Electronic Structure of Quantum Dots. Reviews of ModernPhysics2002,74(4),1283-1342.
    [69]. Fu, Q.; Wagner, T., Interaction of Nanostructured Metal Overlayers with Oxide Surfaces.Surface Science Reports2007,62(11),431-498.
    [70]. Zhang, H.; Fan, X.; Quan, X.; Chen, S.; Yu, H., Graphene Sheets Grafted Ag@AgClHybrid with Enhanced Plasmonic Photocatalytic Activity under Visible Light. EnvironmentalScience&Technology2011,45(13),5731-5736.
    [71]. Yu, J.; Dai, G.; Huang, B., Fabrication and Characterization of Visible-Light-DrivenPlasmonic Photocatalyst Ag/AgCl/TiO2Nanotube Arrays. The Journal of Physical Chemistry C2009,113(37),16394-16401.
    [72]. Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y.,A Facile One-Step Method to Produce Graphene–CdS Quantum Dot Nanocomposites asPromising Optoelectronic Materials. Advanced Materials2010,22(1),103-106.
    [73]. Li, Q.; Guo, B.; Yu, J.; Ran, J.; Zhang, B.; Yan, H.; Gong, J. R., Highly EfficientVisible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated GrapheneNanosheets. Journal of the American Chemical Society2011,133(28),10878-10884.
    [74]. Min, S.; Lu, G., Dye-Sensitized Reduced Graphene Oxide Photocatalysts for HighlyEfficient Visible-Light-Driven Water Reduction. The Journal of Physical Chemistry C2011,115(28),13938-13945.
    [75]. Sayama, K.; Nomura, A.; Zou, Z. G.; Abe, R.; Abe, Y.; Arakawa, H.,Photoelectrochemical Decomposition of Water on Nanocrystalline BiVO4Film Electrodes underVisible Light. Chemical Communications2003,(23),2908-2909.
    [76]. Tang, J. W.; Zou, Z. G.; Yin, J.; Ye, J., Photocatalytic Degradation of Methylene Blue onCaLn2O4under Visible Light Irradiation. Chemical Physics Letters2003,382(1-2),175-179.
    [77]. Tang, J. W.; Zou, Z. G.; Ye, J. H., Photocatalytic Decomposition of Organic Contaminantsby Bi2WO6under Visible Light Irradiation. Catalysis Letters2004,92(1-2),53-56.
    [78]. Yin, J.; Zou, Z. G.; Ye, J. H., A Novel Series of the New Visible-Light-DrivenPhotocatalysts MCo1/3Nb2/3O3(M=Ca, Sr, and Ba) with Special Electronic Structures. J. Phys.Chem. B2003,107(21),4936-4941.
    [79]. Zou, Z. G.; Arakawa, H., Direct Water Splitting into H2and O2under Visible LightIrradiation with a New Series of Mixed Oxide Semiconductor Photocatalysts. Journal ofPhotochemistry and Photobiology a-Chemistry2003,158(2-3),145-162.
    [80]. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H., Direct Splitting of Water under VisibleLight Irradiation with an Oxide Semiconductor Photocatalyst. nature2001,414(6864),625-627.
    [81]. Li, G.; Zhang, H.; Lan, J.; Li, J.; Chen, Q.; Liu, J.; Jiang, G., Hierarchical Hollow TiO2Spheres: Facile Synthesis and Improved Visible-Light Photocatalytic Activity. DaltonTransactions2013,42(24),8541-8544.
    [82]. Yu, J.; Zhang, J., A Simple Template-Free Approach to TiO2Hollow Spheres withEnhanced Photocatalytic Activity. Dalton Transactions2010,39(25),5860-5867.
    [83]. O'Regan, B.; Gr tzel, M., A Low-Cost, High-Efficiency Solar Cell Based onDye-Sensitized Colloidal TiO2Films. Nature1991,353(6346),737-740.
    [84]. Yu, J.; Fan, J.; Cheng, B., Dye-Sensitized Solar Cells Based on Anatase TiO2HollowSpheres/Carbon Nanotube Composite Films. Journal of Power Sources2011,196(18),7891-7898.
    [85]. Chen, H.-Y.; Zhang, T.-L.; Fan, J.; Kuang, D.-B.; Su, C.-Y., Electrospun Hierarchical TiO2Nanorods with High Porosity for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials&Interfaces2013,5(18),9205-9211.
    [86]. Tan, B.; Wu, Y., Dye-Sensitized Solar Cells Based on Anatase TiO2Nanoparticle/Nanowire Composites. The Journal of Physical Chemistry B2006,110(32),15932-15938.
    [87]. Xu, F.; Dai, M.; Lu, Y.; Sun, L., Hierarchical Zno Nanowire Nanosheet Architectures forHigh Power Conversion Efficiency in Dye-Sensitized Solar Cells. The Journal of PhysicalChemistry C2010,114(6),2776-2782.
    [88]. Yang, W.; Li, J.; Wang, Y.; Zhu, F.; Shi, W.; Wan, F.; Xu, D., A Facile Synthesis ofAnatase TiO2Nanosheets-Based Hierarchical Spheres with over90%{001} Facets forDye-Sensitized Solar Cells. Chemical Communications2011,47(6),1809-1811.
    [89]. Zhang, J.; Yu, J.; Zhang, Y.; Li, Q.; Gong, J. R., Visible Light PhotocatalyticH2-Production Activity of Cus-Zns Porous Nanosheets Based on Photoinduced Interfacial ChargeTransfer. Nano Lett.2011,11(11),4774-4779.
    [90]. Wang, J.; Zhang, P.; Li, X.; Zhu, J.; Li, H., Synchronical Pollutant Degradation and H2Production on a Ti3+-Doped TiO2Visible Photocatalyst with Dominant (001) Facets. Appl. Catal.,B2013,134-135,198-204.
    [91]. Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C., Enhancement ofPhotocatalytic H2Evolution on CdS by Loading MoS2as Cocatalyst under Visible LightIrradiation. J Am Chem Soc2008,130(23),7176-7.
    [92]. Yoon, T. P.; Ischay, M. A.; Du, J., Visible Light Photocatalysis as a Greener Approach toPhotochemical Synthesis. Nat. Chem.2010,2(7),527-532.
    [93]. Palmisano, G.; Augugliaro, V.; Pagliaro, M.; Palmisano, L., Photocatalysis: A PromisingRoute for21st Century Organic Chemistry. Chem. Commun.2007,(33),3425-3437.
    [94]. Zhao, J.; Zheng, Z.; Bottle, S.; Chou, A.; Sarina, S.; Zhu, H., Highly Efficient andSelective Photocatalytic Hydroamination of Alkynes by Supported Gold Nanoparticles UsingVisible Light at Ambient Temperature. Chem. Commun.2013,49(26),2676-2678.
    [95]. Wang, J.; Bian, Z.; Zhu, J.; Li, H., Ordered Mesoporous TiO2with Exposed (001) Facetsand Enhanced Activity in Photocatalytic Selective Oxidation of Alcohols. J. Mater. Chem. A2013,1(4),1296-1302.
    [96]. Vorotilov, K. A.; Orlova, E. V.; Petrovsky, V. I., Sol-Gel TiO2Films on Silicon Substrates.Thin Solid Films1992,207(1-2),180-184.
    [97]. O'Neill, S. A.; Clark, R. J. H.; Parkin, I. P.; Elliott, N.; Mills, A., Anatase Thin Films onGlass from the Chemical Vapor Deposition of Titanium(Iv) Chloride and Ethyl Acetate.Chemistry of Materials2002,15(1),46-50.
    [98]. Savio, A. K. P. D.; Fletcher, J.; Robles, H. F. C., Synthesis of Nanostructured TiO2Dopedwith Transition Metals Having Variable Bandgap. Ceram. Int.2013,39(3),2753-2765.
    [99]. Liu, G.; Yin, L.-C.; Wang, J.; Niu, P.; Zhen, C.; Xie, Y.; Cheng, H.-M., A Red AnataseTiO2Photocatalyst for Solar Energy Conversion. Energy Environ. Sci.2012,5(11),9603-9610.
    [100]. Zhu, J.; Zhang, D.; Bian, Z.; Li, G.; Huo, Y.; Lu, Y.; Li, H., Aerosol-Spraying Synthesisof SiO2/TiO2Nanocomposites and Conversion to Porous TiO2and Single-Crystalline TiOF2.Chemical communications (Cambridge, England)2009,(36),5394-5394.
    [101]. Nukumizu, K.; Nunoshige, J.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen,K., TiNxOyFzas a Stable Photocatalyst for Water Oxidation in Visible Light. Chemistry Letters2003,32(2),196-197.
    [102]. Li, X.; Huang, R.; Hu, Y.; Chen, Y.; Liu, W.; Yuan, R.; Li, Z., A Templated Method toBi2WO6Hollow Microspheres and Their Conversion to Double-Shell Bi2O3/Bi2WO6HollowMicrospheres with Improved Photocatalytic Performance. Inorganic Chemistry2012,51(11),6245-6250.
    [103]. Harneit, O.; Müller-Buschbaum, H., InTaO4Und GaTaO4Mit Geordneter UndUngeordneter Metallverteilung. Journal of Alloys and Compounds1993,194(1),101-103.
    [104]. Ye, J.; Zou, Z.; Arakawa, H.; Oshikiri, M.; Shimoda, M.; Matsushita, A.; Shishido, T.,Correlation of Crystal and Electronic Structures with Photophysical Properties of Water SplittingPhotocatalysts InMO4(M=V5+,Nb5+,Ta5+). Journal of Photochemistry and Photobiology A:Chemistry2002,148(1–3),79-83.
    [105]. Su, T.; Jiang, H.; Gong, H., An Alternative Solid-State Method to PreparePyrochlore-Free Ktao3at Low Temperature. Journal of Solid State Chemistry2011,184(9),2601-2604.
    [106]. Li, D.; Haneda, H.; Hishita, S.; Ohashi, N.; Labhsetwar, N. K., Fluorine-Doped TiO2Powders Prepared by Spray Pyrolysis and Their Improved Photocatalytic Activity forDecomposition of Gas-Phase Acetaldehyde. Journal of Fluorine Chemistry2005,126(1),69-77.
    [107]. Shian, S.; Cai, Y.; Weatherspoon, M. R.; Allan, S. M.; Sandhage, K. H.,Three-Dimensional Assemblies of Zirconia Nanocrystals Via Shape-Preserving ReactiveConversion of Diatom Microshells. Journal of the American Ceramic Society2006,89(2),694-698.
    [108]. Unocic, R. R.; Zalar, F. M.; Sarosi, P. M.; Cai, Y.; Sandhage, K. H., Anatase Assembliesfrom Algae: Coupling Biological Self-Assembly of3-D Nanoparticle Structures with SyntheticReaction Chemistry. Chemical Communications2004,(7),796-797.
    [109]. Lytle, J. C.; Yan, H.; Turgeon, R. T.; Stein, A., Multistep, Low TemperaturePseudomorphic Transformations of Nanostructured Silica to Titania Via a Titanium OxyfluorideIntermediate. Chemistry of Materials2004,16(20),3829-3837.
    [110]. Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser,M. S., Xps and Ftir Surface Characterization of TiO2Particles Used in Polymer Encapsulation.Langmuir2001,17(9),2664-2669.
    [111]. Yu, C.; Zhou, W.; Yang, K.; Rong, G., Hydrothermal Synthesis of Hemisphere-LikeF-Doped Anatase TiO2with Visible Light Photocatalytic Activity. J Mater Sci2010,45(21),5756-5761.
    [112]. Ozaki, S.; Nakata, Y.; Kobayashi, Y.; Nakamura, T.; Iba, Y.; Fukuyama, S.; Watatani, H.;Ohkura, Y., Effect of Fluorine Contamination on Barrier Metal Oxidation. MicroelectronicEngineering2010,87(3),370-372.
    [113]. Ragsdale, R. O.; Stewart, B. B., Fluorine-19Nuclear Magnetic Resonance Study of SomePentafluorotitanate Complexes. Inorganic Chemistry1963,2(5),1002-1004.
    [114]. Ying, L.; Hongtao, Y.; Shuo, C.; Xie, Q.; Huimin, Z., Integrating PlasmonicNanoparticles with TiO2Photonic Crystal for Enhancement of Visible-Light-DrivenPhotocatalysis.2012,46,1724-1730.
    [115]. Li, H.; Bian, Z.; Zhu, J.; Zhang, D.; Li, G.; Huo, Y.; Li, H.; Lu, Y., Mesoporous TitaniaSpheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity. Journal of theAmerican Chemical Society2007,129(27),8406-8407.
    [116]. Fox, M. A.; Dulay, M. T., Heterogeneous Photocatalysis. Chemical Reviews1993,93(1),341-357.
    [117]. Paul, T.; Miller, P. L.; Strathmann, T. J., Visible-Light-Mediated TiO2Photocatalysis ofFluoroquinolone Antibacterial Agents. Environmental Science&Technology2007,41(13),4720-4727.
    [118]. Liu, B.; Nakata, K.; Liu, S.; Sakai, M.; Ochiai, T.; Murakami, T.; Takagi, K.; Fujishima,A., Theoretical Kinetic Analysis of Heterogeneous Photocatalysis by TiO2Nanotube Arrays: TheEffects of Nanotube Geometry on Photocatalytic Activity. The Journal of Physical Chemistry C2012,116(13),7471-7479.
    [119]. Choi, S. K.; Kim, S.; Lim, S. K.; Park, H., Photocatalytic Comparison of TiO2Nanoparticles and Electrospun TiO2Nanofibers: Effects of Mesoporosity and Interparticle ChargeTransfer. The Journal of Physical Chemistry C2010,114(39),16475-16480.
    [120]. Yu, J. G.; Su, Y. R.; Cheng, B., Template-Free Fabrication and Enhanced PhotocatalyticActivity of Hierarchical Macro-/Mesoporous Titania. Advanced Functional Materials2007,17(12),1984-1990.
    [121]. Wu, J.; Duan, F.; Zheng, Y.; Xie, Y., Synthesis of Bi2WO6Nanoplate-Built HierarchicalNest-Like Structures with Visible-Light-Induced Photocatalytic Activity. The Journal of PhysicalChemistry C2007,111(34),12866-12871.
    [122]. Lu, F.; Cai, W.; Zhang, Y., Zno Hierarchical Micro/Nanoarchitectures: SolvothermalSynthesis and Structurally Enhanced Photocatalytic Performance. Advanced Functional Materials2008,18(7),1047-1056.
    [123]. Pan, H.; Zhang, Y.-W.; Shenoy, V. B.; Gao, H., Effects of H-, N-, and (H, N)-Doping onthe Photocatalytic Activity of TiO2. The Journal of Physical Chemistry C2011,115(24),12224-12231.
    [124]. Li, H.; Zhang, X.; Huo, Y.; Zhu, J., Supercritical Preparation of a Highly Active S-DopedTiO2Photocatalyst for Methylene Blue Mineralization. Environmental Science&Technology2007,41(12),4410-4414.
    [125]. Bloh, J. Z.; Dillert, R.; Bahnemann, D. W., Designing Optimal Metal-DopedPhotocatalysts: Correlation between Photocatalytic Activity, Doping Ratio, and Particle Size. TheJournal of Physical Chemistry C2012,116(48),25558-25562.
    [126]. Hou ková, V.; tengl, V.; Bakardjieva, S.; Murafa, N.; Tyrpekl, V., Efficient Gas PhasePhotodecomposition of Acetone by Ru-Doped Titania. Applied Catalysis B: Environmental2009,89(3–4),613-619.
    [127]. Likodimos, V.; Stergiopoulos, T.; Falaras, P.; Harikisun, R.; Desilvestro, J.; Tulloch, G.,Prolonged Light and Thermal Stress Effects on Industrial Dye-Sensitized Solar Cells: AMicro-Raman Investigation on the Long-Term Stability of Aged Cells. The Journal of PhysicalChemistry C2009,113(21),9412-9422.
    [128]. Kim, W.; Tachikawa, T.; Majima, T.; Choi, W., Photocatalysis of Dye-Sensitized TiO2Nanoparticles with Thin Overcoat of Al2O3: Enhanced Activity for H2Production andDechlorination of Ccl4. The Journal of Physical Chemistry C2009,113(24),10603-10609.
    [129]. Hensel, J.; Wang, G.; Li, Y.; Zhang, J. Z., Synergistic Effect of CdSe Quantum DotSensitization and Nitrogen Doping of TiO2Nanostructures for Photoelectrochemical SolarHydrogen Generation. Nano Letters2010,10(2),478-483.
    [130]. Zhang, L.; Lv, F.; Zhang, W.; Li, R.; Zhong, H.; Zhao, Y.; Zhang, Y.; Wang, X., PhotoDegradation of Methyl Orange by Attapulgite–SnO2–TiO2Nanocomposites. Journal ofHazardous Materials2009,171(1–3),294-300.
    [131]. Jardinier, E.; Pandraud, G.; Pham, M. H.; French, P. J.; Sarro, P. M., Atomic LayerDeposition of TiO2Photonic Crystal Waveguide Biosensors. J. Phys.: Conf. Ser.2009,187, No pp.given.
    [132]. Guldin, S.; H ttner, S.; Kolle, M.; Welland, M. E.; M ller-Buschbaum, P.; Friend, R. H.;Steiner, U.; Te treault, N., Dye-Sensitized Solar Cell Based on a Three-Dimensional PhotonicCrystal. Nano Letters2010,10(7),2303-2309.
    [133]. Zhou, D.; Biswas, R., Photonic Crystal Enhanced Light-Trapping in Thin Film SolarCells. Journal of Applied Physics2008,103(9),093102-093102-5.
    [134]. Nishimura, S.; Abrams, N.; Lewis, B. A.; Halaoui, L. I.; Mallouk, T. E.; Benkstein, K. D.;van, d. L. J.; Frank, A. J., Standing Wave Enhancement of Red Absorbance and Photocurrent inDye-Sensitized Titanium Dioxide Photoelectrodes Coupled to Photonic Crystals. J. Am. Chem.Soc.2003,125(20),6306-6310.
    [135]. Li, X.; Cui, J.; Zhang, W.; Huang, J.; Li, W.; Lin, C.; Jiang, Y.; Zhang, Y.; Li, G.,Controllable Photo-Switching of Cinnamate-Based Photonic Films with Remarkable Stability. J.Mater. Chem.2011,21(44),17953-17959.
    [136]. Egen, M.; Zentel, R., Tuning the Properties of Photonic Films from Polymer Beads byChemistry. Chem. Mater.2002,14(5),2176-2183.
    [137]. King, J. S.; Graugnard, E.; Roche, O. M.; Sharp, D. N.; Scrimgeour, J.; Denning, R. G.;Turberfield, A. J.; Summers, C. J., Infiltration and Inversion of Holographically Defined PolymerPhotonic Crystal Templates by Atomic Layer Deposition. Advanced Materials2006,18(12),1561-1565.
    [138]. Liu, J.; Li, M.-Z.; Zhou, J.-M.; Ye, C.-Q.; Wang, J.-X.; Jiang, L.; Song, Y.-L., ReversiblyPhototunable TiO2Photonic Crystal Modulated by Ag Nanoparticles' Oxidation/Reduction. Appl.Phys. Lett.2011,98(2),023110/1-023110/3.
    [139]. Sugimoto, Y.; Tanaka, Y.; Ikeda, N.; Nakamura, Y.; Asakawa, K.; Inoue, K., LowPropagation Loss of0.76Db/Mm in Gaas-Based Single-Line-Defect Two-Dimensional PhotonicCrystal Slab Waveguides up to1Cm in Length. Opt. Express2004,12(6),1090-1096.
    [140]. Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S. W.; Lopez, C.;Meseguer, F.; Miguez, H.; Mondia, J. P.; Ozin, G. A.; Toader, O.; van Driel, H. M., Large-ScaleSynthesis of a Silicon Photonic Crystal with a Complete Three-Dimensional Bandgap near1.5Micrometres. Nature2000,405(6785),437-440.
    [141]. Subramania, G.; Lee, Y.-J.; Fischer, A. J.; Koleske, D. D., Log-Pile TiO2PhotonicCrystal for Light Control at near-Uv and Visible Wavelengths. Adv. Mater.2010,22(4),487-491.
    [142]. Park, S.-G.; Jeon, T. Y.; Yang, S.-M., Fabrication of Three-Dimensional NanostructuredTitania Materials by Prism Holographic Lithography and the Sol-Gel Reaction. Langmuir2013,29(31),9620-9625.
    [143]. Vlasov, Y. A.; Kaliteevski, M. A.; Nikolaev, V. V., Different Regimes of LightLocalization in a Disordered Photonic Crystal. Physical Review B1999,60(3),1555-1562.
    [144]. Zhu, J.; Wang, J.; Lv, F.; Xiao, S.; Nuckolls, C.; Li, H., Synthesis and Self-Assembly ofPhotonic Materials from Nanocrystalline Titania Sheets. Journal of the American ChemicalSociety2013,135(12),4719-4721.
    [145]. Phillips, P. L.; Knight, J. C.; Mangan, B. J.; Russell, P. S. J.; Charlton, M. D. B.; Parker,G. J., Near-Field Optical Microscopy of Thin Photonic Crystal Films. J. Appl. Phys.1999,85(9),6337-6342.
    [146]. Chen, L.; Zhou, Y.; Dai, H.; Li, Z.; Yu, T.; Liu, J.; Zou, Z., Fiber Dye-Sensitized SolarCells Consisting of TiO2Nanowires Arrays on Ti Thread as Photoanodes through a Low-Cost,Scalable Route. Journal of Materials Chemistry A2013,1(38),11790-11794.
    [147]. Yu, J.; Fan, J.; Lv, K., Anatase TiO2Nanosheets with Exposed (001) Facets: ImprovedPhotoelectric Conversion Efficiency in Dye-Sensitized Solar Cells. Nanoscale2010,2(10),2144-2149.
    [148]. Wu, W.; Yang, J.; Hua, J.; Tang, J.; Zhang, L.; Long, Y.; Tian, H., Efficient and StableDye-Sensitized Solar Cells Based on Phenothiazine Sensitizers with Thiophene Units. Journal ofMaterials Chemistry2010,20(9),1772-1779.
    [149]. Koo, H. J.; Kim, Y. J.; Lee, Y. H.; Lee, W. I.; Kim, K.; Park, N. G., Nano-EmbossedHollow Spherical TiO2as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells.Advanced Materials2008,20(1),195-199.
    [150]. Roy, P.; Kim, D.; Lee, K.; Spiecker, E.; Schmuki, P., TiO2Nanotubes and TheirApplication in Dye-Sensitized Solar Cells. Nanoscale2010,2(1),45-59.
    [151]. Xin, X.; Liu, H.-Y.; Ye, M.; Lin, Z., Semiconductor Hierarchically StructuredFlower-Like Clusters for Dye-Sensitized Solar Cells with Nearly100%Charge CollectionEfficiency. Nanoscale2013,5(22),11220-11226.
    [152]. Yu, I. G.; Kim, Y. J.; Kim, H. J.; Lee, C.; Lee, W. I., Size-Dependent Light-ScatteringEffects of Nanoporous TiO2Spheres in Dye-Sensitized Solar Cells. Journal of MaterialsChemistry2011,21(2),532-538.
    [153]. Yu, H.; Bai, Y.; Zong, X.; Tang, F.; Lu, G. Q. M.; Wang, L., Cubic CeO2Nanoparticlesas Mirror-Like Scattering Layers for Efficient Light Harvesting in Dye-Sensitized Solar Cells.Chemical Communications2012,48(59),7386-7388.
    [154]. Yang, L.; Lin, Y.; Jia, J.; Xiao, X.; Li, X.; Zhou, X., Light Harvesting Enhancement forDye-Sensitized Solar Cells by Novel Anode Containing Cauliflower-Like TiO2Spheres. Journalof Power Sources2008,182(1),370-376.
    [155]. Wu, X.; Lu, G. Q.; Wang, L., Shell-in-Shell TiO2Hollow Spheres Synthesized byOne-Pot Hydrothermal Method for Dye-Sensitized Solar Cell Application. Energy&Environmental Science2011,4(9),3565-3572.
    [156]. Ahn, H.-J.; Kim, S.-I.; Yoon, J.-C.; Lee, J.-S.; Jang, J.-H., Power Conversion EfficiencyEnhancement Based on the Bio-Inspired Hierarchical Antireflection Layer in Dye Sensitized SolarCells. Nanoscale2012,4(15),4464-4469.
    [157]. Rui, Y.; Li, Y.; Zhang, Q.; Wang, H., Size-Tunable TiO2Nanorod MicrospheresSynthesised Via a One-Pot Solvothermal Method and Used as the Scattering Layer forDye-Sensitized Solar Cells. Nanoscale2013,5(24),12574-12581.
    [158]. Wu, W.-Q.; Xu, Y.-F.; Rao, H.-S.; Su, C.-Y.; Kuang, D.-B., A Double Layered TiO2Photoanode Consisting of Hierarchical Flowers and Nanoparticles for High-EfficiencyDye-Sensitized Solar Cells. Nanoscale2013,5(10),4362-4369.
    [159]. Miao, X.; Pan, K.; Liao, Y.; Zhou, W.; Pan, Q.; Tian, G.; Wang, G., Controlled Synthesisof Mesoporous Anatase TiO2Microspheres as a Scattering Layer to Enhance the PhotoelectricalConversion Efficiency. Journal of Materials Chemistry A2013,1(34),9853-9861.
    [160]. Ke, G.-J.; Chen, H.-Y.; Su, C.-Y.; Kuang, D.-B., Template-Free Solvothermal Fabricationof Hierarchical TiO2Hollow Microspheres for Efficient Dye-Sensitized Solar Cells. Journal ofMaterials Chemistry A2013,1(42),13274-13282.
    [161]. Yang, L.; Lin, Y.; Jia, J.; Li, X.; Xiao, X.; Zhou, X., Cauliflower-Like TiO2RoughSpheres: Synthesis and Applications in Dye Sensitized Solar Cells. Microporous and MesoporousMaterials2008,112(1–3),45-52.
    [162]. Lin, W.-J.; Hsu, C.-T.; Tsai, Y.-C., Dye-Sensitized Solar Cells Based on MultiwalledCarbon Nanotube–Titania/Titania Bilayer Structure Photoelectrode. Journal of Colloid andInterface Science2011,358(2),562-566.
    [163]. O'Regan, B.; Moser, J.; Anderson, M.; Graetzel, M., Vectorial Electron Injection intoTransparent Semiconductor Membranes and Electric Field Effects on the Dynamics ofLight-Induced Charge Separation. The Journal of Physical Chemistry1990,94(24),8720-8726.
    [164]. Shang, G.; Wu, J.; Huang, M.; Lan, Z.; Lin, J.; Liu, Q.; Zheng, M.; Huo, J.; Liu, L.,Improving the Photovoltaic Performance of a Dye-Sensitized Solar Cell by Using a HierarchicalTitania Bur-Like Microspheres Double Layered Photoanode. Journal of Materials Chemistry A2013,1(34),9869-9874.
    [165]. Zheng, Y.-Z.; Tao, X.; Wang, L.-X.; Xu, H.; Hou, Q.; Zhou, W.-L.; Chen, J.-F., NovelZno-Based Film with Double Light-Scattering Layers as Photoelectrodes for Enhanced Efficiencyin Dye-Sensitized Solar Cells. Chemistry of Materials2009,22(3),928-934.
    [166]. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.;Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science2004,306(5696),666-669.
    [167]. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature1991,354(6348),56-58.
    [168]. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E., C60:Buckminsterfullerene. Nature1985,318(6042),162-163.
    [169]. Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb Carbon: A Review of Graphene.Chemical Reviews2009,110(1),132-145.
    [170]. Hirsch, A.; Englert, J. M.; Hauke, F., Wet Chemical Functionalization of Graphene.Accounts of Chemical Research2012,46(1),87-96.
    [171]. Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M.,Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts:A Bucky Paper Electrode. Journal of the American Chemical Society2001,123(27),6536-6542.
    [172]. Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin, D. V.; Tour, J. M.,Kinetics of Diazonium Functionalization of Chemically Converted Graphene Nanoribbons. ACSNano2010,4(4),1949-1954.
    [173]. Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.; Hirsch, A.,Organic Functionalization of Carbon Nanotubes. Journal of the American Chemical Society2002,124(5),760-761.
    [174]. Georgakilas, V.; Bourlinos, A. B.; Zboril, R.; Steriotis, T. A.; Dallas, P.; Stubos, A. K.;Trapalis, C., Organic Functionalisation of Graphenes. Chemical Communications2010,46(10),1766-1768.
    [175]. Kim, K. S.; Bae, D. J.; Kim, J. R.; Park, K. A.; Lim, S. C.; Kim, J. J.; Choi, W. B.; Park,C. Y.; Lee, Y. H., Modification of Electronic Structures of a Carbon Nanotube by HydrogenFunctionalization. Advanced Materials2002,14(24),1818-1821.
    [176]. Ryu, S.; Han, M. Y.; Maultzsch, J.; Heinz, T. F.; Kim, P.; Steigerwald, M. L.; Brus, L. E.,Reversible Basal Plane Hydrogenation of Graphene. Nano Letters2008,8(12),4597-4602.
    [177]. Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.;Perkins, F. K.; Zalalutdniov, M. K.; Baldwin, J. W.; Culbertson, J. C.; Sheehan, P. E.; Snow, E. S.,Properties of Fluorinated Graphene Films. Nano Letters2010,10(8),3001-3005.
    [178]. Mickelson, E. T.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E.; Hauge, R. H.; Margrave,J. L., Fluorination of Single-Wall Carbon Nanotubes. Chemical Physics Letters1998,296(1–2),188-194.
    [179]. Krueger, A., Fullerenes Cages Made from Carbon. In Carbon Materials andNanotechnology, Wiley-VCH Verlag GmbH&Co. KGaA:2010;33-122.
    [180]. Krueger, A., Carbon Nanotubes. In Carbon Materials and Nanotechnology, Wiley-VCHVerlag GmbH&Co. KGaA:2010;123-281.
    [181]. Sarkar, S.; Bekyarova, E.; Niyogi, S.; Haddon, R. C., Diels Alder Chemistry of Graphiteand Graphene: Graphene as Diene and Dienophile. Journal of the American Chemical Society2011,133(10),3324-3327.
    [182]. Sarkar, S.; Bekyarova, E.; Haddon, R. C., Chemistry at the Dirac Point: Diels–AlderReactivity of Graphene. Accounts of Chemical Research2012,45(4),673-682.
    [183]. Niyogi, S.; Bekyarova, E.; Itkis, M. E.; Zhang, H.; Shepperd, K.; Hicks, J.; Sprinkle, M.;Berger, C.; Lau, C. N.; deHeer, W. A.; Conrad, E. H.; Haddon, R. C., Spectroscopy of CovalentlyFunctionalized Graphene. Nano Letters2010,10(10),4061-4066.
    [184]. Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Wang, F.; Niyogi, S.; Chi, X.; Berger, C.; deHeer, W.; Haddon, R. C., Electro-Oxidized Epitaxial Graphene Channel Field-Effect Transistorswith Single-Walled Carbon Nanotube Thin Film Gate Electrode. Journal of the AmericanChemical Society2010,132(41),14429-14436.
    [185]. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec,S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum of Graphene andGraphene Layers. Physical Review Letters2006,97(18),187401.
    [186]. Ferrari, A. C.; Robertson, J., Interpretation of Raman Spectra of Disordered andAmorphous Carbon. Physical Review B2000,61(20),14095-14107.
    [187]. Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz,R. B.; Achete, C. A.; Jorio, A., Quantifying Ion-Induced Defects and Raman Relaxation Length inGraphene. Carbon2010,48(5),1592-1597.
    [188]. Ferrari, A. C., Raman Spectroscopy of Graphene and Graphite: Disorder,Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Communications2007,143(1–2),47-57.
    [189]. Lee, D. S.; Riedl, C.; Krauss, B.; von Klitzing, K.; Starke, U.; Smet, J. H., Raman Spectraof Epitaxial Graphene on Sic and of Epitaxial Graphene Transferred to SiO2. Nano Letters2008,8(12),4320-4325.
    [190]. Can ado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.;Coelho, L. N.; Magalh es-Paniago, R.; Pimenta, M. A., General Equation for the Determination ofthe Crystallite Size La of Nanographite by Raman Spectroscopy. Applied Physics Letters2006,88(16),11-19.
    [191]. Sato, K.; Saito, R.; Oyama, Y.; Jiang, J.; Can ado, L. G.; Pimenta, M. A.; Jorio, A.;Samsonidze, G. G.; Dresselhaus, G.; Dresselhaus, M. S., D-Band Raman Intensity of GraphiticMaterials as a Function of Laser Energy and Crystallite Size. Chemical Physics Letters2006,427(1–3),117-121.
    [192]. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.;Peres, N. M. R.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene.Science2008,320(5881),1308.
    [193]. Chen, D.; Feng, H.; Li, J., Graphene Oxide: Preparation, Functionalization, andElectrochemical Applications. Chemical Reviews2012,112(11),6027-6053.
    [194]. Gil Girol, S.; Strunskus, T.; Muhler, M.; W ll, C., Reactivity of Zno Surfaces towardMaleic Anhydride. The Journal of Physical Chemistry B2004,108(36),13736-13745.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700