玉米醇溶蛋白胶体颗粒的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米醇溶蛋白(zein)是玉米蛋白的主要成分,含有大量的约50%的疏水性氨基酸,不溶于水性介质,在食品体系中利用较少。但是zein具有独特的自组装特性及成膜特性、粘附性及生物兼容性,可作为生物活性物质输送载体、可食性包装材料及涂层及乳液的颗粒稳定剂等,具有良好的商业应用潜力。本文利用zein与多糖及蛋白质的相互作用合成了多种zein复合胶体颗粒,系统研究了其在营养物质输送、乳液稳定及可食性包装材料等领域的应用,研究结果如下:
     1、采用反溶剂技术构建了粒度为300~400nm的zein/甜菜果胶(SBP)复合胶体颗粒(ZP/SBP),并研究了ZP/SBP胶体颗粒的储藏稳定性、对疏水性生物活性物质姜黄素(curcumin)的荷载及输送能力,及其模拟胃肠消化特性。研究表明,甜菜果胶可通过静电作用和空间位阻作用稳定ZP胶体颗粒。ZP/SBP复合胶体颗粒具有比ZP颗粒更好的pH稳定性和耐盐能力,对姜黄素具较高的荷载率,具有良好的抗消化能力和结肠靶向输送特性。可作为良好的食品配料及活性物质输送载体。
     2、首次构建了玉米醇溶蛋白/壳聚糖(CH)复合胶体颗粒(ZP/CH),并制备了ZP/CH复合胶体颗粒稳定的Pickering乳液,系统研究了zein浓度、zein/CH比值、及pH与离子强度对Pickering乳液物理稳定性的影响。结果表明壳聚糖与zein发生了静电相互作用、氢键、范德华力、疏水等相互作用,实现了zein颗粒的表面修饰导致zein胶体颗粒产生絮凝性;当zein/CH比值达到10:1-20:1时,ZP/CH复合胶体颗粒的三相接触角(θOW)接近90o,可制备稳定的Pickering乳液。研究表明,zein/CH复合胶体颗粒形成的乳液具有超强的长期存储物理稳定性(>9个月)。稳定机理包括多尺度的胶体颗粒稳定作用,壳聚糖作为颗粒絮凝连接的多层次颗粒复合界膜,有效的抵御颗粒的聚并、奥氏熟化等失稳机制。
     3、构建了荷载姜黄素的ZP/CH双功能复合胶体颗粒,制备了ZP/CH复合胶体颗粒稳定的玉米胚芽油Pickering乳液,系统研究了乳液的微结构、储藏稳定性及抗氧化性质。研究结果表明姜黄素的荷载没有改变ZP/CH胶体颗粒的表面润湿性和Pickering乳液形成能力,通过加速氧化实验测定了初级氧化产物和次级氧化产物,并结合GC-MS测定了次级氧化产物己醛含量,显示荷载姜黄素的ZP/CH胶体颗粒稳定的Pickering乳液,具有超级优异的抗氧化性,其氧化产物含量比可比较的大豆蛋白/白藜芦醇稳定的乳液低一个数量级,标记实验结合激光共聚焦显微镜(CLSM)观察显示ZP/CH荷载的姜黄素进入了油/水界面,姜黄素处于油/水界面比混合在油相中有更好的抗氧化效果,且具有剂量效应。
     4、采用微射流高压均质乳化结合溶剂(乙酸乙酯)辅助蒸发技术,制备出了Zein/酪蛋白酸钠(SC)复合胶体颗粒稳定的可食性乳液粒子包装膜,研究了可食性膜的机械性质与水/气阻隔性质。研究表明,采用溶剂蒸发法获得的ZP/SC复合膜的具有良好的透明度,水汽阻隔能力优异。其水汽透过量仅为SC膜的40-50%。Zein纳米粒子对油滴产生Pickering稳定作用,阻止了成膜过程的油滴的聚并。溶剂蒸发法制备的液滴粒径小,油相和zein颗粒相互交错排列,形成三维的空间复合网络结构,阻碍了油滴的重力分层,呈现均匀的分布的状态。而酪蛋白酸钠稳定的乳液膜SCE呈现出油滴的梯度的不均匀分布的微观结构。因而其透明度差和水汽透过率高。
Zein, the main corn protein, contains over50%hydrophobic amino acids. Zein is notsoluble in water, and its usage in food industry was usually limited. Zein contains sharplydefined hydrophobic and hydrophilic domains at its surface, and is capable of self-assemblyto form a wide variety of mesostructures. Therefore, zein is a good candidate for fabricatingnaturally renewable films and/or colloidal particles as vehivles for actives, edible films aswell as Pickering emulsifier in view of due to its biocompatibility, biodegradability andmucoadhesive ability. The objective of this work was to modify zein colloids particles via theinteraction of zein and chitosan, to explore their possible application in nutrition delivery,Pickering emulsifier, and edible films. The main results are as following:
     Fabrication and characterization of zein/SBP complex particles. We prepared zein/SBPcomplex particles with particle sizes300–400nm via a simple antisolvent procedure. Storagestability, and loading capacity and delivery for curcumin, as well as in vitro gastrointestinaldigestion of zein/SBP colloid particles were extensively evaluated. Zein/SBP complexparticles were stable at high salt and various pH ranges from2.0to10.0. These complexparticles possessed strong loading capacity (above50%) and high encapsulation efficiency(above90%) for curcumin. Meanwhile, zein/SBP complex particles had strong anti-digestionin in vitro gastrointestinal tract, and can be used for colon-specific drug delivery. This kind ofcolloid particles facilitated to the design of functional food formulation.
     Fabrication and characterization of Pickering emulsions stabilized by Zein/CH complexparticles. The effects of the ratios of zein/CH, pH values and ion strength on Pickeringemulsion formation and physical stability were carefully explored. The interaction betweenzein and chitosan induced the flocculation of zein colloid particles, the three-phase contactangles of zein complex particles were close to90owhen the zein/CH ratios were10:1and20:1. These complex particles can be used as particle emulsifier to fabricate super-stablePickering emulsions over9month storages. The possible formation pathway can be attributedto the CH-induced ridge flocculation of zein colloid particles at the oil/water interface and theformation of multi-layer framework of zein colloid particles at the oil/water interface. Thiskind of interface fabric contributed to the high resistance of the formed Pickering emulsions to coalescence and Oswald ripening.
     Fabrication of curcumin-loaded zein/CH complex particles with double functions,Pickering emulsions were fabricated via corn oil and alga oil as oil phase. Microstructure,storage and oxidant stability of Pickering emulsion were extensively investigated. Curcuminloading did not change the wettability of zein/CH complex particles, which were also suitableto produce stable Pickering emulsions. Primary (lipid hydroperoxides) and secondary oxidantproducts (malondialdehyde, MDA) of Pickering emulsions after thermally acceleratedoxidation were monitored, and hexanal was measured using GC-MS techniques. Pickeringemulsion stabilized by curcumin-loaded zein/CH complex particles present super antioxidantcapacity, the primary products was significantly lower than the antioxidant emulsions viatargeted accumulation of resveratrol via during the complete stevioside micelles stabilized bycompetitive absorption of soy protein isolate (SPI) and stevioside (STE). CLSM indicatedthat the absorption and accumulation of zein/CH complex particles at the oil/water interface,and targeted accumulation of cucurmin at the interfaces was achieved via Pickeringemulsifier (zein/CH complex particles).
     Novel zein-sodium caseinate nanoparticles-stabilized emulsion films were fabricated viamicrofluidic emulsification (ZPE films), or in combination with solvent (ethyl acetate)evaporation techniques (ZPE-EA films). Some physical properties, including tensile andoptical properties, water vapor permeability (WVP) as well as microstructure of ZP-stabilizedemulsion films were evaluated and compared with SC emulsion (SCE) films. ZP-andSC-stabilized emulsion films exhibited a completely different microstructure, nanoscalar lipiddroplets were homogeneously distributed in ZPE film matrix and interpenetrating protein-oilcomplex networks occurred within ZPE-EA films, whereas SCE films presented aheterogeneous microstructure. The different stabilization mechanisms against creaming orcoalescence during the film formation accounted for the preceding discrepancy of themicrostructures between ZP-and SC-stabilized emulsion films. Interestingly, ZP-stabilizedemulsion films exhibited a better water barrier efficiency, the WVP values were only4050%of SCE films. The structural characteristics gave ZPE and ZPE-EA films improvedwater barrier capability, moderate mechanical resistance and extensibility, and hightransparency.
引文
[1] Manach.C, Scalbert A, Morand C, et al. Polyphenols:food sources and bioavailability[J].The American Journal of Clinical Nutrition,2004,79(5):727-747
    [2] Shukla R, Cheryan M. Zein: the industrial protein from corn[J]. Industrial Crops andProducts,2001,13(3):171-192.
    [3] Esen A. A proposed nomenclature for the alcohol-soluble proteins (zeins) of maize (Zeamays L.)[J]. Journal of Cereal Science,1987,5(2):117-128.
    [4] Esen A. An immunodominant site of γ-zein1is in the region of tandem hexapeptiderepeats[J]. Journal of Protein Chemistry,1990,9(4):453-460.
    [5] Argos P, Pedersen K, Marks M D, et al. A structural model for maize zein proteins[J].Journal of Biological Chemistry,1982,257(17):9984-9990.
    [6] Matsushima N, Danno G, Takezawa H, et al. Three-dimensional structure of maizeα-zein proteins studied by small-angle X-ray scattering[J].Biochimica et BiophysicaActa (BBA)-Protein Structure and Molecular Enzymology,1997,1339(1):14-22.
    [7] Katayama H, Kanke M. Drug release from directly compressed tablets containing zein[J].Drug Development and Industrial Pharmacy,1992,18(20):2173-2184.
    [8]陈涛,刘耘,李理等.玉米醇溶蛋白的特性与应用[J].粮油加工与食品机械,2003,6:50-53.
    [9]赵华,王颖,田少然等玉米醇溶蛋白酶解工艺的研究[J].现代食品科技,2008,24(1):52-54.
    [10]刘永乐李向红易翠平等酸法脱酰胺大米蛋白/葡聚糖体系微结构性质研究[J]中国粮油学报2010,25(10):1-5
    [11]吴磊燕玉米醇溶蛋白改性、界面特性及成膜性研究[D].华南理工大学2010(6):6-7
    [12] Croston C B, Evans C D, Smith A K,et,al Zein fibers[J]. Industrial&EngineeringChemistry,1945,37(12):1194-1198.
    [13] Uy W C. Dry spinning process for producing zein fibers[Z]. Google Patents,1998
    [14] Takanori Miyoshi,Kiyotsuna Toyohara and Hiroyoshi Minematsu.Preparation ofultrafme fibrous zein membranes via electrospinning[J]. Polymer International,2005,54(8): l187-l190.
    [15] Jiang hongliang, zhao pengchang, zhu kangjie. Fabrication and characterization ofzein-based nanofibrous scaffolds by an electrospinning method[J]. MacromolecularBioscience,2007(7):517-525.
    [16] Selling G W, Biswas A, Patel A, et al. Impact of solvent on electrospinning of zein andanalysis of resulting fibers[J]. Macromolecular Chemistry and Physics,2007,208(9):1002-1010.
    [17] Kotov N A, Dekany I, Fendler J H. Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films[J]. The Journal of Physical Chemistry,1995,99(35):13065-13069.
    [18] Torres-Giner S, Ocio M J, Lagaron J M. Novel antimicrobial ultrathin structures ofzein/chitosan blends obtained by electrospinning[J].Carbohydrate polymers,2009,77(2):261-266.
    [19] Miyoshi T, Toyohara K, Minematsu H. Preparation of ultrafine fibrous zein membranesvia electrospinning[J]. Polymer International,2005,54(8):1187-1190.
    [20] Dietmar W. Hutmacher,Thorsten Schantz,Iwan Zein, et al. Mechanical properties and invitro biocompatibility of porous zein scaffolds[J] Biomaterials.27:3793-3799
    [21] Wang, H. J., Lin, Z. X., Liu, X. M., Sheng, S. Y., and Wang, J. Y.2005a. Heparin-loaded zein microsphere film and hemocompatibility[J].Journal of Controlled Release,2005105(1):120-131
    [22] Chaumeil J C. Micronization: a method of improving the bioavailability of poorlysoluble drugs[J]. Methods and Findings in Experimental and Clinical Pharmacology,1998,20(3):211-216.
    [23] Patricia Zimet, Yoav D. Livney, Beta-lactoglobulin and its nanocomplexes with pectinas vehicles for ω-3polyunsaturated fatty acids[J] Food Hydrocolloids2009,23(4),1120–1126
    [24] Anand P, Kunnumakkara A B, Newman R A, et al. Bioavailability of curcumin:problems and promises[J]. Molecular pharmaceutics,2007,4(6):807-818.
    [25] Mijatovic D, Eijkel J, Van Den Berg A. Technologies for nanofluidic systems: top-downvs. bottom-up-a review[J]. Lab on a Chip,2005,5(5):492-500
    [26] Liu X, Sun Q, Wang H, et al. Microspheres of corn protein, zein, for an ivermectin drugdelivery system[J]. Biomaterials,2005,26(1):109-115.
    [27] Boal A K, Ilhan F, DeRouchey J E, et al. Self-assembly of nanoparticles into structuredspherical and network aggregates[J]. Nature,2000,404(6779):746-748.
    [28] Grzelczak M, Vermant J, Furst E M, et al. Directed self-assembly of nanoparticles[J].Acs Nano,2010,4(7):3591-3605.
    [29] Prisant L M, Bottini B, DiPiro J T, et al. Novel drug-delivery systems for hypertension[J].The American Journal of Medicine,1992,93(2):S45-S55.
    [30] Hu D, Lin C, Liu L, et al. Preparation, characterization, and in vitro release investigationof lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids[J].Journal of Food Engineering,2012,109(3):545-552.
    [31] Zhong Q, Jin M, Davidson P M, et al. Sustained release of lysozyme from zeinmicrocapsules produced by a supercritical anti-solvent process[J]. Food Chemistry,2009,115(2):697-700.
    [32] Zhang Y, Niu Y, Luo Y, et al. Fabrication, characterization and antimicrobial activitiesof thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosanhydrochloride double layers[J]. Food Chemistry,2014,142:269-275.
    [33] Li K, Yin S, Yin Y, et al. Preparation of water-soluble antimicrobial zein nanoparticlesby a modified antisolvent approach and their characterization[J].Journal of FoodEngineering,2013,119(2):343-352.
    [34] Johnson B K, Prud'Homme R K. Chemical processing and micromixing in confinedimpinging jets[J]. AIChE Journal,2003,49(9):2264-2282.
    [35] Luo Y, Wang Q. Zein‐based micro‐and nano‐particles for drug and nutrientdelivery: A review[J]. Journal of Applied Polymer Science,2014,131(16):40696-40708
    [36] Podaralla S, Perumal O. Preparation of zein nanoparticles by pH controllednanoprecipitation[J]. Journal of Biomedical Nanotechnology,2010,6(4):312-317.
    [37] Liang R, Huang Q, Ma J, et al. Effect of relative humidity on the store stability ofspray-dried beta-carotene nanoemulsions[J]. Food Hydrocolloids,2013,33(2):225-233
    [38] Zhong Q, Jin M, Davidson P M, et al. Sustained release of lysozyme from zeinmicrocapsules produced by a supercritical anti-solvent process[J].Food Chemistry,2009,115(2):697-700.
    [39] Luo Y, Teng Z, et al. Encapsulation of indole-3-carbinol and3,3′-diindolylmethane inzein/carboxymethyl chitosan nanoparticles with controlled release property andimproved stability[J]. Food Chemistry,2013,139(1):224-230.
    [40] Zhang Y, Niu Y, Luo Y, et al. Fabrication, characterization and antimicrobial activitiesof thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosanhydrochloride double layers[J]. Food Chemistry,2014,142:269-275.
    [41] Demchak R J, Dybas R A. Photostability of abamectin/zein microspheres[J]. Journal ofAgricultural and Food Chemistry,1997,45(1):260-262.
    [42] Patel A R, Bouwens E C M, Velikov K P. Sodium caseinate stabilized zein colloidalparticles[J]. Journal of Agricultural And Food Chemistry,2010,58(23):12497-12503
    [43] Spires H R, Clark J H, Derrig R G, et al. Milk production and nitrogen utilization inresponse to postruminal infusion of sodium caseinate in lactating cows[J]. Journal ofnutritional biochemistry,1975,105:1111-1121.
    [44] Chen H, Zhong Q. Processes improving the dispersibility of spray-dried zeinnanoparticles using sodium caseinate[J]. Food Hydrocolloids,2014,35(3):358-366
    [45] Luo Y, Teng Z, Wang Q. Development of zein nanoparticles coated with carboxymethylchitosan for encapsulation and controlled release of vitamin D3[J]. Journal ofagricultural and food chemistry,2012,60(3):836-843.
    [46] Williams P A, Sayers C, Viebke C, et al. Elucidation of the emulsification properties ofsugar beet pectin[J]. Journal of agricultural and food chemistry,2005,53(9):3592-3597.
    [47] M.N.V.RaviKumar A review of chitin and chitosan applications[J]. Reactive AndFunctional Polymers,2000,46(1):1-27.
    [48] Raafat D, Von Bargen K, Haas A, et al. Insights into the mode of action of chitosan as anantibacterial compound[J]. Applied and Environmental Microbiology,2008,74(12):3764-3773.
    [49] Müller V, Piai J F, Fajardo A R, et al. Preparation and characterization of zein andzein-chitosan microspheres with great prospective of application in ontrolled drugrelease[J]. Journal of Nanomaterials, doi:10.1155/2011/928728
    [50] Patel V R, Amiji M M. Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach[J].Pharmaceutical research,1996,13(4):588-593.
    [51] Kawamura Y, Mitsuhashi M, Tanibe H, et al. Adsorption of metal ions on polyaminatedhighly porous chitosan chelating resin[J]. Industrial&engineering chemistry research,1993,32(2):386-391.
    [52] Mhurchu C N, Poppitt S D, McGill A T, et al. The effect of the dietary supplement,Chitosan, on body weight: a randomised controlled trial in250overweight and obeseadults[J]. International journal of obesity,2004,28(9):1149-1156.
    [53]赵希荣,王世亮,邓成扣.壳聚糖在加压内酯豆腐加工中的应用研究[J].食品工业科技,2012,33(4):213-216.
    [54] Zeng D, Wu J, Kennedy J F. Application of a chitosan flocculant to water treatment[J].Carbohydrate polymers,2008,71(1):135-139.
    [55] Renault F, Sancey B, Badot P M, et al. Chitosan for coagulation/flocculationprocesses–an eco-friendly approach[J]. European Polymer Journal,2009,45(5):1337-1348.
    [56] Xie W, Xu P, Liu Q. Antioxidant activity of water-soluble chitosan derivatives[J].Bioorganic&Medicinal Chemistry Letters,2001,11(13):1699-1701.
    [57] Lai L F, Guo H X. Preparation of new5-fluorouracil-loaded zein nanoparticles for livertargeting[J]. International Journal of Pharmaceutics,2011,404(1):317-323.
    [58] Chen L, Remondetto G E, Subirade M. Food protein-based materials as nutraceuticaldelivery systems[J]. Trends in Food Science&Technology,2006,17(5):272-283.
    [59] Luo Y, Zhang B, Whent M, et al. Preparation and characterization of zein/chitosancomplex for encapsulation of α-tocopherol, and its in vitro controlled release study [J].Colloids and Surfaces B: Biointerfaces,2011,85(2):145-152.
    [60] Wu Y, Luo Y, Wang Q. Antioxidant and antimicrobial properties of essential oilsencapsulated in zein nanoparticles prepared by liquid–liquid dispersion method[J].LWT-Food Science and Technology,2012,48(2):283-290.
    [61] Zhong Q, Tian H, Zivanovic S. Encapsulation of fish oil in solid zein particles byliquid‐liquid dispersion[J]. Journal of food processing and preservation,2009,33(2):255-270.
    [62] Manach C, Scalbert A, Morand C, et al. Polyphenols: food sources and bioavailability[J].The American journal of clinical nutrition,2004,79(5):727-747.
    [63] Owen Griffith Jones and David Julian McClements functional biopolymer particles:design, fabrication, and applications[J] Comprehensive Reviews In Food Science AndFood Safety2010.9(4):374–397
    [64] Teng Z, Luo Y, Wang Q. Carboxymethyl chitosan–soy protein complex nanoparticles forthe encapsulation and controlled release of vitamin D3[J]. Food chemistry,2013,141(1):524-532.
    [65] Podaralla S, Perumal O. Influence of formulation factors on the preparation of zeinnanoparticles[J]. An Official Journal of the American Association of PharmaceuticalScientists,2012,13(3):919-927.
    [66] Luo Y, Teng Z, Wang T T Y, et al. Cellular uptake and transport of zein nanoparticles:effects of sodium caseinate[J]. Journal Of Agricultural And Food Chemistry,2013,61(31):7621-7629.
    [67] Luo Y, Zhang B, Whent M, et al. Preparation and characterization of zein/chitosancomplex for encapsulation of α-tocopherol, and its in vitro controlled release study[J].Colloids and Surfaces B: Biointerfaces,2011,85(2):145-152.
    [68] Luo Y, Zhang B, Cheng W H, et al. Preparation, characterization and evaluation ofselenite-loaded chitosan/TPP nanoparticles with or without zein coating[J].Carbohydrate Polymers,2010,82(3):942-951.
    [69] Xu H, Jiang Q, Reddy N, et al. Hollow nanoparticles from zein for potential medicalapplications[J]. Journal of Materials Chemistry,2011,21(45):18227-18235.
    [70] Luo Y, Teng Z, Wang Q. Development of zein nanoparticles coated with carboxymethylchitosan for encapsulation and controlled release of vitamin D3[J]. Journal ofagricultural and food chemistry,2012,60(3):836-843.
    [71] Kumar P V, Jain N K. Suppression of agglomeration of ciprofloxacin-loaded humanserum albumin nanoparticles[J]. An official Journal of the American Association ofPharmaceutical Scientists,2007,8(1):118-123.
    [72] Cheng K, Lim L Y. Insulin-loaded calcium pectinate nanoparticles: Effects of pectinmolecular weight and formulation pH[J]. Drug Development and Industrial Pharmacy,2004,30(4):359-367.
    [73] Jones O G, Lesmes U, Dubin P, et al. Effect of polysaccharide charge on formation andproperties of biopolymer nanoparticles created by heat treatment ofβ-lactoglobulin–pectin complexes[J]. Food Hydrocolloids,2010,24(4):374-383.
    [74] Cheng K, Lim L Y. Insulin-loaded calcium pectinate nanoparticles: Effects of pectinmolecular weight and formulation pH[J]. Drug Development And Industrial Pharmacy,2004,30(4):359-367.
    [75] Abend S, Bonnke N, Gutschner U, et al. Stabilization of emulsions by heterocoagulationof clay minerals and layered double hydroxides[J]. Colloid and Polymer Science,1998,276(8):730-737
    [76] Pickering, S. U. Emulsions[J]. Journal of American Chemistry Society.1907,91,20012021
    [77] Friberg S, Jansson P O, Cederberg E. Surfactant association structure and emulsionstability[J]. Journal of Colloid and Interface Science,1976,55(3):614-623.
    [78] Binks B P, Lumsdon S O. Influence of particle wettability on the type and stability ofsurfactant-free emulsions[J]. Langmuir,2000,16(23):8622-8631.
    [79] Gosa K L, Uricanu V. Emulsions stabilized with PEO–PPO–PEO block copolymers andsilica[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,197(1):257-269.
    [80] Melle S, Lask M, Fuller G G. Pickering emulsions with controllable stability[J].Langmuir,2005,21(6):2158-2162.
    [81] Dickinson, E. Food emulsions and foams: Stabilization by particles[J] Current Opinionin Colloid&Interface Science.2010,15:40-49.
    [82] Wege H A, Kim S, Paunov V N, et al. Long-term stabilization of foams and emulsionswith in-situ formed microparticles from hydrophobic cellulose[J]. Langmuir,2008,24(17):9245-9253.
    [83] Kalashnikova I, Bizot H, Cathala B, et al. New Pickering emulsions stabilized bybacterial cellulose nanocrystals[J]. Langmuir,2011,27(12):7471-7479.
    [84] Matos M, Timgren A, Sj M, et al. Preparation and encapsulation properties of doublePickering emulsions stabilized by quinoa starch granules[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,423:147-153.
    [85] Gupta R, Rousseau D. Surface-active solid lipid nanoparticles as Pickering stabilizers foroil-in-water emulsions[J]. Food&Function,2012,3(3):302-311.
    [86] Luo Z, Murray B S, Ross A L, et al. Effects of pH on the ability of flavonoids to act asPickering emulsion stabilizers[J]. Colloids and Surfaces B: Biointerfaces,2012,92:84-90.
    [87] de Folter J W J, van Ruijven M W M, Velikov K P. Oil-in-water Pickering emulsionsstabilized by colloidal particles from the water-insoluble protein zein[J]. Soft Matter,2012,8(25):6807-6815.
    [88] ZM Gao, XQ Yang,et al. Protein Based Pickering Emulsion and Oil Gel Prepared byComplexes of Zein Colloidal Particles and Stearate.[J] Journal of agricultural and foodchemistry2014,62(12):26722678
    [89] Battistella F D, Widergren J T, Anderson J T, et al. A prospective, randomized trial ofintravenous fat emulsion administration in trauma victims requiring total parenteralnutrition[J]. Journal of Trauma-Injury, Infection, and Critical Care,1997,43(1):52-60.
    [90] Shahidi, F. Antioxidants in food and food antioxidants. Molecular Nutrition&FoodResearch2000,44(3):158–163.
    [91] Alamed J, Chaiyasit W, McClements D J, et al. Relationships between free radicalscavenging and antioxidant activity in foods[J]. Journal of Agricultural And FoodChemistry,2009,57(7):2969-2976.
    [92] Littoz F, McClements D J. Bio-mimetic approach to improving emulsion stability:cross-linking adsorbed beet pectin layers using laccase[J]. Food Hydrocolloids,2008,22(7):1203-1211.
    [93] Panya, A., Laguerre, M., Lecomte, J.et al Effects of chitosan and rosmarinate esters onthe physical and oxidative stability of liposomes[J]. Journal of Agricultural and FoodChemistry.2010,58,56795684.
    [94] Lesmes U, Baudot P, McClements D J. Impact of interfacial composition on physicalstability and in vitro lipase digestibility of triacylglycerol oil droplets coated withlactoferrin and/or caseinate[J]. Journal of Agricultural And Food Chemistry,2010,58(13):7962-7969.
    [95] Albers W, Overbeek J T G. Stability of emulsions of water in oil: I. The correlationbetween electrokinetic potential and stability[J]. Journal of Colloid Science,1959,14(5):501-509.
    [96] Lai H M, Padua G W. Properties and microstructure of plasticized zein films [J]. CerealChemistry,1997,74(6):771-775.
    [97] Wang Y, Padua G W. Tensile properties of extruded zein sheets and extrusion blownfilms[J]. Macromolecular Materials and Engineering,2003,288(11):886-893.
    [98] Wang, Y., Filho, F.L., Geil, P. and Padua, et al Effects of processing on the structure ofzein/oleic films investigated by X-ray diffraction[J] Macromolecular Bioscience.2005,5(12):1200-1208.
    [99] Kim S, Sessa D J, Lawton J W. Characterization of zein modified with a mildcross-linking agent[J]. Industrial Crops and Products,2004,20(3):291-300.
    [100] Lawton J W. Plasticizers for zein: their effect on tensile properties and water absorptionof zein films[J]. Cereal Chemistry,2004,81(1):1-5.
    [101] Ghanbarzadeh B, Oromiehi A R. Biodegradable biocomposite films based on wheyprotein and zein: Barrier, mechanical properties and AFM analysis[J]. InternationalJournal of Biological Macromolecules,2008,43(2):209-215.
    [1] Wang Y, Padua G W. Formation of zein spheres by evaporation-induced self-assembly[J].Colloid and Polymer Science,2012,290(15):1593-1598.
    [2] Bourassa P, Bariyanga J, Tajmir-Riahi H A. Binding sites of resveratrol, genistein, andcurcumin with milk α-and β-caseins[J]. The Journal of Physical Chemistry B,2013,117(5):1287-1295.
    [3] Podaralla S, Perumal O. Influence of Formulation Factors on the Preparation of ZeinNanoparticles[J]. Aaps Pharmscitech,2012,13(3):919-927.
    [4] Patel A R, Bouwens E C M, Velikov K P. Sodium caseinate stabilized zein colloidalparticles[J]. Journal of agricultural and food chemistry,2010,58(23):12497-12503
    [5] Sunvold G D, Hussein H S, Fahey G C, et al. In vitro fermentation of cellulose, beet pulp,citrus pulp, and citrus pectin using fecal inoculum from cats, dogs, horses, humans, andpigs and ruminal fluid from cattle[J]. Journal of animal science,1995,73(12):3639-3648
    [6] Liu L S, Fishman M L, Hicks K B, et al. Pectin/zein beads for potential colon-specificdrug delivery: synthesis and in vitro evaluation[J]. Drug delivery,2006,13(6):417-423.
    [7] Littoz F, McClements D J. Bio-mimetic approach to improving emulsion stability:cross-linking adsorbed beet pectin layers using laccase[J]. Food Hydrocolloids,2008,22(7):1203-1211
    [8].菅晓娟,张文博,牛津梁等果胶在结肠靶向给药系统中的应用[J]中国生化药物杂志2006,27(3):188-191
    [9] Zhong Q, Jin M. Zein nanoparticles produced by liquid–liquid dispersion[J]. FoodHydrocolloids,2009,23(8):2380-2387
    [10] Wang Y, Padua G W. Formation of zein spheres by evaporation-induced self-assembly[J].Colloid and Polymer Science,2012,290(15):1593-1598.
    [11] Alargova R G, Bhatt K H, Paunov V N, et al. Scalable Synthesis of a New Class ofPolymer Microrods by a Liquid–Liquid Dispersion Technique[J]. Advanced Materials,2004,16(18):1653-1657.
    [12] Lyczko N., Espitalier F Louisnard, O. et al. Effect of ultrasound on the induction timeand the metastable zone widths of potassium sulphate[J] Chemical Engineering Journal,86,233-241
    [13] Langer K., Balthasar S., Vogel, V et al Optimization of the preparation process forhuman serum albumin (HSA) nanoparticles[J] International Journal of Pharmaceutics,2003,257(3):169-180.
    [14] Munin A, Edwards-Lévy F. Encapsulation of natural polyphenolic compounds; areview[J]. Pharmaceutics,2011,3(4):793-829.
    [15] Anand P, Kunnumakkara A B, Newman R A, et al. Bioavailability of curcumin: problemsand promises[J]. Molecular Pharmaceutics,2007,4(6):807-818.
    [16] Chu B, Ichikawa S, Kanafusa S, et al. Preparation and characterization of β-carotenenanodispersions prepared by solvent displacement technique[J]. Journal of AgriculturalAnd Food Chemistry,2007,55(16):6754-6760.
    [17] Tan C P, Nakajima M. β-Carotene nanodispersions: preparation, characterization andstability evaluation[J]. Food Chemistry,2005,92(4):661-671
    [18] Hurtado-López P, Murdan S. Zein microspheres as drug/antigen carriers: A study of their
    degradation and erosion, in the presence and absence of enzymes[J] Journal of
    Microencapsulation,2006,23(3):303-314.
    [1] Marku D, Wahlgren M, Rayner M, et al. Characterization of starch Pickering emulsionsfor potential applications in topical formulations[J]. International Journal ofPharmaceutics,2012,428(1):1-7.
    [2] Pickering, S. U. Emulsions. J. Chem. Soc.1907,91,20012021
    [3] Binks B P, Clint J H. Solid wettability from surface energy components: relevance toPickering emulsions[J]. Langmuir,2002,18(4):1270-1273.
    [4] Sacanna S, Kegel W K, Philipse A P. Thermodynamically stable pickeringemulsions[J].Physical review letters,2007,98(15):158301.
    [5] Aveyard R. Can Janus particles give thermodynamically stable Pickering emulsions?[J].Soft Matter,2012,8(19):5233-5240.
    [6] Dickinson E. Use of nanoparticles and microparticles in the formation and stabilizationof food emulsions[J]. Trends in Food Science&Technology,2012,24(1):4-12.
    [7] Sweedman M C, Tizzotti M J, Sch fer C, et al. Structure and physicochemical propertiesof octenyl succinic anhydride modified starches: A review[J]. Carbohydrate Polymers,2013,92(1):905-920.
    [8] Rousseau D. Trends in structuring edible emulsions with Pickering fat crystals[J].Current Opinion in Colloid&Interface Science,2013,18(4):283-291.
    [9] Destribats M, Rouvet M, Gehin-Delval C, et al. Emulsions stabilised by whey proteinmicrogel particles: towards food-grade Pickering emulsions[J]. Soft Matter,2014.10.1039/c4sm00179
    [10] Kalashnikova I, Bizot H, Cathala B, et al. New Pickering emulsions stabilized bybacterial cellulose nanocrystals[J]. Langmuir,2011,27(12):7471-7479.
    [11] Luo Z, Murray B S, Ross A, et al. Effects of pH on the ability of flavonoids to act asPickering emulsion stabilizers[J]. Colloids and Surfaces B: Biointerfaces,2012,92:84-90.
    [12] de Folter J W, van Ruijven M W, Velikov K P. Oil-in-water Pickering emulsionsstabilized by colloidal particles from the water-insoluble protein zein[J]. Soft matter,2012,8(25):6807-6815.
    [13] Wen Y, Yuan Y, Chen H, et al. Effect of chitosan on the enantioselective bioavailabilityof the herbicide dichlorprop to Chlorella pyrenoidosa[J]. Environmental science&technology,2010,44(13):4981-4987.
    [14] Luo Y, Zhang B, Whent M, et al. Preparation and characterization of zein/chitosancomplex for encapsulation of α-tocopherol, and its in vitro controlled release study[J].Colloids and Surfaces B: Biointerfaces,2011,85(2):145-152.
    [15] Wang Q, Geil P, Padua G. Role of hydrophilic and hydrophobic interactions in structuredevelopment of zein films[J]. Journal of Polymers and the Environment,2004,12(3):197-202.
    [16] Wang Y, Padua G W. Formation of Zein Microphases in Ethanol Water[J]. Langmuir,2010,26(15):12897-12901.
    [1] Katsuda M S, Mcclements D J, Miglioranza L H, et al. Physical and oxidative stability offish oil-in-water emulsions stabilized with β-lactoglobulin and pectin[J]. Journal ofAgricultural and Food Chemistry.2008,56(14):5926-5931.
    [2] Guzey D, Mcclements D J. Formation, stability and properties of multilayer emulsions forapplication in the food industry [J]. Advances in Colloid and Interface Science.2006,128:227-248.
    [3] Awada M, Soulage CO, Meynier A, Debard C, Plaisancie P, et al Guichardant M, LagardeM, Genot C,&Michalski MC. Dietary oxidised n-3PUFA induce oxidative stress andinflammation: Role of intestinal absorption of4-HHE and reactivity in intestinal cells[J].Journal of Lipid Research,2012,53(10):2069–2080.
    [4] Surh J, Decker E A, Mcclements D J. Influence of pH and pectin type on properties andstability of sodium-caseinate stabilized oil-in-water emulsions[J]. Food Hydrocolloids.2006,20(5):607-618.
    [5] Littoz F, Mcclements D J. Bio-mimetic approach to improving emulsion stability:cross-linking adsorbed beet pectin layers using laccase[J]. Food Hydrocolloids.2008,22(7):1203-1211.
    [6] Porter W L, Black E D, Drolet A M. Use of polyamide oxidative fluorescence test on lipidemulsions: contrast in relative effectiveness of antioxidants in bulk versus dispersedsystems[J]. Journal of Agricultural and Food Chemistry.1989,37(3):615-624.
    [7] Wang Y., Padua GW. Nanoscale characterization of zein self-assembly[J] Langmuir,28,24292435,2012.
    [8] Panya A, Laguerre M, Lecomte J, et al. Effects of chitosan and rosmarinate esters on thephysical and oxidative stability of liposomes[J]. Journal of Agricultural and FoodChemistry.2010,58(9):5679-5684.
    [9] Mcclements D J, Decker E A, Weiss J. Emulsion‐based delivery systems for lipophilicbioactive components[J]. Journal of Food Science.2007,72(8):109-124.
    [10] Lesmes U, Baudot P, Mcclements D J. Impact of interfacial composition on physicalstability and in vitro lipase digestibility of triacylglycerol oil droplets coated withlactoferrin and/or caseinate[J]. Journal of Agricultural and Food Chemistry.2010,58(13):7962-7969.
    [11] Tong L M, Sasaki S, Mcclements D J, et al. Antioxidant activity of whey in a salmon oilemulsion[J]. Journal of Food Science.2000,65(8):1325-1329.
    [12] Mcdonald R E, Hultin H O. Some characteristics of the enzymic lipid peroxidationsystem in the microsomal fraction of flounder skeletal muscle[J]. Journal of FoodScience.1987,52(1):15-21.
    [13] Djordjevic D, Cercaci L, Alamed J, et al. Chemical and physical stability of citral andlimonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-wateremulsions[J]. Journal of Agricultural and Food Chemistry.2007,55(9):3585-3591.
    [14] Ogawa S, Decker E A, Mcclements D J. Influence of environmental conditions on thestability of oil in water emulsions containing droplets stabilized by lecithin-chitosanmembranes[J]. Journal of Agricultural and Food Chemistry.2003,51(18):5522-5527.
    [15] Madivala B, Vandebril S, Fransaer J, et al. Exploiting particle shape in solid stabilizedemulsions[J]. Soft Matter.2009,5(8):1717-1727.
    [16] Frankel E N, Huang S, Aeschbach R, et al. Antioxidant activity of a rosemary extract andits constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-wateremulsion[J]. Journal of Agricultural and Food Chemistry.1996,44(1):131-135.
    [17] Huang P H, Lu H T, Wang Y T, et al. Antioxidant activity and emulsion-stabilizing effectof pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion[J].Journal of Agricultural and Food Chemistry,2011,59(17):9623-9628.
    [18] Kargar M, Spyropoulos F, Norton I T. The effect of interfacial microstructure on the lipidoxidation stability of oil-in-water emulsions[J]. Journal of Colloid and Interface Science.2011,357(2):527-533.
    [19] Kargar M, Fayazmanesh K, Alavi M, et al. Investigation into the potential ability ofPickering emulsions (food-grade particles) to enhance the oxidative stability ofoil-in-water emulsions[J]. Journal of Colloid and Interface Science.2012,366(1):209-215.
    [20] Wan Z, Wang J, Wang L, et al. Enhanced physical and oxidative stabilities of soyprotein-based emulsions by incorporation of a water-soluble stevioside–resveratrolcomplex[J]. Journal of Agricultural and Food Chemistry.2013,61(18):4433-4440.
    [21] Lomova M V, Sukhorukov G B, Antipina M N. Antioxidant coating of micronsizedroplets for prevention of lipid peroxidation in oil-in-water emulsion[J]. ACS AppliedMaterials&Interfaces,2010,2(12):3669-3676
    [22] Ping-Hsiu Huang, Hao-Te Lu, Yuh-Tai Wang, et al. Antioxidant activity andemulsion-stabilizing effect of pectic enzyme treated pectin in soy proteinisolate-stabilized oil/water emulsion[J] Journal of Agricultural and Food Chemistry.2011,59(17):9623–9628
    [23] Silvestre M. P. C, Chaiyasit W, Brannan, R. G.; et al Ability of surfactant headgroup sizeto alter lipid and antioxidant oxidation in oil-in-water emulsions[J] Journal ofAgricultural and Food Chemistry.2000,48(8):2057–2061.
    [24] Chaiyasit, W, Silvestre, M. P. C.; McClements, D. J.et al. Ability of surfactanthydrophobic tail group size to alter lipid oxidation in oil-in-water emulsions[J] Journalof Agricultural and Food Chemistry.2000,48,3077–3080
    [25] de Folter J. W. J., M. W. M. van Ruijvena and K.et al Oil-in-water Pickering emulsionsstabilized by colloidal particles from the water-insoluble protein zein[J] Soft Matter,2012,8,6807–6815.
    [1] Ou, S. Y.; Kwok, K. C.; Kang, Y. J. Changes in in vitro digestibility and available lysineof soy protein isolate after formation of film.[J] Journal of Food Engineering2004,64(3):301305.
    [2] Krochta J M, Baldwin E A, Nisperos-Carriedo M O. Permeability properties of ediblefilms[M]. Edible Coatings and Films to Improve Food Quality,1994:139
    [3] McHugh, T.; Krochta, J. Permeability Properties of Edible Films.n Edible Coatings andFilms to Improve Food Quality; Krochta, J. M.,Baldwin, E. A., Nisperos-Carriedo, M. O,Eds.; Technomic Publishing Co., Inc.: Lancaster, PA,1994; pp139187
    [4] Yang, L.; Paulson, A. T. Effects of lipids on mechanical and moisture barrier properties ofedible gellan film[J]. Food Research International,2000,33(7):571-578.
    [5] Liu, X.; Sun, Q.; Wang, H.; Zhang, L. K.; Wang, J. Y. Microspheres of corn protein, zein,for an ivermectin drug delivery system[J]. Biomaterials,2005,26(1):109–115.
    [6] Hurtado-López, P.; Murdan, S. Zein microspheres as drug/antigen carriers: a study of theirdegradation and erosion, in the presence and absence of enzymes[J]. Journal ofMicroencapsulation,2006,23(3):303-314.
    [7] Zhong, Q. X.; Jin, M. F. Nanoscalar structures of spray-dried zein microcapsules and invitro release kinetics of the encapsulated lysozyme as affected by formulations[J]Journal of Agricultural and Food Chemistry2009,57(9):38863894.
    [8] Wu, L. Y, Wen, Q. B, Yang, X. Q.et al Wettability, surface microstructure and mechanicalproperties of films based on phosphorus oxychloride-treated zein[J] Journal of theScience of Food and Agriculture2011,91(7):12221229.
    [9] Fabra, M. J.; Lopez-Rubio, A.; Lagaron J. M. High barrier polyhydroxyalcanoate foodpackaging film by means of nanostructured electrospun interlayers of zein[J] FoodHydrocolloids2013,32(1):106114.
    [10] O’Donnell, P. B, Wu, C. B,Wang, J. J et al Aqueous pseudolatex of zein for film coatingof solid dosage forms[J] European Journal of Pharmaceutics and Biopharmaceutics.1997,43(1):8389.
    [11] Li, K. K.; Yin, S. W., Yang, X. Q et al Fabrication and characterization of novelantimicrobial films derived from thymol-loaded zein-sodium caseinate (SC)nanoparticles[J] Journal of Agricultural and Food Chemistry2012,60,11592115600.
    [12] Atarés L, Bonilla J, Chiralt A. Characterization of sodium caseinate-based edible filmsincorporated with cinnamon or ginger essential oils[J]. Journal of Food Engineering,2010,100(4):678-687.
    [13] Fabra, M. J.; Pérez-Masiá, R.; Talens, P.; Chiralt, A. Influence of the homogenizationconditions and lipid self-association on properties of sodium caseinate based filmscontaining oleic and stearic acids[J]Food Hydrocolloids2011,25(5):11121121.
    [14] Quezada Gallo, J. A.; Debeaufort, F.; Callegarin,et al.A. Lipid hydrophobicity, physicalstate and distribution effects on the properties of emulsion-based edible films [J]. Journalof Membrane Science.2000,180(1):3746.
    [15] Pereda, M.; Aranguren, M. I.;&Marcovich, N. E. Caseinate films modified with tungoil[J] Food Hydrocolloids.2010,24(8):800808.
    [16] Perez-Gago, M. B.;&Krochta, J. M. Lipid particle size effect on water vapourpermeability and mechanical properties of whey protein/bees wax emulsion films[J]Journal of Agricultural and Food Chemistry,2001,49(2):9961002.
    [17] Ma, W, Tang,C.H.; Yin, S. et al Effect of homogenization conditions on properties ofgelatin–olive oil composite films[J] Journal of Food Engineering,2012,113(3):136–142.
    [18] Horn, D.;&Rieger, J. Organic nanoparticles in the aqueous phase–theory, experiment,and use[J]. Angewandte Chemie International Edition,2001,40(23):4330-4361
    [19] Chu, B. S.; Ichikawa, S,Kanafusa, S.; Nakajima, M. Preparation of protein-stabilizedbeta-carotene nanodispersions by emulsification evaporation method[J]. Journal of theAmerican Oil Chemists' Society,2007,84(11):1053-1062
    [20] Chu, B. S.; Ichikawa, S.; Kanafusa, S,Nakajima, M Preparation and characterization ofbeta-carotene nanodispersions prepared by solvent displacement technique[J]. Journal ofAgricultural and Food Chemistry,2007,55(16):6754-6760.
    [21] Tan, C. P, Nakajima, M. Beta-Carotene nanodispersions:preparation, characterizationand stability evaluation[J] Food Chemistry2005,92(4):661671
    [22] Lee, S. J, McClements, D. J. Fabrication of protein-stabilized nanoemulsions using acombined homogenization and amphiphilic solvent dissolution/evaporation approach[J]Food Hydrocolloids2010,24(6-7):560569.
    [23] Bouchemal, K, Briancon S,Perrier E et al Nanoemulsion formulation using spontaneousemulsification: solvent, oil and surfactant optimization[J]. International Journal ofPharmaceutics,2004,280(1):241-251.
    [24] Dickinson, E. Use of nanoparticles and microparticles in the formation and stabilizationof food emulsions[J] Trends In Food Science&Technology2012,24(1):412
    [25] Rockland, L. B. Satured salt solutions for static control of relative humidity between5and40°C[J]. Analytical Chemistry,1960,32(4):13751376
    [26] ASTM. Standard Test Methods for Water Vapor Transmission of Material, StandardDesignation: E96-95[M] Annual Book of ASTM Standards; American Society forTesting and Materials: Philadelphia,PA,1995.
    [27] McHugh, T. H.; Avena-Bustillos, R.; Krochta, J. M. Hydrophilic edible films: modifiedprocedure for water vapor permeability and explanation of thickness effects[J]. Journalof Food Science,1993,58(4):899903.
    [28] ASTM. Standard Test Method for Tensile Properties of Thin Plastic Sheeting. StandardDesignation: D882[M] Annual Book of ASTM Standards; American Society for TestingMaterials: Philadelphia, PA,2001.
    [29] Ma, W.; Tang, C. H.; Yin, S. W et al Fabrication and characterization of kidney bean(Phaseolus vulgarisL.) protein isolate chitosan composite films at acidic pH[M] FoodHydrocolloids2013,31(2):237247.
    [30] Monedero F M, Fabra M J, Talens P, et al. Effect of oleic acid–beeswax mixtures onmechanical, optical and water barrier properties of soy protein isolate based films[J].Journal of Food Engineering,2009,91(4):509-515.
    [31] Morillon V, Debeaufort F, Blond G, et al. Factors affecting the moisture permeability oflipid-based edible films: a review[J]. Critical Reviews in Food Science and Nutrition,2002,42(1):67-89
    [32] Phan The D, Peroval C, Debeaufort F, et al. Arabinoxylan-lipids-based edible films andcoatings.2. Influence of sucroester nature on the emulsion structure and filmproperties[J]. Journal of Agricultural and Food Chemistry,2002,50(2):266-272
    [33] Vogler E A. Structure and reactivity of water at biomaterial surfaces[J]. Advances inColloid and Interface Science,1998,74(1-3):69-117.2.
    [34] Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles[J].Advances in Colloid and Interface Science,2003,100-102(28):503-546.
    [35] de Folter, J. W. J, van Ruijven, M. W. M.; et al Oil-inwater Pickering emulsionsstabilized by colloidal particles from the water-insoluble protein zein[J] Soft Matter2012,8(25):68076815

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700