乳清蛋白肽美拉德反应产物的制备及其抗氧化作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳清蛋白不仅具有良好的营养特性和功能特性,而且美拉德反应产物具有较好的抗氧化功能,近年来大量研究表明乳清蛋白的美拉德反应产物具有较好的抗氧化功能,与合成抗氧化剂相比,具有使用安全的特点,因而在食品应用中受到广泛的关注。但是,目前关于美拉德反应体系的研究中,多集中于蛋白质与还原糖的反应模式,而关于蛋白质水解物与还原糖体系的美拉德反应研究却很少。
     本试验以乳清蛋白碱性蛋白酶水解物为原料与葡萄糖发生美拉德反应,制备得到乳清蛋白肽美拉德反应产物(Whey protein peptide Maillard reaction products, WPP-MRPs),研究了WPP-MRPs的制备条件、分离纯化工艺及结构分析,并对WPP-MRPs的体外抗氧化活性及诱导肿瘤细胞凋亡作用进行了研究,最后研究了羟基自由基氧化体系(HRGS)对WPP-MRPs结构和功能的影响。论文的研究内容和研究结果如下:
     1、通过单因素试验和响应面优化试验,以还原力为考察指标,研究了WPP-MRPs的最佳制备工艺条件,结果表明,在葡萄糖浓度为8%、温度为94℃、时间为3.2h条件下制备得到的WPP-MRPs还原力最高,此时还原力(A700nm)达到0.944±0.05。而反应过程中,体系pH值不断降低(P<0.05),褐变程度加深(P<0.05),荧光强度先增加后下降(P<0.05),游离氨基不断减少(P<0.05)。
     2、以浓度为O.lmg/mL的丁基羟基茴香醚(BHA)和O.lmg/mL的抗坏血酸(Vc)为对照,对WPP-MRPs的抗氧化活性进行了综合评价,结果表明,当WPP-MRPs浓度为40mg/mL时抗氧化能力分别为:还原力(A700nm)为0.39±0.04,羟基清除率为99.37±2.01%,2,2'-氨基-二(3-乙基-苯并噻唑啉磺酸-6)铵盐(ABTS)自由基清除率为81.58±1.33%,Cu2+螯合率为40.47±2.15%, Fe2+螯合率为8.34±0.36%,硫代巴比妥酸反应物质(Thiobarbituric acid-reactive substances, TBARS)值为1.13±0.07mg/L。此浓度的WPP-MRPs羟基清除率和金属螯合力(Cu2+, Fe2+)显著高于Vc和BHA(P<0.05);而还原力显著低于Vc(P<0.05),但与BHA相比差异不显著(P>0.05); ABTS自由基清除率略低于Vc和BHA; TBARS抑制作用低于BHA但好于Vc。
     3、试验研究了温度、pH值、光照、金属离子和过氧化氢对WPP-MRPs抗氧化稳定性的影响。结果表明,WPP-MRPs的抗氧化活性受热影响较小,在50~110℃下加热时还原力、羟基和ABTS自由基清除率变化差异不显著(P>0.05);在偏碱性环境中的抗氧化活性大于偏酸性环境中,pH值为8.0时还原力、羟基和ABTS自由基清除率最高(P<0.05);在不同光照条件下放置25d, WPP-MRPs抗氧化活性均显著下降(P<0.05),其中在室外自然光条件下降低最显著(P<0.05),其次是室内自然光和避光;金属离子Na+、K+、Mg2+、Ca2+、Zn2+对WPP-MRPs的还原力、羟基和ABTS自由基清除率的影响不显著(P>0.05),而金属离子Cu2+、Fe2+、Fe3+和氧化剂H202能够显著降低WPP-MRPs的抗氧化活性(P<0.05)。因此,在加工、储藏过程中应注意WPP-MRPs在偏碱、避光及避开铜铁器具和H202条件下使用,这样可以发挥其良好的抗氧化作用。
     4、试验采用中空纤维超滤膜对WPP-MRPs进行分级得到Ⅰ(分子量<0.8kD)、Ⅱ(0.8kD<分子量<51dD)、Ⅲ(分子量>5kD),对还原力最强的Ⅱ(A700nm为1.55±0.06)再进行凝胶过滤色谱纯化,最佳凝胶纯化条件为:以Sephadex G-25为纯化介质,采用1.0x50cm纯化柱,择蒸馏水为洗脱液,缓冲液流速为0.2mL/min,进样量为1.5mL,在该条件下进行分离纯化后得到三个不同分子量范围的组分WM,(2780.75~7436.78D)、WM2(813.08-2780.75D)和WM3(54.36-813.08D)。经过抗氧化活性研究得出WM2抗氧化性较好(P<0.05),在浓度40mg/mL时WM2的还原力(A700nm)为0.68±0.04,对羟基自由基清除能力99.95±±2.70%,ABTS自由基清除率为88.63±3.04%,Cu2+螯合率为45.41±1.12%,Fe2+螯合率为11.28±±0.05%,TBARS值为0.83±0.06mg/L.
     5、结构分析结果表明,WPP-MRPs的赖氨酸含量显著下降(P<0.05),较乳清蛋白肽(WPP)的赖氨酸含量降低了0.86%,精氨酸、组氨酸及脯氨酸含量也有一定程度下降(P<0.05);傅立叶变换红外光谱(FTIR)和圆二色光谱(CD)分析表明,糖分子连接到乳清蛋白肽分子上,使WPP的二级结构中α螺旋和p转角的含量减少(P<0.05),β折叠和无规则卷曲的含量增加(P<0.05),说明美拉德反应使WPP的二级结构由有序向无序转变;荧光光谱分析表明,在420~430nm处出现新的吸收峰,说明产物生成了具有荧光性的生色团物质;紫外吸收光谱扫描结果表明,WPP经过美拉德反应后在220nm和280nm处紫外吸收强度增加,说明生色团物质含量增加。
     6、试验研究了WM2对宫颈癌细胞Hela及结肠癌细胞Ht-29的抑制作用,结果表明,WM2能够以剂量依赖和时间依赖的方式抑制癌细胞的增殖,作用12h和24h后对Hela细胞的IC50分别为39.12mg/mL和35.91mg/mL,对Ht-29细胞的IC50分别为35.80mg/mL和31.94mg/mL;通过倒置显微镜观察细胞结构,发现经WM2作用以后,细胞出现典型的凋亡特征,细胞收缩,胞质浓缩,形成胞浆丝,细胞失去贴壁能力;流式细胞检测结果进一步说明了WM2能够诱导Ht-29细胞发生凋亡。WM2抗氧化活性与Ht-29抑制率的相关性分析表明,对癌细胞抑制率与羟基清除率的相关系数为0.91(P<0.05),与ABTS自由基清除率的相关系数为0.90(P<0.05),与还原力的相关系数为0.94(P<0.05)。
     7、试验研究了HRGS对WM2结构和功能的影响,结果表明,随着H202浓度的增加和氧化时间的延长,WM2中的二聚酪氨酸含量显著上升(P<0.05),活性巯基、游离氨基含量均显著下降(P<0.05); WM2的乳化功能受到影响,在0.1mmol/L的H202氧化1h后乳化性和稳定性略有上升(P>0.05),随着H202的浓度增加和氧化时间的延长乳化性和稳定性又显著下降(P<0.05)。
     本论文证明了WPP-MRPs及其分离纯化产物具有较强的抗氧化活性,而且稳定性良好,适合各类食品加工,因此可以广泛用于食品、保健品中。因此本研究为拓宽乳清蛋白的应用及开发天然安全的抗氧化剂提供了依据和思路。
Whey protein has drawn widely attention in food industry for its high nutritional value and excellent functional properties. Some studies suggested that the Maillard reaction products (MRPs) formed from whey protein and sugars have a better antioxidatant activity. Compared with synthetic antioxidants, natural antioxidant has a higher safety. Recently, the most of studies about the antioxidant activity of MRPs focus on the reaction between proteins and reducing sugar, and few studies involve the antioxidant activity of MRPs from whey protein hydrolysates and reducing sugar.
     In this study, Maillard reaction products of whey protein peptide and reducing sugar (WPP-MRPs) were obtained by the reaction between alcalase hydrolysates products of whey protein and glucose. First, the preparation conditions of WPP-MRPs were determined. Its structures after separation and purification were analyzed, and its antioxidant activity in vitro and effect on inducing tumor cell apoptosis were evaluated. Finally, the influences of the hydroxyl radical-generating system (HRGS) on the structure and function of WPP-MRPs were studied. The main results are as follows:
     1. The optimum preparation conditions of WPP-MRPs were established by single factor experiment and response surface optimization design, and the reducing power were used as analyzing index. The optimum preparation parameters to obtain the highest reducing power were8%glucose concentration at94℃for3.2h, and the reducing power (A700nm) was0.94±0.05. During reaction, the pH value in solution constantly decreased (P<0.05), the browning degree deepened (P<0.05), fluorescence intensity experienced the trend of rising at first and then falling (P<0.05), and the free amino acid gradually decreased (P<0.05).
     2. The antioxidant activities of WPP-MRPs were evaluated, and butyl hydroxy anisole (BHA;0.1mg/mL) and ascorbic acid (Vc;0.1mg/mL) were used as control. The results showed when the concentration of WPP-MRPs was at40mg/mL, the reducing power, hydroxyl radical scavenging rate, ABTS radical scavenging rate, and Cu2+chelating ability were0.39±0.04,99.37±2.01%,81.58±1.33%, and40.47±2.15%, respectively. Compared with0.1mg/mL Vc and0.1mg/mL BHA,40mg/mL WPP-MRPs exhibited a significant higher hydroxyl radical scavenging ability and a stronger metal (Cu2+, Fe2+) chelating ability (P<0.05), while its reducing power was lower than Vc (P<0.05), and has no significantly difference compare to BHA. The inhibition of WPP-MRPs to TB ARS (thiobarbituric acid-reactive substances) was also lower than BHA and higher than Vc.
     3. The antioxidant stabilities of WPP-MRPs were studied by evaluating the effects of temperature, pH, light condition, metal ions and H2O2on the antioxidant activity. The results showed that heating has a little effect on the antioxidant activity of WPP-MRPs. The total reducing power, hydroxyl radical scavenging rate and the ABTS radical scavenging rate of WPP-MRPs had no significant changes when WPP-MRPs were heated at50~110℃(P>0.05). The antioxidant activity of WPP-MRPs at slightly alkaline condition was stronger than that at slightly acidic or neutral condition, and the total reducing power, hydroxyl radical scavenging rate and the ABTS radical scavenging rate of WPP-MRPs were the highest at pH8.0(P<0.05). The WPP-MRPs were placed under the condition of outdoor natural light, indoor natural light and avoid light for25d. The results showed that the antioxidant activity of WPP-MRPs had significantly decreased at outdoor natural light and the decreasing order was:outdoor natural light> indoor natural light> avoid light (P<0.05). Metal ions, such as Na+, K+, Mg2+, Ca2+and Zn2+, had few effects on the total reducing power, the hydroxyl radical and the ABTS radical scavenging ability of WPP-MRPs (P>0.05). However, the metal ions such as Cu2+, Fe2+, Fe3+and the oxidant H2O2could largely reduce the antioxidant activity of WPP-MRPs (P<0.05). So, WPP-MRPs should be processed at conditions of slightly alkaline, stored at dark, and avoided contact copper and iron utensils and H2O2in order to keep its good antioxidant.
     4. WPP-MRPs were classified through the hollow fiber ultrafiltration membrane, and part I (molecular weight<0.8kD), Ⅱ(0.8KD5kD) were obtained. Part Ⅱ had the best reducing power (P<0.05) and was used for gel filtration chromatography purification. The optimal purification condition for preparing WM (WPP-MRPs II)was determined by single factor experiment by using Sephadex G-25column (1.0×50cm) as the purification medium and the distilled as the eluant. Three components with different molecular weight ranges, including WM1(2781-7437D), WM2(813-2781D), and WM3(54-813D) were obtained after separation and purification under the conditions of buffer flow rate at0.2mL/min and the injection volume at1.5mL. The results showed that WM2had better antioxidant activity (P <0.05). When the concentration of WM2was40mg/mL, its reducing power (A700nm) was0.68±0.04; the hydroxyl radical scavenging rate was99.95±2.70%; the ABTS radical scavenging rate was88.63±3.04%; Cu2+chelating ability was45.41±1.12%; Fe2+chelating ability was11.28±0.05%; and TBARS was0.83±0.06mg/L.
     5. The structure analysis showed that the total amino acid composition of the WPP-MRPs experienced significant changes. Compared with that of WPP, lysine content declined significantly and decreased by0.86%, and the contents of arginine, histidine and proline experienced slightly declining as well (P<0.05). Fourior transform infrared spectroscopy (FTIR) analysis and circular dichroism (CD) indicated that saccharide conjugated with WPP covalently, which made the content of a-helical and β-turn in the secondary structure of MRPs decreased (P<0.05), but that of (3-sheet and random structure increased (P<0.05). This revealed that Maillard reaction had a certain effect on the secondary structure of WPP. It made the transition from order to disorder. The results of circular dichroism (CD) spectra correspond with that of FTIR in spite of only slight difference in data. Fluorescence spectrum showed that a new peak value occurred between420nm and430nm, indicating that a kind of new substance with fluorescence property emerged in the MRPs. The scan results of ultraviolet absorption spectrum suggested that Maillard reaction increased the chromophore content.
     6. The inhibition of WM2on cervical cancer cells (Hela) and colon cancer cells (Ht-29) were studied, the result indicated that WM2inhibited the proliferation of Ht-29and Hela cells dependent on dose and time. The IC50value of Hela cells were39.12mg/mL和35.91mg/mL, respectively, through interacting about12hours and24hours, and the figures of Ht-29cell's IC50were35.80mg/mL and31.94mg/mL. The cell expressed typically apoptosis characteristic such as cell shrinkage, formation of cytoplasmic filaments, condensation of nuclear chromatin, and loss of cell adherent capacity after interacting with WM2by observing the cell structure by the inverted microscope. Furthermore, flow cytometry results further illustrated the WM2induced Ht-29cell apoptosis. Correlation analysis between WM2antioxidant activity and Ht-29inhibition rate showed the correlation coefficient of cancer cell inhibition rate with hydroxy clearance rate was0.91(P<0.05), and the correlation coefficient with ABTS radical scavenging was0.90(P<0.05), and the correlation coefficient with reducing power was0.94(P<0.05).
     7. The effects of HRGS on WM2structure and function of WM2were studied. The results indicated that the dimer of L-tyrosine of WM2after oxidation exhibited a significant increase with increased H2O2concentration and oxidation time (P<0.05). Active thiol and free amino were both apparently declined (P<0.05). The oxidation made the structure of WM2change, which impacted its emulsifying function. Studies demonstrated that the emulsifying property and stability of WM2rose a little after O.lmmol/L of H2O2oxidation for1h (P>0.05), but the emulsifying property and stability of WM2significantly decreased with ascending concentrations of H2O2and extending the oxidation time (P<0.05).
     In conclusion, WPP-MRPs and their separation and purification products possess strong antioxidant activity and appropriate stability. Therefore, they can be extensively utilized in foods and health-care products. Besides, this research provides basis and ideas for expanding whey protein modification and developing natural and efficient antioxidants as well.
引文
[I]KONG B H, XIONG Y L. Antioxidant activity of zein hydrolysates in a liposome system and the possible mode of action[J]. Journal of Agricultural and Food Chemistry, 2006,54(16):6059-6068.
    [2]SUHA J M. Spice antioxidants isolation and their antiradical activity:a review[J]. Journal of Food Composition and Analysis,2006,19(6-7):531-537.
    [3]SINGH G, MARIMUTHU P, CHROLA S, et al. Antimicrobial and antioxidant potentials of essential oil and acetone extract of Myristica fragrans Houtt.(Aril Part)[J]. Journal of Food Science,2005,70(2):141-148.
    [4]AKHTAR M, DICKINSON E. Emulsifying properties of whey protein-dextran conjugates at low pH and different salt concentration [J]. Colloids and Surfaces,2003, (31):125-132.
    [5]LI C P, ENOMOTO H, OHKI S, et al. Improvement of functional properties of whey protein isolate through glycation and phosphory-iation by dry heating [J]. Journal of Dairy Science,2005, (88):4137-4145.
    [6]BONGKOSH V, UMUT Y, JOHN N C, et al. Interactions between β-lactoglobulin and dextran sulfate at near neutral pH and their effect on thermal stability [J]. Food Hydrocolloids,2008, (9):1-10.
    [7]LERTITTIKUL W, BENJAKUL S, TANAKA M. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein-glucose model system as influenced by pH[J]. Food Chemistry,2007,100(2):669-677.
    [8]MARCELO P A, RIZVI S S H. Physicochemical properties of liquid virgin whey protein isolate[J]. International Dairy Journal,2008(18):236-246.
    [9]WALSTRA P, GEURTS T J, Noomen A, et al. Dairy Technology:Principles of Milk Properties and Processes[M]. New York:Van Boekel.Marcel Dekker; 1999.566-572.
    [10]解纯刚.乳清蛋白在食品工业中的应用[J].广州食品工业科技,2000,16(1):15-17.
    [11]Roginski H等编,赵新淮,孟祥晨等译.乳品科学百科全书[M].北京:科学出版社;2009.2129-2130.
    [12]吴蕾,庞广昌,张建辉.乳源性生物活性肽的研究进展[J].食品研究与开发,2009,30(4):181-185.
    [13]关荣发,许梓荣,王淑彩.酪蛋白磷酸肽在动物营养中的研究进展[J].中国饲料,2003,1(16):31-32.
    [14]刘文,陈有亮.酪蛋白磷酸肽的功能及其制备[J].科技通报,2008,24(1):35-38.
    [15]董晓丽,王加启,赵国琦,等.牛奶中免疫活性蛋白的研究进展[J].中国畜牧兽医,2008,35(2):67-71.
    [16]MARUYAMA S, MITACHI H, AWAYA J, et al. Angiotensin I-conveting enzyme inhibitory activity of the c-terminal hexapeptide of aSl-casein[J]. Agricultural and Biological Chemistry,1987,51(9):2557-2561.
    [17]王建平,徐臻荣,付德润.牛初乳粉抗衰老作用的实验研究[J].中国老年学杂志,1999,19(6):353-355.
    [18]邱隽,王小雪,李琳.乳蛋白活性肽的延缓衰老作用研究[J].中国公共卫生,2002,18(3):312-313.
    [19]MEISEL H. Biochemical properties of peptides encrypted in bovine milk proteins[J]. Current Medicinal Chemistry,2005,12(16):1905-1919.
    [20]余丹丹,张昊,郭慧媛,等.乳清蛋白的特性及其在食品工业中的应用[J].中国乳业,2013,138(6):58-60.
    [21]WALLER G R, FEATHER M S. The Maillard Reaction in Foods and Nutrition[M]. American Chemical Society, Washington DC; 1983.210-212.
    [22]FUJIMAKI M, NAMIKI M, KATO H. Amino-carbonyl ceact ions in food and biological systems[J]. Developments in Food Science,1986(13):588-592.
    [23]JIANG Z M, DILIP K R, PAULA M O. Heat-induced Maillard reaction of the tripeptide IPP and ribose:structural characterization and implication on bioactivity[J]. Food Research International,2013, (50):266-274.
    [24]RUFIAN H, DELGADO A C, MORALES F J. Occurrence of acetic acid and formic acid in breakfast cereals[J]. Journal of the Science of Food and Agriculture, 2006,86(9):1321-1327.
    [25]JIANG Z M, BRODKORB A. Structure and antioxidant activity of Maillard reaction products from a-lactalbumin and (3-lactoglobulin with ribose in an aqueous model system[J]. Food Chemistry,2012(133):960-968.
    [26]LI Y, LU F, LUO C, et al. Functional properties of the maillard reaction products of rice protein with sugar[J]. Food Chemistry,2009,117(1):69-74.
    [27]LIU P, HUANG M G, SONG S Q, et al. Sensory characteristics and antioxidant activities of Maillard reaction products from soy protein hydrolysates with different molecular weight distribution[J]. Food Bioprocess Technology,2012,5(5):1775-1789.
    [28]ZHANG Y, DORJPALAM B, HO C T. Contribution of peptides to volatile formation in the Maillard reaction of casein hydrolysate with glucose[J]. Journal of Agricultural and Food Chemistry,1992,40(12):2467-2471.
    [29]VAN R R, DE B J. Furosine in consumption milk and milk powders[J]. International Dairy Journal,1996,6(4):371-382.
    [30]MORALES F J, ROMERO C, JIME N R S. Characterization of industrial processed milk by analysis of heat-induced changes [J]. International Journal of Food Science and Technology,2000,35(2):193-200.
    [31]GU F L, KIM J M, HAYAT K, et al. Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein-glucose model system[J]. Food Chemistry,2009,117(1):48-54.
    [32]BIEMEL K M, BUHLER H P, REIHL O, et al. Identification and quantitative evaluation of the lysine-arginine crosslinks GODIC, MODIC, DODIC, and glucosepan in foods[J]. Nahrung-Food,2001, (45):210-214.
    [33]Meade S J, Miller A G, Gerrard J A. The role of dicarbonyl compounds in non-enzymatic crosslinking:A structure-activity study[J]. Bioorganic and Medicinal Chemistry,2003, (11):853-862.
    [34]Miller A G, Meade S J, Gerrard J A. New insights into protein crosslinking via the Maillard reaction:structural requirements, the effect on enzyme function, and predicted efficacy of crosslinking inhibitors as anti-ageing therapeutics[J]. Bioorganic and Medicinal Chemistry, 2003,(11):843-852.
    [35]KIM J S, LEE Y S. Antioxidant activity of Maillard reaction products derived from aqueous glucose/glycine, diglycine, and triglycine model systems as a function of heating time[J]. Food Chemistry,2009,116(l):227-232.
    [36]张凌燕,李倩,尹姿,等.3种氨基酸和葡萄糖美拉德产物的物理化学特性及抗氧化活性的研究[J].中国食品学报,2008,8(3):12-22.
    [37]BENJAKUL S, LERTITTIKUL W, BAUER F. Antioxidant activity of Maillard reaction products from a porcine plasma protein-sugar model system[J]. Food Chemistry, 2005,93(2):189-196.
    [38]SUN Y, HAYAKAWA S, PUANGMANEE S, et al. Chemical properties and antioxidative activity of glycated a-lactalbumin with a rare sugar, D-allose, by Maillard reaction[J]. Food Chemistry,2006,95(3):509-517.
    [39]KATO A, MIFURU R, MATSUDOMI N, et al. Functional casein-polysaccharide conjugates prepared by controlled dry heating[J]. Bioscience, Biotechnology and Biochemistry,1992, (56):567-571.
    [40]周冬香,王惠英,孙涛,等.三种L-赖氨酸与葡萄糖美拉德反应产物的抗氧化性能[J].食品科技,2010,35(4):224-227.
    [41]DICHINSON E, GALAZKA V B. Emulsion stabilization by ionic and covalent complexes of β-lactoglobulin with polysaccharides[J]. Food hydrocolloids,1991, (5):281-296.
    [42]AKHTAR M, DICKINSON E. Emulsifying properties of whey protein-dextran conjugates at low pH and different salt concentrations[J]. Colloids and Surfaces B:Biointerfaces, 2003, (31):125-132.
    [43]MORALES F J, JIMENEZ-PEREZ S. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence[J]. Food Chemistry, 2001,72(1):119-125.
    [44]HUANG J, HUANG C, HUANG Y, et al. Shelf-life of fresh noodles as affected by chitosan and its Maillard reaction products[J]. Food Science and Technology, 2007,40(7):1287-1291.
    [45]JOSE M S, JURGEN V D, AGUSTIN O, et al. Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods[J]. Journal of Pharmaceutical and Biomedical Analysis,2006, (41):1543-1551.
    [46]MATSUDOMI N, TSUJIMOTO T, KATO A, et al. Emulsifying and bactericidal properties of a protamine-galactomannan conjugate prepared by dry heating[J]. Journal of Food Science,1994, (59):428-431.
    [47]SONG Y, BABIKER E E, USUI M, et al. Emulsifying properties and bactericidal action of chitosan-lysozyme conjugates[J]. Food Research International,2002, (35):459-466.
    [48]MATSUDOMI N, INOUE Y, NAKASHIMA H, et al. Emulsion stabilization by Maillard-type covalent complex of plasma protein with galactomannan[J]. Journal of Food Science,1995, (60):265-268,283.
    [49]吴惠玲,王志强,韩春,等.影响美拉德反应的几种因素研究[J].现代食品科技,2010,26(5):440-444.
    [50]黄文凯.膜分离方法制备免疫活性大豆肽的研究[D][J].无锡:江南大学,2007.
    [51]VERONIQUE D M, SYLVIE F Q MICHEL B, et al. Antibacterial activity of peptides extracted from tryptic hydrolyzate of whey protein by nanofiltration[J]. International Dairy Journal 2013(28):94-101.
    [52]ALINE H N, JULIA W, JORG H. A study of fouling during long-term fractionation of functional peptides by means of cross-flow ultrafiltration and cross-flow electro membrane filtration[J]. Journal of Membrane Science,2013(446):440-448.
    [53]LEDESMA B H, DAVALOS A, BARTOLOME B, et al. Preparation of antioxidant enzymatic hydrolysates from a-lactalbumin and β-lactoglobulin.Identification of active peptides by HPLC-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2005,53(3):588-593.
    [54]VILELA R M, LANDS L C, CHAN H M, et al. High hydrostatic pressure enhances whey protein digestibility to generate whey peptides that improve glutathione status in CFTR-deficient lung epithelial cells[J]. Molecular Nutrition and Food Research, 2006,50(11):1013-1029.
    [55]肖玉秀,岳卫华,达世禄.氮杂18-冠-6键合硅胶固定相上小分子肽的高效液相色谱研究[J].氨基酸和生物资源,2000,22(2):49-53.
    [56]SAID B, GWENAELE H, EGISTO B. Separation of small cationicbioactive peptides by strong ion-exchange chromatography [J]. Journal of Chromatogr A,1996(724):137-145.
    [57]韩香,顾军.高效液相色谱法在合成多肽分离纯化中应用[J].天津药学,2003,15(6):42-44.
    [58]RAIESH C, SULAKSHANA J, MURALIDHAR K, et al. Purification of bubaline luteinizing hormone by gel filtration chromatography in the presence of blue dextran[J]. Process Biochemistry,2006(41):562-566.
    [59]MONG LIANG, VIVIN Y T C, CHEN H L, et al. A simple and direct isolation of whey components from raw milk by gel filtration chromatography and structural characterization by fourier ransform raman spectroscopy[J]. Talanta,2006(69):1269-1277.
    [60]ANDY J T, JAMER P L. Buffer conditions affecting the separation of Maillard reaction products by capillary electrophoresis[J]. Journal of Chromatography A, 1993,652(1):171-177.
    [61]YOSHIMURA Y, IILJMA T, WATANBL T, et al. Antioxidative effect of Maillard reaction products using glucose-glycine model system[J]. Journal of Agricultural and Food Chemistry,1997,45(10):4106-4109.
    [62]JING H, KITT D D. Chemical and biochemical properties of casein-sugar Maillard reaction products[J]. Food and Chemical Toxicology,2002, (40):1007-1015.
    [63]赵艳娜,辛岩,姜瞻梅.乳清蛋白美拉德反应特性及抗氧化性的研究[J].中国乳品工业,2010,38(8):18-21.
    [64]王文琼,包怡红,陈颖.改性乳清蛋白体外抗氧化特性[J].食品与发酵工业,2012,38(3):62-67.
    [65]张曦,李琦,景浩,乳清蛋白-木糖美拉德反应产物的成膜性及其膜包裹对核桃仁脂质过氧化的抑制作用[J].食品科学,2011,32(5):58-63.
    [66]LIU Q, KONG B H, JIANG L Z, et al. Free radical scavenging activity of porcine plasma protein hydrolysates determined by electron spin resonance spectrometer[J]. LWT-Food Science and Technology,2009,42(5):956-962.
    [67]SAKANAKA S, TACHIBANA Y. Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates[J]. Food Chemistry,2006,95(2):243-249.
    [68]JING H, KITTS D D. Comparison of the antioxidative and cytotoxic properties of glucose-lysine and fructose-lysine Maillard reaction products[J]. Food Research International,2000(33):509-516.
    [69]MIRALLES B, MARTINEZ R A, SANTIAGO A, et al. The Occurrence of a Maillard-type protein-polysacchande reaction between β-lactoglobulin and chitosan[J]. Food Chemistry, 2007,100(3):1071-1075.
    [70]TSAI G J, SU W H. Antibacterial activity of shrimp chitosan against Escherichia coli[J]. Journal of Food Protection,1999, (62):239-243.
    [71]HWANG I G, KIM H Y, LEE S H, et al. Isolation and identification of an antiprolif keratin substance from fructose-tyrosine Maillard reaction products[J]. Food Chemistry,2012, (130):547-551.
    [72]ARITA K, BABIKER E E, AZAKAMI H, et al. Effect of chemical and genetic attachment of polysaccharides to proteins on the production of IgG and IgE[J]. Journal of Agriculture and Food Chemistry,2001, (49):2030-2036.
    [73]SVENNING C B, BRYHILDSVOLD J, MOLLAND T, et al. Antigenic response of whey protein and genetic variants of P-lactoglobulin:the effect of proteolysis and processing[J]. International Dairy Journal,2000,10(10):699-711.
    [74]DAVIS P J, SMALES C M, JAMES D C. How can thermal processing modify the antigenicity of proteins[J]. Allergy,2001,56(67):56-60.
    [75]HATTORI M, NUMAMOTO K, KOBAYASHI K, et al. Functional changes in beta-lactoglobulin by conjugation with cationic saccharides[J]. Journal of Agricultural and Food Chemistry,2000(48):2050-2056.
    [76]ENOMOTO H, HAYASHI Y, LIC P, et al. Glycation and phosphorylation of a-lactalbumin by dry Heating:effect on protein structure and physiological functions[J]. Journal of Dairy Science,2009,92(7):3057-3068.
    [77]OGAWA T, TSUJI H, BANDO N, et al. Identification fo the soybean allergenic protein gly m Bd 30K, with the soybean seed 34kDa oilbody-associated protein[J]. Bioscience, Biotechnology, and Biochemistry,1993, (57):1030-1033.
    [78]BABIKER E, HIROYUKI A, MATSUDOMIN, et al. Effect of polysaccharide conjugation or transglutaminase treatment on the allergenicity and functional properties of soy protein[J]. Journal of Agriculture and Food Chemistry,1998, (46):866-871.
    [79]ZHU H M, DAMODARAN S. Heat-induced conformational changes in whey protein isolate and its relation to foaming properties[J]. Journal of Agricultural and Food Chemistry,1994,42(4):846-855.
    [80]BOUAOUINA H, DESRUMAUX A, LOISE C, et al. Functional properties of whey protein as affected by dynamic high-pressure treatment [J]. International Dairy Journal, 2005,6(4):275-284.
    [81]CHAKRABORTY J, DAS N, DAS K P, et al. Loss of structural integrity and hydrophobic ligand binding capacity of acetylated and succinylated bovine β-lactoglobulin[J]. International Dairy Journal,2009,19(1):43-49.
    [82]KITABATAKE N, CUQ J L, CHEFTEL J C. Covalent binding of glycosyl residues to (3-Lactoglobulin effect on solubility and heat stability [J]. Journal of Agricultural and Food Chemistry,1985, (33):125-130.
    [83]BEATRIZ M, ALEJANDRO S, et al. The Occurrence of a Maillard-type protein-polysaccharide reaction between β-lactoglobulin and chitosan[J]. Food Chemistry, 2007, (100):1071-1075.
    [84]CHEVALIER F, HOBERT M, POPINEAU Y, et al. Improvement of functional properties of β-lactoglobulin glycated through the Maillard reaction is related to the nature of the sugar[J]. International Dairy Journal,2001,11(3):145-152.
    [85]郑喆,芦晶,罗永康.乳清蛋白-葡萄糖的制备及溶解性和热稳定性研究[J].乳业科学与技术,2009,(2):55-58.
    [86]芦晶,布冠好,罗永康.乳清蛋白-多糖的制备及功能特性的研究[J].中国乳品工业,2007,35(5):04-08,25.
    [87]刘春波,刘志东,王荫榆.糖基化反应对乳清蛋白糖复合物乳化性的影响[J].中国乳品工业,2009,38(7):25-28.
    [88]KATO A, SASAKI Y, FURUTA R, et al. Functional protein-polysaccharide conjugate prepared by controlled dry-heating of ovalbumin-dextran mixtures[J]. Agricultural and Biological Chemistry,1990, (54):107-112.
    [89]NAKAMURA S, KATO A, KOBAYASHI K. Bifunctional lysozyme-galactomannan conjugate having excellent emulsifying properties and bactericidal effect[J]. Journal of Agricultural and Food Chemistry,1992, (40):735-739.
    [90]Kim H J, Choi S J, Shin W S, et al. Emulsifying properties of bovine serum albumin-galactomannan conjugate[J]. Journal of Agricultural and Food Chemistry,2003, (51):1049-1056.
    [91]SHEPHERD R, ROBERTSON A, OFMAN D. Dairy glycoconjugate emulsifiers: casein-maltodextrins[J]. Food Hydrocolloids,2000, (14):281-286.
    [92]NAKAMURA S, KATO A. Multi-functional biopolymer prepared by covalent attachmeni of galaetomannan to egg-white proteins through naturally oeeurring Maillard reaction[J]. Nahrung-Food,2000, (44):201-206.
    [93]GROUBET R, CHOBERT J M, HAERTLE T. Functional properties of milk proteins glycated in mild conditions[J]. Sciences des Aliments,1999, (19):423-438.
    [94]MORENO F, FANDINO L, OIANO A. Characterization and functional properties of lactosyl caseinomacropeptide conjugates [J]. Journal of Agricultural and Food Chemistry, 2002, (50):5179-5184.
    [95]SAEKI H. Preparation of neoglycoprotein from carp myofibrillar protein by Maillard reaction with glucose:Biochemical properties and emulsifying properties[J]. Journal of Agricultural and Food Chemistry,1997, (45):680-684.
    [96]SAEKI H, INOUE K. Improved solubility of carp myofibrillar proteins in low ionic strength medium by glycosylation[J]. Journal of Agricultural and Food Chemistry,1997, (45):3419-3422.
    [97]KATAYAMA S, SHIMA J, SAEKI H. Solubility improvement of shellfish muscle proteins by reaction with glucose and its soluble state in low-ionic-strength medium[J]. Journal of Agricultural and Food Chemistry,2002, (50):4327-4332.
    [98]YEBOAH F K, ALLI I, YAYLAYAN V, et al. Monitoring glycation of lysozyme by electrospray ionization mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2000, (48):2766-2774.
    [99]SHU Y W, SAHARA S, NAKAMURA S, et al. Effects of the length of polysaccharide chains on the functional properties of the Maillard-type lysozyme-polysaccharide conjugate[J]. Journal of Agricultural and Food Chemistry,1996, (44):2544-2548.
    [100]MARTINS S I F S, JONGEN W M F, VAN BOEKEL M A J S. A review of Maillard reaction in food and implications to kinetic modelling[J]. Trends in Food Science and Technology,2001, (11):364-373.
    [101]RICH L M, FOEGEDING E A. Effects of sugars on whey protein isolate gelation[J]. Journal of Agricultural and Food Chemistry,2000, (48):5046-5052.
    [102]MISHRA S, MANN B, JOSHI V K. Functional improvement of whey protein concentrate on interaction with pectin[J]. Food Hydrocolloids,2001(15):9-15.
    [103]TANABE M, SAEKI H. Effect of Maillard reaction with glucose and ribose on solubility at low ionic strength and filament-forming ability of fish myosin[J]. Journal of Agricultural and Food Chemistry,2001, (49):3403-3407.
    [104]COURTHAUDON J L, COLAS B, LORIENT D. Covalent bonding of glucosyl residues to bovine casein:effect on solubility and viscosity [J]. Journal of Agricultural and Food Chemistry,1989, (37):32-36.
    [105]STEFANCICH S, DELBEN F. Interaction of food proteins with polysaccharides Ⅱ. Properties upon freeze-drying of mixed solutions and thermal treatment of the lyophilizate[J]. Journal of Food Engineering,1997, (31):347-363.
    [106]BENJAKIL S, VISESSANGUAN W, PHONGKANPAI V, et al. Antioxidative activity of caramelisation products and their preventive effect on lipid oxidation in fish mince[J]. Food Chemistry,2005,90(1-2):231-239.
    [107]PARRELLA A, CATERINO E, CANGIANO M, et al. Antioxidant properties of different milk fermented with lactic acid bacteria and yeast[J], International Journal of Food Science and Technology,2012(47):2493-2502.
    [108]PARK EY, IMAZU H, MATSUMURA Y, el al. Effects of peptide fractions with different isoelectric points from wheat gluten hydrolysates on lipid oxidation in pork meat patties[J]. Journal of Agriculrtral and Food Chemistry,2012,60(30):7483-7488.
    [109]KANG J H, KIM K S, CHOI S Y, et al. Protective effects of carnosine, homocarnosine and anserine against peroxyl radical-mediated Cu, Zn-superoxide dismutase modification[J]. Biochim Biophys Acta,2002,1570(2):89-96.
    [110]SAMARANAYKA A G P, LI-CHAN E C Y. Food-derivol peptidic antioxidants:A review of their production,assessment, and potential applications[J]. Journal of Functional Foods, 2011,3(4):229-254.
    [111]BRANDS C M J, ALINK G M, VAN BOEKEL M J S, et al. Mutagenicity of heated sugar-casein systems:effect of the Maillard reaction[J]. Journal of Agricultural and Food Chemistry,2000,48(6):2271-2275.
    [112]MALEC L S, GONZALES A S P, NARANJO G B, et al. Influence of water activity and storage temperature on lysine availability of a milk like system [J]. Food Research International,2002(35):849-853.
    [113]GUERRA-HERNANDEZ E, GOMEZ C L, GARCIA-ILLANOVA B, et al. Effect of storage on non-enzymatic browning of liquid infant milk formulae[J]. Journal of the Science of Food and Agriculture,2002(82):587-592.
    [114]GUYOMARCH F, WARIN F, MUIR D D, et al. Lactosylation of milk proteins during the manufacture and storage of skim milk powders[J]. International Dairy Journal, 2000(10):863-872.
    [115]PENG X Y, XIONG Y L, KONG B H. Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance[J]. Food Chemistry, 2009,113(1):196-201.
    [116]KANOKWAN M A, SOOTTAWAT B A, MUNEHIKO T. Effect of reactant concentrations on the Maillard reaction in a fructose-glycine model system and the inhibition of black tiger shrimp polyphenoloxidase[J]. Food Chemistry,2006,98(1):1-8.
    [117]OZGEN M, REESE R N, TULIO A Z, et al. Modified 2,2-azino-bis3-ethylbenzothiazoline-6-sulfonic acid(ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power(FRAP) and 2,2'-diphenyl-l-picrylhydrazyl(DPPH) methods[J]. Journal of Agriculture and Food Chemistry,2006,54(4):1151-1157.
    [118]WANG H, GAO X D, ZHOU G C, et al. In vitro and in vivo antioxidant activity of aqueous extract from choerospondias axillaris fruit[J]. Food Chemistry, 2008,106(3):888-895.
    [119]GUO J T, LEE H L, CHIANG S H, et al. Antioxidant properties of the extracts from different parts of broccoli in Taiwan[J]. Journal of Food and Drug Analysis, 2001,9(2):96-101.
    [120]DECKER E A, HULITINH O. Factors influencing catalysis of lipid oxidation by the soluble fraction of mackerel muscle[J]. Journal of Food Science,1990(55):947-950,953.
    [121]SINNHUBER R O, YU T C.2-thiobarbituric acid method for the measurement of rancidity in fishery prducts Ⅱ. The quantitative determination of malonaldehyde[J]. Food Technology,1958(12):9-12.
    [122]AJANDOUZ E H, TCHIAKPE L S, ORE F D, et al. Effects of pH on caramelization and Maillard reaction kinetics in fructose-lysine model systems[J]. Journal of Food Science, 2001,66(7):926-931.
    [123]BENJAKUL S, MORRISSEY M T. Protein hydrolysates from Pacific whiting solid wastes[J]. Journal of Agricultural and Food Chemistry,1997,45(9):3423-3430.
    [124]VAN DER VENC C, MURESAN S, GRUPPEN H, et al. FTIR spectra of whey and casein hydrolysates in relation to their functional properties[J]. Journal of Agricultural and Food Chemistry,2002(50):6943-6950.
    [125]MARCONE M F, KAKUDA Y, YADA R Y. Salt-soluble seed globulins of dicotyledonous and monocotyledonous plants II structural characterization[J]. Food Chemistry, 1998,63(2):265-274.
    [126]MORALES F, VAN BOEKEL M J. Astudy on advanced Maillard reaction in heated casein/sugar solutions:Colour formation[J]. International Dairy Journal, 1998,8(10-11):907-915.
    [127]DAVIES K J. Protein damage and degradation by oxygen radicals. I. general aspects[J]. Journal of Biological Chemistry,1987,262(20):9895-9901.
    [128]XIA X F, KONG B, LIU Q, et al. Physicochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze-thaw cycles[J]. Meat Science, 2009,83(2):239-245.
    [129]PEARCE K N, KINSELLA J E. Emulsifying properties of proteins:evaluation of a turbidimetric technique[J], Journal of Agricultural and Food Chemistry, 1978,26(3):716-723.
    [130]FERREIRA I C F R, BAPTIATA P, VILAS-BOAS M, et al. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity[J]. Food Chemistry,2007,100(4):1511-1516.
    [131]HUANG D J, CHEN H J, HOW W C, et al. Active recombinant thioredoxin h protein with antioxidant activities from sweet potato (Ipomoea batatas [L.] Lam Tainong 57) storage roots[J]. Journal of Agricultural and Food Chemistry,2004,52(15):4720-4724.
    [132]SAIGA A, TANABE S, NISHIMURA T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment[J]. Journal of Agricultural and Food Chemistry,2003 (51):3661-3667.
    [133]DECKER E A, IVANOV V, ZHU B Z, et al. Inhibition of low-density lipoprotein oxidation by camosine and histidine [J]. Journal of Agricultural and Food Chemistry, 2001(49):511-516.
    [134]VAN BOEKEL M A J S. Formation of flavour compounds in the Maillard reaction[J]. Biotechnology Advances,2006,24(2):230-233.
    [135]SUN W Z, ZHAO M M, CUI C, et al. Effect of Maillard reaction products derived from the hydrolysate of mechanically deboned chicken residue on the antioxidant, textural and sensory properties of Cantonese sausages[J]. Meat Science,2010,86(2):276-282.
    [136]BAISER W M, LABUZA T P. Maillard browning kinetics in a liquid model system[J]. Journal of Agricultural and Food Chemistry,1992,40(5):707-713.
    [137]JING H, KITTS D D. Antioxidant activity of sugar-lysine Maillard reaction products in cell free and cell culture systems[J]. Archives of Biochemistry and Biophysics, 2004,429(2):154-163.
    [138]NARANJO G B, MALEC L S, VIGO M S. Reducing sugars effect on available lysine loss of casein by moderate heat treatment[J]. Food Chemistry,1998,62(3):309-313.
    [139]HWANG I G, KIM H Y, WOO K S, et al. Biological activities of Maillard reaction products(MRPs) in a sugar-amino acid model system[J]. Food Chemistry, 2011,126(1):221-227.
    [140]HOFMANN T. Studies on Melanoidin-Type Colorants Generated from the Maillard Reaction of Protein-bound Lysine and Furan-2-carboxaldehyde-Chemical Characterisation of a red Coloured Domaine[J]. Zeitschrift fur Lebensmitteluntersuchung und-Forschung A, 1998,206(4):251-258.
    [141]孙子林,刘乃丰,弓玉祥,等.糖基化终产物-牛血清白蛋白的制备和纯化[J].铁道医 学,1999,27(6):361-363.
    [142]朱振宝,吴园芳,易建华.紫甘蓝花色苷的分离纯化[J].食品科技,2012,37(6):237-242.
    [143]华珞,陈世宝,白玲玉,等.用凝胶层析法和示踪技术评估腐植酸分子量,分级组成及其与Cd、Zn的络合特性[J].核农学报,1999,13(4):236-241.
    [144]NIENABER U, EICHNER K. The antioxidative effect of Maillard reaction products in model systems and roasted hazelnuts[J]. Health & Environmental Research Online (HERO),1995,97(12):435-444.
    [145]JING H, YAP M, WONG P Y, et al. Comparison of physicochemical and antioxidant properties of egg-white proteins and fructose and inulin Maillard reaction products[J]. Food and Bioprocess Technology,2009:1-8.
    [146]TAN B K, HARRIS N D. Maillard products inhibit apple polyphenoxidase[J]. Food Chemistry,1995,53(3):267-273.
    [147]EISERICH J P, SHIBAMOTO T. Antioxidative activity of volatile heterocyclic compounds[J]. Journal of Agricultural and Food Chemistry,1994,42(5):1060-1063.
    [148]RAO M S, CHAWLA S P, CHANDER R, et al. Antioxidant potential of Maillard reaction products formed by Irradiation of chitosan-glucose solution[J]. Carbohydrate Polymers, 2011(83):714-719.
    [149]MIRANDA L T, RAKOVSKI C, WERE L M. Effect of maillard reaction products on oxidation products in dround chicken breast[J]. Meat Science,2012,90(2):352-360.
    [150]FENG L G, JIN M K, SHABBAR A, et al. Structure and antioxidant activity of high molecular weight Maillard reaction products from casein-glucose[J]. Food Chemistry, 2010(120):505-511.
    [151]SU W G, ZHENG L, CUI C, et al. Characterization of antioxidant activity and volatile compounds of Maillard reaction products derived from different peptide fractions of peanut hydrolysate[J]. Food Research International,2011(44):3250-3258.
    [152]JIMENEZ-CASTANO L, VILLAMIEL M, LOPEZ-FANDINO R. Glycosylattion of individual whey protiens by Maillard reaction using dextran of different molecular mass[J]. Food Hydrocolloids,2007(21):433-443.
    [153]郑文华,许旭.美拉德反应的研究进展[J].化学进展,2005(17):122-130.
    [154]AJANDOUZ E H, DESSEAUX V, TAZI S, et al. Effects of temperature and pH on the kinetics of caramelisation, protein cross-linking and Maillard reactions in aqueous model systems[J]. Food Chemistry,2008(107):1244-1252.
    [155]SU J F, HUANG Z, YUAN X Y, et al. Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions[J]. Carbohydrate Polymers,2010(79):145-153.
    [156]LIU Q, KONG B H, LI J, et al. Structure and antioxidant activity of whey protein isolates conjugated with glucose via the dry-heating Maillard reaction[J]. Food Structure,2013(12).
    [157]RHIM J W, MOHANTY K A, SINGH S P, et al. Preparation and properties of biodegradable multilayer films based on soy protein isolate and poly (lactide)[J]. Industrial & Engineering Chemistry Research,2006(45):3059-3066.
    [158]CHANG M C, TANAKA J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde[J]. Biomaterials,2002(23):4811-4818.
    [159]BYLER D M, SUSI H. Examination of the secondary strueture of protein by deconvolved FTIR spectra[J]. BioPolymers,1986(25):469-487.
    [160]WOOSTER T J, AUGUSTIN M A. Rheology of whey protein-dextran conjugate films at the air/water interface[J]. Food Hydrocolloids,2007,21(7):1072-1080.
    [161]JAGDEESH B. Amide modes and protein conformation[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1992,1120(2):123-143.
    [162]GUO X N, XIONG Y L. Characteristics and functional properties of buckwheat protein-sugar Schiff base complexes[J]. LWT-Food Science and Technology, 2013(51):397-404.
    [163]JIA N, XIONG Y L, KONG B H, et al. Radical scavenging activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on gastric cancer cell proliferation via induction of apoptosis[J]. Journal of Functional Foods,2012,4(1):382-390.
    [164]LIU G, XIONG Y L. Thermal transitions and gelation of oxidatively modified myosin, β-lactoglobulin, soy 7S globulin and their mixtures [J]. Journal of the Science of Food and Agriculture,2000,80(12):1728-1734.
    [165]MORZEL M, GATELLIER P, SAYD T, et al. Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins[J]. Meat Science, 2006,73(3):536-543.
    [166]MERCIER Y, GATELLIER P, RENERRE M. Lipid and protein oxidation in vitro, and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet[J]. Meat Science,2004,66(2):467-473.
    [167]FRANCOIS C, et al. Improvement of functional properties of β-lactoglobulin glycatedthrough the Maillard reaction is related to the nature of the sugar [J]. International Dairy Journal,2001(11):145-152.
    [168]DONG S Y, PANYA A, ZENG M Y, et al. Characteristics and antioxidant activity of hydrolyzed β-lactoglobulin-glucose Maillard reaction products[J]. Food Research International,2012,46(1):55-61.
    [169]WITTAYACHAI LERTITI K D L, SOOTTAWAT BENJA KD L, MUNEHIKO T. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein-glucose model system as influenced by pH Original Research Article[J]. Food Chemistry,2007,100(2):669-677.
    [170]GU F L, ABBAS S, ZHANG X M. Optimization of Maillard reaction products from casein-glucose using response surface methodology [J]. LWT-Food Science and Technology, 2009(42):1374-1379.
    [171]LAN X H, LIU P, XIA S Q, et al. Temperature effect on the nonvolatile compounds of maillard reaction products derived from xylose-soybean peptide system:further insights into thermal degradation and cross-linking[J]. Food Chemistry 2010,120(4):967-972.
    [172]AMES J M, NURSEN H E. Recent advances in the chemistry of coloured compounds formed during the Maillard ceaction. Trends in Food Science[J]. Singapore:Institute of Food Science and Technology,1989:8-14.
    [173]DELGADO A C, RUFIAN H J, MORALES F J. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods[J]. Journal of Agricultural and Food Chemistry,2005,53(20):7832-7836.
    [174]LUSANI N V, JESSY V W. Antioxidant activity of Maillard reaction products(MRPs) derived from fructose-lysine and ribose-lysine model systems[J]. Food Chemistry, 2013,137(1):92-98.
    [175]RE R, PELLEGRINI N, PROTEGGENTE A, et al. Antioxidant activity applying an improved ABTS radical cation decolonrization assay [J]. Free Radical Biology and Medicine,1999,26(9):1231-1237.
    [176]HAYASE F, USUI T, WATANABE H. Chemistry and some biological effects of model melanoidins and pigments as Maillard intermediates[J]. Molecular Nutrition and Food Research,2006,50(12):1171-1179.
    [177]WAGNER K, DERKITS S, HERR M, et al. Antioxidative potential of melanoidins isolated from a roasted glucose-glycine model[J]. Food Chemistry,2002,78(3):375-382.
    [178]BRANDS C M, VAN BOEKEL M A J S. Kinetics modeling of reactions in heated monosaccharide-casein systems[J]. Journal of Agricultural and Food Chemistry, 2002,50(23):6725-6739.
    [179]LIU S C, YANG D J, JIN S Y, et al. Kinetics of color development, pH decreasing, and anti-oxidative activity reduction of Maillard reaction in galactose/glycine model systems[J]. Food Chemistry,2008,108(2):533-541.
    [180]FRIEDMAN M J. Food browning and its prevention:an overview[J]. Journal of Agricultural and Food Chemistry,1996,44(3):631-653.
    [181]项惠丹,许时婴,王璋.蛋白质与还原糖美拉德反应产物的抗氧化活性[J].食品科学,2008,29(7):52-57.
    [182]CHARURIN P, AMES J M, CASTIELLO M D. Antioxidant activity of coffee model systems[J]. Journal of Agricultural and Food Chemistry,2002,50(13):3751-3756.
    [183]EICHNER K. Antioxidant effect of Maillard reaction intermediates[J]. Progress in Food and Nutrition Science,1981 (5):441-451.
    [184]MORALES P F, OLIVA S G, SILVA E, et al. The reaction electronic flux:A new descriptor of the electronic activity taking place during a chemical reaction. Application to the characterization of the mechanism of the Schiff s base formation in the Maillard reaction[J]. Journal of Molecular Structure:THEOCHEM,2010,943(1-3):121-126.
    [185]YOU L J, ZHENG L, REGENSTEIN J M, et al. Effect of thermal treatment on the characteristic properties of loach peptide[J]. International Journal of Food Science and Technology,2012(47):2574-2581.
    [186]BROWN J E, KHODR H, HIDER R C, et al. Structural dependence of favonoid interactionswith Cu2+ions:implications for their antioxidan properties[J]. Biochemical Journal,1998,330(3):1173-1178.
    [187]ZHENG X, BAKER H, HANCOCK W S. Analysis of the low molecular weight serum peptidome using ultrafiltration and a hybrid ion trap-Fourier transform mass spectrometer[J]. Journal of Chromatography A,2006,1120(1-2):173-184.
    [188]KIM J S, LEE Y S. Study of Maillard reaction products derived from aqueous model systems with different peptide chain lengths[J]. Food Chemistry,2009(116):846-853.
    [189]RIVAL S G, BOERIU C G, WICHERS H J. Casein and casein hydrolysates antioxidative properties and relevance to lipoxygenase inhibition[J]. Journal of Agricultural and Food Chemistry,2001(49):295-302.
    [190]FENNEMA O R著,王璋,许时婴等译.食品化学[M]:中国轻工业出版社;2003.342-343,298-299,278.
    [191]AI-JOWDER O, DEFERNEZ M, KEMSLEY E K, et al. Mid-infrared spectroscopy and chemometrics for the authentication of meat products[J]. Journal of Agricultural and Food Chemistry,1999(47):3210-3218.
    [192]FARHAT A, ORSET S, MOREAU P, et al. FTIR study of hydration phenomena in protein-sugar systems[J]. Journal of Colloid and Interface Science,1998,207(2):200-208.
    [193]KRILOV D, BALARIN M, KOSOVIC M, et al. FT-IR spectroscopy of lipoproteins-A comparative study[J]. Spectrochimica Acta Part A,2009,73(4):701-706.
    [194]RONDEAU P, ATMENTA S, CAILLENS H. Assessment of temperature effects on β-aggregation of native and glycated albumin by FTIR spectroscopy and PAGE:Relations between structural changes and antioxidant properties[J]. Archives of Biochemistry and Biophysics,2007(460):141-150.
    [195]RADFORD S E, DOBSON C M, EWANS P A. The foldmg of hen lysozyme involves partially structured intermidates and multiple pathways[J]. Nature,1992(358):302-307.
    [196]SUN Y, HAYAKAWA S, IZUMORI K. Modification of ovalbumin with a rare ketohexose through the Maillard reaction:effect on protein structure and gel properties[J]. Journal of Agricultural and Food Chemistry,2004(52):1293-1299.
    [197]ENOMOTO H, LI C P, MORIZANE K, et al. Glycation and phosphorylation of β-lactoglobulin by dry-heating:effect on protein structure and some properties [J]. Journal of Agricultural and Food Chemistry,2007(55):2392-2398.
    [198]MORALES F J, ROMERO C, JIMENEZ P S. Fluorescence associated with Maillard reaction in milk and milk-resembling systems[J]. Food Chemistry,1996,57(3):423-428.
    [199]BENJAKUL S, LERTITTIKUL W, BAUER F. Antioxidant activity of Maillard reaction products from a porcine plasma protein-sugar model system[J]. Food Chemisty, 2005,93(2):189-196.
    [200]YU X Y, ZHAO M Y, HU J, et al. Correspondence analysis of antioxidant activity and UV-Vis absorbance of Maillard reaction products as related to reactants[J]. LWT-Food Science and Technology,2012(46):1-9.
    [201]ARGIROVA M D, ARGIROV O K. Correlation between the UV sprectra of glycated peptides and amino acids[J]. Spectrochimica Acta Part A,1999(55):245-250.
    [202]杨晶,张凤阳,田雨,等.乳清蛋白Maillard反应产物对Caco-2细胞抗增殖抑制的影响[J].中国乳品工业,2013,41(6):10-13.
    [203]BABETT B, GRIT R, VERONIKA S, et al. Maillard reaction product-rich food impair cell proliferation and induce cell death in vitro[J]. Signal Transduction,2005(6):303-313.
    [204]冯晓,任南琪,于喜波,等.大豆乳清蛋白发泡特性及辅助抑制肿瘤作用研究大豆乳清蛋白[J].东北农业大学学报,2009,40(7):94-100.
    [205]BALASSIANO K, LIMA S, JENAB M, et al. Aberrant DNA methylation of cancer-associated genes in gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST)[J]. Cancer Letters,2011,311(1):85-95.
    [206]VISHAL R T, SHARMA S, MAHAJAN A, et al. Oxidative stress:a novel strategy in cancer treatment[J]. JK Science,2005(7):1-3.
    [207]GAO Z, SARSOUR E H, KALEN A L, et al. Late ROS accumulation and radiosensitivity in SODl-overexpressing human glioma cells[J]. Free Radical Biology and Medicine, 2008,45(11):1501-1509.
    [208]KININGHAM K K, DAOSUKHO C, CLAIR D K S.I kappa B alpha (inhibitory kappa Balpha) identified as labile repressor of MnSOD (manganese superoxide dismutase) expression[J]. Biochemical Journal,2004(384):543-549.
    [209]DAI J, GUPTE A, GATES L, et al. A comprehensive study of anthocyanin-containing extracts from selected blackberry cultivars:Extraction methods, stability, anticancer properties and mechanisms[J]. Food and Chemical Toxicology,2009(47):837-847.
    [210]JANG K J, HAN M H, LEE B H, et al. Induction of apoptosis by ethanol extracts of Ganoderma lucidum in human gastric carcinoma cells[J]. Journal of Acupuncture and Meridian Studies,2010(3):24-31.
    [211]LUND M N, HEINONEN M, BARON C P, et al. Protein oxidation in muscle foods:A review[J]. Molecular Nutrition & Food Research,2011,55(1):83-95.
    [212]EYMARD S, BARON C P, JACOBSEN C. Oxidation of lipid and protein in horse mackerel (Trachurus trachurus) mince and washed minces during processing and storage[J]. Food Chemistry,2009,114(1):57-65.
    [213]CUI X, XIONG Y L, KONG B, et al. Hydroxyl radical-stressed whey protein isolate: Chemical and structural properties[J]. Food and Bioprocess Technology, 2012,5(6):2454-2461.
    [214]XIONG Y L, PARK D, OOIZUMI T. Variation in the cross-linking pattern of porcine myofibrillar protein exposed to three oxidative environments[J]. Journal of Agricultural and Food Chemistry,2008,57(1):153-159.
    [215](?)STDAL H, BJERRUM M J, PEDERSEN J A. Lactoperoxidase-induced protein oxidation in milk[J]. Journal of Agricultural and Food Chemistry,2000(48):3939-3944.
    [216]LIU Z, XIONG Y L, CHEN J. Protein oxidation enhances hydration but suppresses water-holding capacity in porcine Longissimus muscle [J]. Journal of Agricultural and Food Chemistry,2010,58(19):10697-10704.
    [217]LIZARRAGA M S, PAN L G, ANOIN M C, et al. Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions-I. Whey protein concentrate[J]. Food Hydrocolloids,2008(22):868-878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700