聚(氟)硅氧烷/TiO_2纳米复合自清洁涂层的制备新方法与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自清洁涂层能够将表面污染物或灰尘颗粒在重力、雨水、风力等外力作用下自动脱落或通过光催化降解而除去,具有节水、节能、环保等优点,近年来受到了广泛的关注。目前,基于不同自清洁原理,已发展了两类自清洁涂层。一类是超疏水(水接触角>150°)自清洁涂层,通过水滴滚动带走灰尘,实现类似于荷叶的自清洁功能。但现有超疏水涂层仍存制备工艺复杂、制备面积小、实际服役时间过短等问题。另一类是基于无机半导体材料光催化分解有机物原理制备的自清洁涂层。在这一类自清洁涂层中,最为典型的是二氧化钛(Ti02)涂层。纯Ti02涂层可通过磁控溅射法、化学气相沉积法、溶胶-凝胶法等方法制备,但这些方法一般都需要高真空或高温处理条件,不适合于大面积制备。本文通过具有光催化活性的Ti02纳米粒子与特殊成膜树脂相结合,在室温条件下大面积制备了超双亲、超疏水等多种纳米复合自清洁涂层,详细考察了涂层的结构与性能,为自清洁涂层的大规模实用化奠定了较好的理论和实验基础。主要研究内容与结果如下:
     (1)采用酸催化溶胶-凝胶法制备的Si02溶胶与自由基溶液聚合制得的含甲氧基硅基苯丙(SA)齐聚物混合为成膜杂化树脂,氨基硅烷(APS)为固化剂,与Ti02纳米粒子复合,在室温下湿固化得纳米复合涂层,再在阳光辐照或人工加速老化下,通过纳米Ti02粒子对聚合物链段的选择性光解,制备了超双亲自清洁涂层。研究表明,纳米复合涂层中的Ti02纳米粒子含量增加或杂化树脂中SA组分含量减小,涂层在辐照下达到超双亲(分别以水和正已烷为探针液体)所需要的时间缩短。在无机Si02溶胶与有机SA质量比为9:1,Ti02纳米粒子含量为2.0 wt%时,涂层在阳光下辐照10天即可达到超双亲性能,即使Ti02含量减小到0.5 wt%,阳光辐照16天后也能获得超双亲性。SEM观察表明,涂层的超双亲特性是由表面点状微裂纹和暴露的纳米Ti02粒子造成的。另外,力学性能测试发现,涂层在人工加速老化1440小时后仍能保持铅笔硬度高达4H的力学强度。但当SA组分含量高于30 wt%时,光催化降解后涂层表面出现微粉化,力学性能严重劣化。UV-Vis光谱测试表明,涂层老化后透明性有所降低,但1.5 wt%TiO2含量的涂膜仍能保持较高的透明性。亚甲基蓝光催化降解实验表明,所制备的Ti02基超双亲自清洁涂层具有良好的光催化降解有机污染物能力。
     (2)以双端羟基氟化聚甲基硅氧烷(PMSF)和双端含氢聚二甲基硅氧烷(PDHS)为成膜树脂,将其与纳米Ti02粒子复合,利用Karstedt催化剂在室温下直接制备了聚氟硅氧烷/Ti02纳米复合涂层。FT-IR分析表明,PMSF与PDHS之间发生了脱氢耦合和硅氢加成反应,生成了聚氟硅氧烷成膜基质。SEM和AFM观察发现,当Ti02纳米粒子含量高于25 wt%时,涂层表面出现由纳米Ti02粒子自组装生成的微纳结构,涂层具备有“荷叶”型超疏水性能。当Ti02纳米粒子含量为35wt%时,涂层的水接触角高达168.7±±2.4°,滚动角0.74±0.3°。而且,所制备的超疏水涂层在全pH值(1-14)、-20-200℃温度范围内,或人工加速老化四周后均能保持很好的超疏水性能(WCA>155°)。色拉油污染实验表明,该超疏水涂层在紫外光照射下,能将污染物光催化分解,恢复到原有超疏水状态。冰形成实验及冰附着力测试显示,所制备的超疏水涂层具有较好的防覆冰性能。
     (3)以三乙氧基硅基封端的PMSF树脂(FPU)和聚甲基苯基硅氧烷(PMBS)为混合成膜树脂,与纳米Ti02粒子复合,采用APS为固化剂,在室温下直接制备了力学性能优异的超疏水涂层。当Ti02纳米粒子用量高于35 wt%时,所制备的涂层表面具有接触角高于150°,滚动角小于10°的“荷叶”型超疏水自清洁性质。SEM和AFM观察显示,超疏水涂层表面存在微纳复合粗糙结构。涂层表面硬度随APS固化剂和Ti02纳米粒子用量的增加先增加后减小,随FPU用量的增加而减小。在Ti02纳米粒子为35-42 wt%、PMBS/FPU质量比9:1、APS用量为20-30 wt%时,所制备的涂层具有较好的力学强度和疏水性能。QUV加速老化840小时后,涂层表面接触角没有发生明显减小,仍能保持超疏水性能,力学强度也没有明显减小。色拉油光催化降解实验表明,所制备的超疏水自清洁涂层具有光催化分解有机污染物能力和自我恢复特性。
     (4)以有机硅树脂(Dow Corning@ 3037)为成膜树脂,APS为固化剂,与Fe304纳米粒子复合,在室温条件下,一步法制备了含磁性粒子的纳米复合涂层。当Fe304纳米粒子用量超过48 wt%时,涂层表面具有微纳复合粗糙结构。当Fe304纳米粒子用量为48和56 wt%时,涂层表面的水接触角分别为156.4°和158.3°,滚动角分别为6.5°和4.3°,表明所制备的涂层具有“荷叶”型超疏水自清洁性能。人工加速老化960小时后,涂层表面接触角和铅笔硬度没有发生明显的减小现象。所制备的超疏水涂层在10-3000 MHz范围内具有高达60%的电磁屏蔽效能。
In recent years, self-cleaning coatings have received great interests because they can remove or decompose the contaminates or dust particles under the gravity, rain, wind, and so on. Until now, two kinds of self-cleaning coatings have been developed according to different self-cleaning principles. One is the self-cleaning superhydrophobic (water contact angle>150°) coatings, which remove the dust through rolling of water droplets, namely, in a way being similar to the "lotus leaf" effect. However, the current methods to fabricate superhydrophobic coatings have many shortcomings, such as, high complexicity, small area, high temperature treatment, expensive apparatus, and etc. The durability of the superhydrophobic is generally poor. Another self-cleaning coatings is prepared based on the photo-decomposition of organic pollutes by inorganic semiconductor materials. TiO2 coating is a typical example of this kind of self-cleaning coatings. Pure TiO2 coatings can be prepared by magnetic sputtering, chemical vapor deposition (CVD), sol-gel, and etc. However, these methods need high vacuum or high temperature conditions, being unsuitable for large-scale preparation. In this study, large-scale fabrication of both supra-amphiphilic and superhydrophobic nanocomposite self-cleaning coatings were conducted at room temperature by combinding TiO2 nanoparticles with special polymer binders. The structure and properties of the coating were studied. The research contents and results are as follows:
     (1) Supra-amphiphilic nanocomposite coatings were fabricated by mixing titania nanoparticles (Degussa P25) with a sol-gel derived silica sol and methoxysilane group-bearing styrene-co-acrylate (SA) oligomer, and curing with aminopropyltriethoxysilane (APS) at ambient temperature. The amphiphilic, mechanical and optical properties of the nanocomposite coatings with different titania contents and matrix compositions were investigated before and after sun-illumination. Supra-amphiphilic surfaces were achieved just after the coatings were placed in sunshine for a short time. The higher the amount of TiO2 nanoparticles or the lower the fraction of SA copolymer is, the shorter the time to reach super-amphiphilicity is. Accelerated weathering tests showed a good durability especially for the coatings with low fraction of organic phase while photocatalytic activity experiments with methylene blue demonstrated an excellent self-cleaning property of the coatings even with titania content less than 2.0 wt%. The mechanism for the rapid formation of supra-amphiphilic surface with self-cleaning performance was explained.
     (2) Fluorinated polysiloxane/TiO2 nanocomposite coatings were directly prepared at room temperature using a, co-bis(hydroxylpropyl)-terminated fluorinated polysiloxane oligomer (PMSF) and co-bis(hydrogen)-terminated poly(imethylsiloxane) (PDHS), Karstedt catalyst, and TiO2 nanoparticles. FT-IR spectra analysis shows that dehydrocoupling and hydrosilylation reactions took place between PMSF and PDHS, forming dried fluorinated polysiloxane coatings. SEM and AFM demonstrate that the micro-nano binary structure was formed by TiO2 nanoparticles self-assemble at TiO2 nanoparticle content beyond 25 wt%. Meanwhile, the coating exhibited a water contact angles (WCA) of as high as 168.7±2.4°and a sliding angle (SA) of as low as 0.7±0.3°at 35 wt% of TiO2 nanoparticle content. Moreover, the as-prepared superhydrophobic coatings also display excellent durability at various environmental conditions. For example, they show superhydrophobic properties (WCA>165°) within entire pH range (1-14), after treating at temperature ranging from -20 to 200℃for 30 min, or after accelerated weathering tests for 4 weeks. Salad oil photocatalyis experiment reveals the as-prepared superhydrophobic coatings can decompose pollutes and recover its superhydrophobicity under UV illumination. The as-prepared superhydrophobic coatings have good anti-icing performance.
     (3) Robust superhydrophobic coatings were directly fabricated at room temperature using triethoxysilyl-terminated PMSF resin (FPU) and poly(methylphenylsilicone) resin (PMBS), APS curing agent, and TiO2 nanoparticles. The coatings have superhydrophobicity (WCA>150°and SA<10°) when the content of TiO2 nanoparticles is more than 35 wt%. SEM and AFM images reveal that the superhydrophobic coatings have micro-nano binary roughness. The pencil hardness and pendulum hardness first increase then decrease with increasing dosage of APS or TiO2 nanoparticle content, and steadily decrease with increasing amount of FPU. The coatings have robust mechanical properties and superhydrophobicity for the those coatings being composed of PMBS/FPU(9:1),35-42 wt% TiO2 nanoparticles and 20-30 wt% APS. The WCA and mechanical strength of the coatings did not show obvious variation even after 840 hours accelerated weathering test. Salad oil photocatalyis experiment reveals the as-prepared superhydrophobic coatings have photocatalytic activity and self-recovery property.
     (4) Superhydrophobic nanocomposite coatings were readily prepared by mixing of silicone resin (Dow Corning@ 3037), aminopropyltriethoxysilane and FesO4 nanoparticles, and subsequently curing at an ambient temperature. The surface wettability, surface morphology and composition, and long-term durability of the coatings were investigated by water contact angle analysis, filed emission scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and QUV accelerated weathering tests, respectively. WCA of 156.4°and 158.3°, and SA of 6.5°and 4.3°are obtained at 48 and 56 wt% of Fe3O4 content, respectively. The coatings display a pencil hardness of B, excellent weatherability, and electromagnetic shielding effectiveness beyond 60% in the frequency range of 10-3000 MHz.
引文
[1]Blossey R., Self-cleaning surfaces-virtual realities. [J]. Nat. Mater.,2003,2: 301-306.
    [2]Furstner R., Barthlott W., Neinhuis C., Walzel P., Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces. [J]. Langmuir,2005,21:956-961.
    [3]Nakajima A., Hashimoto K., Watanabe T., Takai K., Yamauchi G., Fujishima A., Transparent Superhydrophobic Thin Films with Self-Cleaning Properties. [J]. Langmuir,2000,16:7044-7047.
    [4]Nimittrakoolchai O. U., Supothina S., Deposition of organic-based superhydrophobic films for anti-adhesion and self-cleaning applications. [J]. J. Eur. Ceram. Soc.,2008,28:947-952.
    [5]Awazu K., Fujimaki M., Rockstuhl C., Tominaga J., Murakami H., Ohki Y., Yoshida N., Watanabe T., A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. [J]. J. Am. Chem. Soc.,2008,130: 1676-1680.
    [6]Bhushan B., Jung Y. C., Koch K., Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces. [J]. Langmuir,2009,25:3240-3248.
    [7]Nystrom D., Lindqvist J., Ostmark E., Antoni P., Carlmark A., Hult A., Malmstrom E., Superhydrophobic and Self-Cleaning Bio-Fiber Surfaces via ATRP and Subsequent Postfunctionalization. [J]. Appl. Mater. Interface.,2009,1:816-823.
    [8]Zhang X. T., Sato O., Taguchi M., Einaga Y., Murakami T., Fujishima A., Self-Cleaning Particle Coating with Antireflection Properties. [J]. Chem. Mater.,2005, 17:696-700.
    [9]Dong H., Ye P., Zhong M., Pietrasik J., Drumright R., Matyjaszewski K. Superhydrophilic Surfaces via Polymer-SiO2 Nanocomposites. [J]. Langmuir,2010, 26:15567-15573.
    [10]Faustini M., Nicole L., Boissiere C., Innocenzi P., Sanchez C., Grosso D., Hydrophobic, Antireflective, Self-Cleaning, and Antifogging Sol-gel Coatings:An Example of Multifunctional Nanostructured Materials for Photovoltaic Cells. [J]. Chem. Mater.,2010,22:4406-4413.
    [11]Chen C. C., Lin J. S., Diau E., Liu T. F., Self-cleaning characteristics on a thin-film surface with nanotube arrays of anodic titanium oxide. [J]. Appl. Phys. A-Mater.,2008,92:615-620.
    [12]Guan K. S., Yin Y S., Effect of rare earth addition on super-hydrophilic property of TiO2/SiO2 composite film. [J]. Mater. Chem. Phys.,2005,92:10-15.
    [13]Wu Z. Z., Lee D., Rubner M., Cohen R., Structural Color in Porous, Superhydrophilic, and Self-Cleaning SiO2/TiO2 Bragg Stacks. [J]. Small,2007,3: 1467.
    [14]Zhao X. J., Zhao Q. N., Yu J. G., Liu B. S., Development of multifunctional photoactive self-cleaning glasses. [J]. J. Non-Cryst. Solid.,2008,354:1424-1430.
    [15]Ohdaira T., Nagai H., Kayano S., Kazuhito H., Antifogging effects of a socket-type device with the superhydrophilic, titanium dioxide-coated glass for the laparoscope. [J]. Surg. Endosc.,2007,21:333-338.
    [16]江雷,冯琳,仿生智能纳米界面材料.[M].化学工业出版社,2007,pp:123.
    [17]Schmidt D. L., Brady R. F., Lam K., Schmidt D. C., Chaudhury M. K., Contact Angle Hysteresis, Adhesion, and Marine Biofouling. [J]. Langmuir,2004,20: 2830-2836.
    [18]Spohr R., Sharma G., Forsberg P., Karlsson M., Hallen A., Westerberg L., Stroke Asymmetry of Tilted Superhydrophobic Ion Track Textures. [J]. Langmuir,2010,9: 6790-6797.
    [19]Horiuchi Y., Mori K., Nishiyama N., Yamashita H., Photo-induced surface hydrophilic properties on the Ti- and V-containing mesoporous silica thin films. [J]. Stud. Surface Sci. Catal.,2008,174:635-640.
    [20]Mori K., Imaoka S., Nishio S., Nishiyama Y., Nishiyama N., Yamashita H., Investigation of local structures and photo-induced surface properties on transparent Me(Ti,Cr)-containing mesoporous silica thin films. [J]. Micropor. Mesopor. Mat., 2007,101:288-295.
    [21]Nishio S., Tanaka T., Tada H., Nishiyama N., Fujii H., Ohmichi T., Katayama I., Yamashita H., J. Cejka N. Z. a. P. N., Photo-induced super-hydrophilic property and photocatalysis on Ti-containing mesoporous silica thin films. [J]. Stud. Surf. Sci. Catal.,2005,158:1605-1612.
    [22]Guan K., Lu B., Yin Y., Enhanced effect and mechanism of SiO2 addition in super-hydrophilic property of TiO2 films. [J]. Surf. Coat. Technol.,2003,173: 219-223.
    [23]Dohshi S., Takeuchi M., Anpo M., Effect of the local structure of Ti-oxide species on the photocatalytic reactivity and photo-induced super-hydrophilic properties of Ti/Si and Ti/B binary oxide thin films. [J]. Catal. Today,2003,85: 199-206.
    [24]Choi C. H., Kim C. J., Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. [J]. Phys. Rev. Lett.,2006,96:
    [25]Kunio F., Toru N., Preparation of a Superhydrophilic Thin Film on Glass Substrate Surfaces with Titanium Alkoxide Solution. [J]. J. Am. Ceram. Soc.,2006, 89:2782-2786.
    [26]Yu J., Zhou M., Yu H., Zhang Q., Yu Y., Enhanced photoinduced super-hydrophilicity of the sol-gel-derived TiO2 thin films by Fe-doping. [J]. Mater. Chem. Phys.,2006,95:193-196.
    [27]Liu Q., Wu X., Wang B., Liu Q., Preparation and super-hydrophilic properties of TiO2/SnO2 composite thin films. [J]. Mater. Res. Bull,2002,37:2255-2262.
    [28]Yu J., Zhao X., Zhao Q., Wang G., Preparation and characterization of super-hydrophilic porous TiO2 coating films. [J]. Mater. Chem. Phys.,2001,68: 253-259.
    [29]Liu X., He J., Superhydrophilic and Antireflective Properties of Silica Nanoparticle Coatings Fabricated via Layer-by-Layer Assembly and Postcalcination. [J]. J.Phys. Chem. C,2008,113:148-152.
    [30]Liu X., He J., One-Step Hydrothermal Creation of Hierarchical Microstructures toward Superhydrophilic and Superhydrophobic Surfaces. [J]. Langmuir,2009,25: 11822-11826.
    [31]Cebeci F. C., Wu Z., Zhai L., Cohen R. E., Rubner M. F., Nanoporosity-Driven Superhydrophilicity:A Means to Create Multifunctional Antifogging Coatings. [J]. Langmuir,2006,22:2856-2862.
    [32]Miyauchi M., Tokudome H., Low-reflective and super-hydrophilic properties of titanate or titania nanotube thin films via layer-by-layer assembly. [J]. Thin Solid Films,2006,515:2091-2096.
    [33]Du X., Liu X., Chen H., He J., Facile Fabrication of Raspberry-like Composite Nanoparticles and Their Application as Building Blocks for Constructing Superhydrophilic Coatings. [J]. J.Phys. Chem. C,2009,113:9063-9070.
    [34]Jeong Y. M., Lee J. K., Jun H. W., Kim G. r., Choe Y., Preparation of super-hydrophilic amorphous titanium dioxide thin film via PECVD process and its application to dehumidifying heat exchangers. [J]. J. Ind. Eng. Chem.,2009,15: 202-206.
    [35]Mohammad M. H., Dirk H., Giuseppino F., Axel S. H., Manfred H., Plasma Deposition of Permanent Superhydrophilic a-C:H:N Films on Textiles. [J]. Plasma Proc. Polym.,2007,4:471-481.
    [36]Chan M. H., Ho W. Y., Wang D. Y., Lu F. H., Characterization of Cr-doped TiO2 thin films prepared by cathodic arc plasma depostion. [J]. Surf. Coat. Technol.,2007, 202:962-966.
    [37]Okabe Y., Kurihara S., Yajima T., Seki Y., Nakamura I., Takano I., Formation of super-hydrophilic surface of hydroxyapatite by ion implantation and plasma treatment. [J]. Surf. Coat. Technol.,2005,196:303-306.
    [38]Karuppuchamy S., Jeong J. M., Amalnerkar D. P., Minoura H., Photoinduced hydrophilicity of titanium dioxide thin films prepared by cathodic electrodeposition. [J]. Vacuum,2006,80:494-498.
    [39]Karuppuchamy S., Jeong J. M., Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition. [J]. Mater. Chem. Phys.,2005,93: 251-254.
    [40]Tsuge Y., Kim J., Sone Y., Kuwaki O., Shiratori S., Fabrication of transparent TiO2 film with high adhesion by using self-assembly methods:Application to super-hydrophilic film. [J]. Thin Solid Films,2008,516:2463-2468.
    [41]Hosono E., Matsuda H., Honma I., Ichihara M., Zhou H., Synthesis of a Perpendicular TiO2 Nanosheet Film with the Superhydrophilic Property without UV Irradiation. [J]. Langmuir,2007,23:7447-7450.
    [42]Kim S. H., Kim J. H., Kang B. K., Uhm H. S., Superhydrophobic CFx Coating via In-Line Atmospheric RF Plasma of He-CF4-H2. [J]. Langmuir,2005,21: 12213-12217.
    [43]Murakami A., Yamaguchi T., Hirano S. i., Kikuta K., Synthesis of porous titania thin films using carbonatation reaction and its hydrophilic property. [J]. Thin Solid Films,2008,516:3888-3892.
    [44]Weng W., Ma M., Du P., Zhao G., Shen G., Wang J., Han G., Superhydrophilic Fe doped titanium dioxide thin films prepared by a spray pyrolysis deposition. [J]. Surf. Coat. Technol.,2005,198:340-344.
    [45]Lee E. J., Lee H. M., Li Y., Lan H. Y., Kim D. P., Cho S. O., Hierarchical Pore Structures Fabricated by Electron Irradiation of Silicone Grease and their Applications to Superhydrophobic and Superhydrophilic Films. [J]. Macromol. Rapid Comm., 2007,28:246-251.
    [46]Ye Q., Liu P. Y., Tang Z. F., Zhai L., Hydrophilic properties of nano-TiO2 thin films deposited by RF magnetron sputtering. [J]. Vacuum,2007,81:627-631.
    [47]Luca D.,Mardare D., Iacomi F., Teodorescu C. M., Increasing surface hydrophilicity of titania thin films by doping. [J]. Appl. Surf. Sci.,2006,252: 6122-6126.
    [48]Huang F., Xie B., Wu B., Shao L., Li M., Wang H., Jiang Y., Song Y., Enhancing the crystallinity and surface roughness of sputtered TiO2 thin film by ZnO underlayer. [J]. Appl. Surf. Sci.,2009,255:6781-6785.
    [49]Mane R. S., Joo O. S., Min S. K., Lokhande C. D., Han S. H., A simple and low temperature process for super-hydrophilic rutile TiO2 thin films growth. [J]. Appl. Surf. Sci.,2006,253:581-585.
    [50]Lin C. Y., Pang Y. K., Kuo C. H., Chen S. P., Lin C. S., Chou T. H., Lee Y. H., Lin J. C., Hwang S. B., Design and fabrication of a TiO2/nano-silicon composite visible light photocatalyst. [J]. Appl. Surf. Sci.,2006,253:898-903.
    [51]Li X., Dai H., Tan S., Zhang X., Liu H., Wang Y., Zhao N., Xu J., Facile preparation of poly(ethyl [alpha]-cyanoacrylate) superhydrophobic and gradient wetting surfaces. [J]. J. Colloid Interface Sci.,2009,340:93-97.
    [52]Zhang X., Jin M., Liu Z., Nishimoto S., Saito H., Murakami T., Fujishima A., Preparation and Photocatalytic Wettability Conversion of TiO2-Based Superhydrophobic Surfaces. [J]. Langmuir,2006,22:9477-9479.
    [53]Satyaprasad A., Jain V., Nema S. K., Deposition of superhydrophobic nanostructured Teflon-like coating using expanding plasma arc. [J]. Appl. Surf. Sci., 2007,253:5462-5466.
    [54]Balu B., Breedveld V., Hess D. W., Fabrication of "Roll-off" and "Sticky" Superhydrophobic Cellulose Surfaces via Plasma Processing. [J]. Langmuir,2008,24: 4785-4790.
    [55]Ji Y. Y, Kim S. S., Kwon O. P., Lee S. H., Easy fabrication of large-size superhydrophobic surfaces by atmospheric pressure plasma polymerization with non-polar aromatic hydrocarbon in an in-line process. [J]. Appl. Surf. Sci.,2009,255: 4575-4578.
    [56]Wagterveld R. M., Berendsen C. W. J., Bouaidat S., Jonsmann J., Ultralow Hysteresis Superhydrophobic Surfaces by Excimer Laser Modification of SU-8. [J]. Langmuir,2006,22:10904-10908.
    [57]Kim S. H., Kim J. H., Kang B. K., Scanning Atmospheric Plasma Processes for Surface Decontamination and Superhydrophobic Deposition. [J]. Nanosci. Nanotech., 2009,1016:323-336.
    [58]Wohl C. J., Belcher M. A., Chen L., Connell J. W., Laser Ablative Patterning of Copoly(imide siloxane)s Generating Superhydrophobic Surfaces. [J]. Langmuir,2009, 26:11469-11478.
    [59]Cardoso M. R., Tribuzi V., Balogh D. T., Misoguti L., Mendonca C. R., Laser microstructuring for fabricating superhydrophobic polymeric surfaces. [J]. Appl. Surf. Sci.,2010,257:3281-3284.
    [60]Ma M., Mao Y., Gupta M., Gleason K. K., Rutledge G. C., Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition. [J]. Macromolecules,2005,38:9742-9748.
    [61]Seema A., Horst S., Bognitzki M., Electrospinning of Fluorinated Polymers: Formation of Superhydrophobic Surfaces. [J]. Macromol. Mater. Eng.,2006,291: 592-601.
    [62]Lim J. M., Yi G. R., Moon J. H., Heo C. J., Yang S. M., Superhydrophobic Films of Electrospun Fibers with Multiple-Scale Surface Morphology. [J]. Langmuir,2007, 23:7981-7989.
    [63]Wu Y., Sugimura H., Inoue Y., Takai O., Thin Films with Nanotextures for Transparent and Ultra Water-Repellent Coatings Produced from Trimethylmethoxysilane by Microwave Plasma CVD. [J]. Chemical Vapor Deposition, 2002,8:47-50.
    [64]Sarkar D. K., Farzaneh M., Paynter R. W., Wetting and superhydrophobic properties of PECVD grown hydrocarbon and fluorinated-hydrocarbon coatings. [J]. Appl. Surf. Sci.,2010,256:3698-3701.
    [65]Zheng Z., Gu Z., Huo R., Luo Z., Superhydrophobic poly(vinylidene fluoride) film fabricated by alkali treatment enhancing chemical bath deposition. [J]. Appl. Surf. Sci.,2010,256:2061-2065.
    [66]Lee J. P., Choi S., Park S., Extremely Superhydrophobic Surfaces with Micro-and Nanostructures Fabricated by Copper Catalytic Etching. [J]. Langmuir,2009,27: 809-814.
    [67]Qian B., Shen Z., Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates. [J]. Langmuir,2005,21:9007-9009.
    [68]Hou X., Zhou F., Yu B., Liu W., Superhydrophobic zinc oxide surface by differential etching and hydrophobic modification. [J]. Mater. Sci. Eng. A,2007, 452-453:732-736.
    [69]Sarkar D. K., Farzaneh M., Paynter R. W., Superhydrophobic properties of ultrathin rf-sputtered Teflon films coated etched aluminum surfaces. [J]. Mater. Lett., 2008,62:1226-1229.
    [70]Kim D., Hwang W., Park H. C., Lee K. H., Superhydrophobic nanostructures based on porous alumina. [J]. Current Applied Physics,2008,8:770-773.
    [71]Park B. G., Lee W., Kim J. S., Lee K. B., Superhydrophobic fabrication of anodic aluminum oxide with durable and pitch-controlled nanostructure. [J]. Colloid. Surface. A,2010,370:15-19.
    [72]Lee W., Park B. G., Kim D. H., Ahn D. J., Park Y., Lee S. H., Lee K. B., Nanostructure-Dependent Water-Droplet Adhesiveness Change in Superhydrophobic Anodic Aluminum Oxide Surfaces:From Highly Adhesive to Self-Cleanable. [J]. Langmuir,2010,26:1412-1415.
    [73]Chang K. C., Chen Y. K., Chen H., Preparation and characterization of superhydrophobic silica-based surfaces by using polypropylene glycol and tetraethoxysilane precursors. [J]. Surf. Coat. Technol.,2007,201:9579-9586.
    [74]Yang S., Chen S., Tian Y., Feng C., Chen L., Facile Transformation of a Native Polystyrene (PS) Film into a Stable Superhydrophobic Surface via Sol-Gel Process. [J]. Chem. Mater.,2008,20:1233-1235.
    [75]Venkateswara R. A., Kulkarni M. M., Amalnerkar D. P., Seth T., Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. [J]. J. Non-Cryst. Solids,2003,330:187-195.
    [76]Taurino R., Fabbri E., Messori M., Pilati F., Pospiech D., Synytska A., Facile preparation of superhydrophobic coatings by sol-gel processes. [J]. J. Colloid Interface Sci.,2008,325:149-156.
    [77]Tian H., Yang T., Chen Y., Fabrication and characterization of superhydrophobic thin films based on TEOS/RF hybrid. [J]. Appl. Surf. Sci.,2009,255:4289-4292.
    [78]Latthe S. S., Imai H., Ganesan V., Rao A. V., Superhydrophobic silica films by sol-gel co-precursor method. [J]. Appl. Surf. Sci.,2009,256:217-222.
    [79]Zhu J., Xie J., Lu X. M., Jiang D. L., Synthesis and characterization of superhydrophobic silica and silica/titania aerogels by sol-gel method at ambient pressure. [J]. Colloid. Surface. A,2009,342:97-101.
    [80]Liu J., Huang W., Xing Y., Li R., Dai J., Preparation of durable superhydrophobic surface by sol-gel method with water glass and citric acid. [J]. J. Sol-Gel Sci. Techn., 2010,1-6.
    [81]Xu L., Zhuang W., Xu B., Cai Z., Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization. [J]. Appl. Surf. Sci.,2011,257:5491-5498.
    [82]Gu C. D., Zhang T. Y., Electrochemical Synthesis of Silver Polyhedrons and Dendritic Films with Superhydrophobic Surfaces. [J]. Langmuir,2008,24: 12010-12016.
    [83]Li M., Zhai J., Liu H., Song Y., Jiang L., Zhu D., Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films. [J]. J. Phys. Chem. B,2003, 107:9954-9957.
    [84]Zhang X., Shi F., Yu X., Liu H., Fu Y., Wang Z., Jiang L., Li X., Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters:Toward Super-Hydrophobic Surface. [J]. J. Am. Chem. Soc.,2004,126:3064-3065.
    [85]Safaee A., Sarkar D. K., Farzaneh M., Superhydrophobic properties of silver-coated films on copper surface by galvanic exchange reaction. [J]. Appl. Surf. Sci.,2008,254:2493-2498.
    [86]Darmanin T., Taffin de Givenchy E., Guittard F., Superhydrophobic Surfaces of Electrodeposited Polypyrroles Bearing Fluorinated Liquid Crystalline Segments. [J]. Macromolecules,2009,43:9365-9370.
    [87]Wang C. H., Song Y. Y., Zhao J. W., Xia X. H., Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction. [J]. Surf. Sci.,2006,600:38-42.
    [88]Hsieh C. T., Yang S. Y., Lin J. Y., Electrochemical deposition and superhydrophobic behavior of ZnO nanorod arrays. [J]. Thin Solid Films,2010,518: 4884-4889.
    [89]Larmour I. A., Steven E. J. Bell, Saunders G. C., Remarkably Simple Fabrication of Superhydrophobic Surfaces Using Electroless Galvanic Deposition. [J]. Angew. Chem.,2007,119:1740-1742.
    [90]Xu X., Zhang Z., Yang J., Fabrication of Biomimetic Superhydrophobic Surface on Engineering Materials by a Simple Electroless Galvanic Deposition Method. [J]. Langmuir,2009,26:3654-3658.
    [91]Lee Y., Ju K. Y., Lee J. K., Stable Biomimetic Superhydrophobic Surfaces Fabricated by Polymer Replication Method from Hierarchically Structured Surfaces of Al Templates. [J]. Langmuir,2010,26:14103-14110.
    [92]Feng J., Lin F., Zhong M., Stretching-Controlled Micromolding Process with Etched Metal Surfaces as Templates Towards Mass-Producing Superhydrophobic Polymer Films. [J]. Macromol. Mater. Eng.,2010,295:859-864.
    [93]Yuan Z., Xiao J., Zeng J., Wang C., Liu J., Xing S., Jiang D., Du G., Yang F., Peng C., Chen H., Ye Q., Tang J., Facile method to prepare a novel honeycomb-like superhydrophobic Polydimethylsiloxan surface. [J]. Surf. Coat. Technol.,2010,205: 1947-1952.
    [94]Li Y, Li C., Cho S. O., Duan G., Cai W., Silver Hierarchical Bowl-Like Array: Synthesis, Superhydrophobicity, and Optical Properties. [J]. Langmuir,2007,23: 9802-9807.
    [95]Zhao N., Xie Q., Weng L., Wang S., Zhang X., Xu J., Superhydrophobic Surface from Vapor-Induced Phase Separation of Copolymer Micellar Solution. [J]. Macromolecules,2005,38:8996-8999.
    [96]Tung P. H., Kuo S. W., Jeong K. U., Cheng S. Z. D., Huang C. F., Chang F. C., Formation of Honeycomb Structures and Superhydrophobic Surfaces by Casting a Block Copolymer from Selective Solvent Mixtures. [J]. Macromol. Rapid Comm., 2007,28:271-275.
    [97]Yuan Z., Chen H., Tang J., Chen X., Zhao D., Wang Z., Facile method to fabricate stable superhydrophobic polystyrene surface by adding ethanol. [J]. Surf. Coat. Technol.,2007,201:7138-7142.
    [98]Vogelaar L., Lammertink R. G. H., Wessling M., Superhydrophobic Surfaces Having Two-Fold Adjustable Roughness Prepared in a Single Step. [J]. Langmuir, 2006,22:3125-3130.
    [99]Cui Z., Ding J., Scoles L., Wang Q., Chen Q., Spherical Comb Copolymer Micelles and their Application in the Construction of Superhydrophobic Surfaces. [J]. Macromol. Chem. Phys.,2011,211:1757-1764.
    [100]Zhang G., Wang D., Gu Z. Z., Mohwald H., Fabrication of superhydrophobic surfaces from binary colloidal assembly. [J]. Langmuir,2005,21:9143-9148.
    [101]Pacifico J., Endo K., Morgan S., Mulvaney P., Superhydrophobic Effects of Self-Assembled Monolayers on Micropatterned Surfaces:3-D Arrays Mimicking the Lotus Leaf. [J]. Langmuir,2006,22:11072-11076.
    [102]Zhao N., Zhang X. Y., Li Y F., Lu X. Y., Sheng S. L., Zhang X. L., Xu J., Self-organized Polymer Aggregates with a Biomimetic Hierarchical Structure and its Superhydrophobic Effect. [J]. Cell Biochem. Biophys.,2007,49:91-97.
    [103]Yoshida E., Nagakubo A., Superhydrophobic surfaces of microspheres obtained by self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate] in supercritical carbon dioxide. [J]. Colloid Polym. Sci.,2007,285: 1293-1297.
    [104]Song X., Zhai J., Wang Y., Jiang L., Self-assembly of amino-functionalized monolayers on silicon surfaces and preparation of superhydrophobic surfaces based on alkanoic acid dual layers and surface roughening. [J]. J. Colloid Interface Sci., 2006,298:267-273.
    [105]Nakanishi T., Michinobu T., Yoshida K., Shirahata N., Ariga K., Muwald H., Kurth D. G., Nanocarbon Superhydrophobic Surfaces created from Fullerene-Based Hierarchical Supramolecular Assemblies. [J]. Adv. Mater.,2008,20:443-446.
    [106]Song Y., Nair R., Zou M., Wang Y., Superhydrophobic surfaces produced by applying a self-assembled monolayer to silicon micro/nano-textured surfaces. [J]. Nano Res.,2009,2:143-150.
    [107]Luo Z. Z, Zhang Z. Z., Hu L. T., Liu W. M, Guo Z. G., Zhang, H. J., Wang W., Stable Bionic Superhydrophobic Coating Surface Fabricated by a Conventional Curing Process. [J]. Adv. Mater.,2008,20:970-974.
    [108]Song H. J., Zhang Z. Z., Men X. H., Superhydrophobic PEEK/PTFE composite coating. [J]. Appl. Phys. A,2008,91:73-76.
    [109]Luo Z., Zhang Z., Wang W., Liu W., Xue Q., Various curing conditions for controlling PTFE micro/nano-fiber texture of a bionic superhydrophobic coating surface. [J]. Mater. Chem. Phys.,2010,119:40-47.
    [110]Wang S. T., Feng L., Jiang L., One-Step Solution-Immersion Process for the Fabrication of Stable Bionic Superhydrophobic Surfaces. [J]. Adv. Mater.,2006,18: 767-770.
    [111]Li S., Zhang S., Wang X., Fabrication of Superhydrophobic Cellulose-Based Materials through a Solution-Immersion Process. [J]. Langmuir,2008,24:5585-5590.
    [112]Kong L., Chen X., Yang G., Yu L., Zhang P., Preparation and characterization of slice-like Cu2(OH)3NO3 superhydrophobic structure on copper foil. [J]. Appl. Surf. Sci.,2008,254:7255-7258.
    [113]Liu J., Huang X., Li Y., Li Z., Chi Q., Li G., Formation of hierarchical CuO microcabbages as stable bionic superhydrophobic materials via a room-temperature solution-immersion process. [J]. Solid State Sci.,2008,10:1568-1576.
    [114]Liu H., Szunerits S., Pisarek M., Xu W., Boukherroub R., Preparation of Superhydrophobic Coatings on Zinc, Silicon, and Steel by a Solution-Immersion Technique. [J]. Appl. Mater. Interface.,2009,1:2086-2091.
    [115]Ming W., Wu D., Benthem V. R., With G. D., Superhydrophobic Films from Raspberry-like Particles. [J]. Nano Letters,2005,5:2298-2301.
    [116]Bravo J., Zhai L., Wu Z. Z., Cohen R. E., Rubner M. F., Transparent superhydrophobic films based on silica nanoparticles. [J]. Langmuir,2007,23: 7293-7298.
    [117]Su C. H., A simple and cost-effective method for fabricating lotus-effect composite coatings. [J]. J. Coat. Techn. Res.,2009,1-7.
    [118]Xue C. H., Jia S. T., Zhang J., Tian L. Q., Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization. [J]. Thin Solid Films,2009,517:4593-4598.
    [119]Hsiang H. I., Liang M. T., Huang H. C., Yen F. S., Preparation of superhydrophobic boehmite and anatase nanocomposite coating films. [J]. Mater. Res. Bull.,2007,42:420-427.
    [120]Motornov M., Sheparovych R., Lupitskyy R., Mac Williams E., Minko S., Superhydrophobic Surfaces Generated from Water-Borne Dispersions of Hierarchically Assembled Nanoparticles Coated with a Reversibly Switchable Shell. [J]. Adv. Mater.,2008,20:200-205.
    [121]Guo Z., Fang J., Wang L., Liu W., Fabrication of superhydrophobic copper by wet chemical reaction. [J]. Thin Solid Films,2007,515:7190-7194.
    [122]Wu X., Zheng L., Wu D., Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route. [J]. Langmuir,2005, 21:2665-2667.
    [123]Gao S., Li Z., Yang S., Jiang K., Li Y., Zeng H., Li L., Wang H., Transferrable Superhydrophobic Surface Constructed by a Hexagonal CuI Powder without Modification by Low-Free-Energy Materials. [J]. Appl. Mater. Interface.,2009,1: 2080-2085.
    [124]Wang C., Piao C., Lucas C., Synthesis and characterization of superhydrophobic wood surfaces. [J]. J. Appl. Polym. Sci.,2011,119:1667-1672.
    [125]Pei M. D., Wang B., Li E., Zhang X. H., Song X. M., Yan H., The fabrication of superhydrophobic copper films by a low-pressure-oxidation method. [J]. Appl. Surf. Sci.,2010,256:5824-5827.
    [126]Han W., Wu D., Ming W. H., Niemantsverdriet J. W., Thune P. C., Direct Catalytic Route to Superhydrophobic Polyethylene Films. [J]. Langmuir,2006,22: 7956-7959.
    [127]Qian T., Li Y., Wu Y., Zheng B., Ma H., Superhydrophobic Poly(dimethylsiloxane) via Surface-Initiated Polymerization with Ultralow Initiator Density. [J]. Macromolecules,2008,41:6641-6645.
    [128]Tarwal N. L., Patil P. S., Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique. [J]. Appl. Surf. Sci.,2010,256:7451-7456.
    [129]Zhang J. L., Li J., Han Y., Superhydrophobic PTFE Surfaces by Extension. [J]. Macromol. Rapid Comm.,2004,25:1105-1108.
    [130]Mills A., Crow M., In Situ, Continuous Monitoring of the Photoinduced Superhydrophilic Effect:Influence of UV-Type and Ambient Atmospheric and Droplet Composition. [J]. J.Phys. Chem. C,2007,111:6009-6016.
    [131]Nishimoto S., Kubo A., Zhang X., Liu Z., Taneichi N., Okui T., Murakami T., Komine T., Fujishima A., Novel hydrophobic/hydrophilic patterning process by photocatalytic Ag nucleation on TiO2 thin film and electroless Cu deposition. [J]. Appl. Surf. Sci.,2008,254:5891-5894.
    [132]Wang J., Kramer E. J., Ober C. K., Ellis K., Synthesis and Surface Energy Measurement of Semi-Fluorinated, Low-Energy Surfaces. [J]. Macromolecules,1998, 31:4272-4276.
    [133]Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., Watanabe T., Light-induced amphiphilic surfaces. [J]. Nature,1997, 388:431-432.
    [134]Damodar R. A., You S. J., Chou H. H., Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. [J]. J. Hazard. Mater., 2009,172:1321-1328.
    [135]Yaghoubi H., Taghavinia N., Alamdari E. K., Self cleaning TiO2 coating on polycarbonate:Surface treatment, photocatalytic and nanomechanical properties. [J]. Surf. Coat. Technol.,2010,204:1562-1568.
    [136]牛忠伟,李丹,马劲,杨正龙,杨振忠,多孔二氧化钛薄膜涂层的制备和双亲性质研究.[J].高等学校化学学报,2004,25:2390-2392.
    [137]Song X., Gao L., Fabrication of Hollow Hybrid Microspheres Coated with Silica/Titania via Sol-gel Process and Enhanced Photocatalytic Activities. [J]. J.Phys. Chem. C,2007,111:8180-8187.
    [138]Li D., Huang H., Chen X., Chen Z., Li W., Ye D., Fu X., New synthesis of excellent visible-light TiO2-xNx photocatalyst using a very simple method. [J]. J. Solid State Chem.,2007,180:2630-2634.
    [139]Yin M. Z., Cheng Y. J., Liu M. Y., Gutmann J. S., Mullen K., Nanostructured TiO2 Films Templated by Amphiphilic Dendritic Core-Double-Shell Macromolecules: From Isolated Nanorings to Continuous 2D Mesoporous Networks. [J]. Angew. Chem. Int. Ed.,2008,47:8400-8403.
    [140]Novotn P., Zita J., Kra J., Kalousek V., Rathousk J., Two-component transparent TiO2/SiO2 and TiO2/PDMS films as efficient photocatalysts for environmental cleaning. [J]. Applied Catalysis B:Environmental,2008,79:179-185.
    [141]Guan K. s., Yin Y. s., Effect of rare earth addition on super-hydrophilic property of TiO2/SiO2 composite film. [J]. Mater. Chem. Phys.,2005,92:10-15.
    [142]Euvananont C., Junin C., Inpor K., Limthongkul P., Thanachayanont C., TiO2 optical coating layers for self-cleaning applications. [J]. Ceram. Int.,2008,34: 1067-1071.
    [143]Sun M., Luo C., Xu L., Ji H., Ouyang Q., Yu D., Chen Y., Artificial Lotus Leaf by Nanocasting. [J]. Langmuir,2005,21:8978-8981.
    [144]Chen X. D., Wang Z., Liao Z. F., Mai Y. L., Zhang M. Q., Roles of anatase and rutile TiO2 nanoparticles in photooxidation of polyurethane. [J]. Polym. Test.,2007, 26:202-208.
    [145]Allen N. S., Edge M., Sandoval G., Verran J., Stratton J., Maltby J., Photocatalytic Coatings for Environmental Applications. [J]. Photochem. Photobiol., 2005,81:279-290.
    [146]Jussi K., Mika S., Tuula T. P., Self-cleaning, titanium dioxide based, multilayer coating fabricated on polymer and glass surfaces. [J]. J. Appl. Polym. Sci.,2009,111: 2597-2606.
    [147]Song X. M., Wu J. M., Yan M., Photocatalytic degradation of selected dyes by titania thin films with various nanostructures. [J]. Thin Solid Films,2009,517: 4341-4347.
    [148]Zhang, J. L., Lu, X. Y., Huang W. H., Han Y., Reversible Superhydrophobicity to Superhydrophilicity Transition by Extending and Unloading an Elastic Polyamide Film. [J]. Macromol. Rapid Comm.,2005,26:477-480.
    [149]Joni I. M., Purwanto A., Iskandar F., Okuyama K., Dispersion stability enhancement of titania nanoparticles in organic solvent using a bead mill process. [J]. Ind. Eng. Chem. Res.,2009,48:6916-6922.
    [150]Chen Y., Dionysiou D. D., A comparative study on physicochemical properties and photocatalytic behavior of macroporous TiO2-P25 composite films and macroporous TiO2 films coated on stainless steel substrate. [J]. Appl. Catal. A,2007, 317:129-137.
    [151]Chen Y., Dionysiou D. D., Bimodal mesoporous TiO2-P25 composite thick films with high photocatalytic activity and improved structural integrity. [J]. Appl. Catal.B,2008,80:147-155.
    [152]Li X. M., Reinhoudt D., Calama C. M., What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. [J]. Chem. Soc. Rev.,2007,36:1350-1368.
    [153]Feng X. J, Jiang L., Design and Creation of Superwetting/Antiwetting Surfaces. [J]. Adv. Mater.,2006,18:3063-3078.
    [154]Zhang X., Zhao N., Liang S., Lu X., Li X., Xie Q., Zhang X., Xu J., Facile Creation of Biomimetic Systems at the Interface and in Bulk. [J]. Adv. Mater.,2008, 20:2938-2946.
    [155]Roach P., Shirtcliffe N. J., Newton M. I., Progess in superhydrophobic surface development. [J]. Soft Matter,2008,4:224-240.
    [156]Boinovich L., Emelyanenko A., Principles of Design of Superhydrophobic Coatings by Deposition from Dispersions. [J]. Langmuir,2009,25:2907-2912.
    [157]Wang S., Jiang L., Definition of Superhydrophobic States. [J]. Adv. Mater., 2007,19:3423-3424.
    [158]Genzer J., Efimenko K., Recent developments in superhydrophobic surfaces and their relevance to marine fouling:a review. [J]. Biofouling,2006,22:339-360.
    [159]Min, W. L., Jiang B., Jiang P., Bioinspired Self-Cleaning Antireflection Coatings. [J]. Adv. Mater.,2008,20:3914-3918.
    [160]Mumm F., Van Helvoort A. T. J., Sikorski P., Easy Route to Superhydrophobic Copper-Based Wire-Guided Droplet Microfluidic Systems. [J]. ACS Nano,2009,3: 2647-2652.
    [161]Chen Z. J., Guo Y. B., Fang S. M., A facial approach to fabricate superhydrophobic aluminum surface. [J]. Surf. Interface Anal.,2010,42:1-6.
    [162]Guo Z. Y., Liang J., Fang J., Guo B. G., Liu W. M., A Novel Approach to Stable Superhydrophobic Surfaces. [J]. ChemPhysChem,2006,7:1674-1677.
    [163]Zhao, N., Weng L., Zhang X., Xie Q., Zhang X., Xu J., A Lotus-Leaf-Like Superhydrophobic Surface Prepared by Solvent-Induced Crystallization. [J]. ChemPhysChem,2006,7:824-827.
    [164]Lee W., Jin M., Yoo W., Lee J., Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability. [J]. Langmuir,2004,20:7665-7669.
    [165]Huang X. J., Lee J. H., Lee J. W., Yoon J. B., Choi Y. K., A One-Step Route to a Perfectly Ordered Wafer-Scale Microbowl Array for Size-Dependent Superhydrophobicity. [J]. Small,2008,4:211-216.
    [166]Guo Z. Y., Liang J., Fang J., Guo B. G., Liu W. M., A Novel Approach to the Robust Ti6Al4V-Based Superhydrophobic Surface with Crater-like Structure. [J]. Adv. Eng. Mater,2007,9:316-321.
    [167]Hsieh C. T., Lai M. H., Cheng Y. S., Fabrication and superhydrophobicity of fluorinated titanium dioxide nanocoatings. [J]. J. Colloid Interface Sci.,2009,340: 237-242.
    [168]Xu, Q. F., Wang, J. N., Sanderson K. D., A general approach for superhydrophobic coating with strong adhesion strength. [J]. J. Mater. Chem.,2010, 20:5961-5966.
    [169]Lee E. J., Lee H. M., Li Y., Lan H. Y., Kim D. P., Cho S. O., Hierarchical Pore Structures Fabricated by Electron Irradiation of Silicone Grease and their Applications to Superhydrophobic and Superhydrophilic Films. [J]. Macromol. Rapid Comm., 2007,28:246-251.
    [170]Lee E. J., Kim J. J., Cho S. O., Fabrication of Porous Hierarchical Polymer/Ceramic Composites by Electron Irradiation of Organic/Inorganic Polymers: Route to a Highly Durable, Large-Area Superhydrophobic Coating. [J]. Langmuir, 2010,26:3024-3030.
    [171]Manca M., Cortese B., Viola I., Arico A. S., Cingolani R., Gigli G., Influence of Chemistry and Topology Effects on Superhydrophobic CF4-Plasma-Treated Poly(dimethylsiloxane) (PDMS). [J]. Langmuir,2008,24:1833-1843.
    [172]Xie Q. D., Xu J., Feng L., Jiang L., Tang W. H., Luo X. D., Han C. C., Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure. [J]. Adv. Mater.,2004,16:302-305.
    [173]Wei Z. J., Liu W. L., Tian D., Xiao C. L., Wang X. Q., Preparation of lotus-like superhydrophobic fluoropolymer films. [J]. Appl. Surf. Sci.,2010,256:3972-3976.
    [174]Yang J., Pi P., Wen X., Zheng D., Xu M., Cheng J., Yang Z., A novel method to fabricate superhydrophobic surfaces based on well-defined mulberry-like particles and self-assembly of polydimethylsiloxane. [J]. Appl. Surf. Sci.,2009,255: 3507-3512.
    [175]Cao L., Jones A. K., Sikka V. K., Wu J., Gao D., Anti-Icing Superhydrophobic Coatings. [J]. Langmuir,2009,25:12444-12448.
    [176]Xu X., Zhang Z., Liu W., Fabrication of superhydrophobic surfaces with perfluorooctanoic acid modified TiO2/polystyrene nanocomposites coating. [J]. Colloid. Surface. A,2009,341:21-26.
    [177]Harton S. E., Templeman C. G., Vyletel B., Percolation-Driven Multiscale Roughening for Superhydrophobic Polymer Nanocomposite Coatings. [J]. Macromolecules,2010,43:3173-3176.
    [178]Sasaki M., Kieda N., Katayama K., Takeda K., Nakajima A., Processing and properties of transparent super-hydrophobic polymer film with low surface electric resistance. [J]. J. Mater. Sci.,2004,39:3717-3722.
    [179]Artus G. R. J., Jung S., Zimmermann J., Gautschi H. P., Marquardt K., Seeger S., Silicone Nanofilaments and Their Application as Superhydrophobic Coatings. [J]. Adv. Mater.,2006,18:2758-2762.
    [180]Zimmermann J., Reifler F. A., Schrade U., Artus G. R. J., Seeger S., Long term environmental durability of a superhydrophobic silicone nanofilament coating. [J]. Colloid. Surface. A,2007,302:234-240.
    [181]Zimmermann J., Artus G. R. J., Seeger S., Long term studies on the chemical stability of a superhydrophobic silicone nanofilament coating. [J]. Appl. Surf. Sci., 2007,253:5972-5979.
    [182]Minko S., Muller M., Motornov M., Nitschke M., Grundke K., Stamm M., Two-Level Structured Self-Adaptive Surfaces with Reversibly Tunable Properties. [J]. J. Am. Chem. Soc.,2003,125:3896-3900.
    [183]Zhang L., Chen H., Sun J., Shen J., Layer-by-Layer Deposition of Poly(diallyldimethylammonium chloride) and Sodium Silicate Multilayers on Silica-Sphere-Coated Substrate-Facile Method to Prepare a Superhydrophobic Surface. [J]. Chem. Mater.,2007,19:948-953.
    [184]Guo L., Yuan W., Li J., Zhang Z., Xie Z., Stable superhydrophobic surfaces over a wide pH range. [J]. Appl. Surf. Sci.,2008,254:2158-2161.
    [185]Sopyan I., Watanabe M., Murasawa S., Hashimoto K., Fujishima A., A film-type photocatalyst incorporating highly active TiO2 powder and fluororesin binder:Photocatalytic activity and long-term stability. [J]. J. Electroanal. Chem.,1996, 415:183-186.
    [186]Allen N. S., Edge M., Sandoval G., Verran J., Stratton J., Maltby, J., Photocatalytic Coatings for Environmental Applications. [J]. Photochem. Photobiol., 2005,81:279-290.
    [187]Antonini C., Innocenti M., Horn T., Marengo M., Amirfazli A., Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. [J]. Cold Regions Science and Technology,2011, In Press, Accepted Manuscript:
    [188]Farhadi S., Farzaneh M., Kulinich S. A., Anti-icing performance of superhydrophobic surfaces. [J]. Appl. Surf. Sci.,2011, In Press, Accepted Manuscript, DOI:10.1016/j.apsusc.2011.02.057
    [189]Oliver W. C., Pharr G M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. [J]. J. Mater. Res.,1992,12:1564-1583.
    [190]Shi F., Niu J., Liu J. L., Liu F., Wang Z. Q., Feng X. Q., Zhang X., Towards Understanding Why a Superhydrophobic Coating Is Needed by Water Striders. [J]. Adv. Mater.,2007,19:2257-2261.
    [191]Lafuma A., Quere D., Superhydrophobic states. [J]. Nat. Mater.,2003,2: 457-460.
    [192]Li X. Y., Du X., He J. H., Self-Cleaning Antireflective Coatings Assembled from Peculiar Mesoporous Silica Nanoparticles. [J]. Langmuir,2010,26: 13528-13534.
    [193]Jin M., Feng X., Feng L., Sun T., Zhai J., Li T., Jiang L., Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force. [J]. Adv. Mater., 2005,17:1977-1981.
    [194]Wang G. J., Yang J. Y., Shi Q., Preparation of transparent ultrahydrophobic silica film by sol-gel process. [J]. J. Coat. Techn. Res.,2011,8:53-60.
    [195]Sun C., Gu Z. Z., Xu H., Packing the Silica Colloidal Crystal Beads:A Facile Route to Superhydrophobic Surfaces. [J]. Langmuir,2009,25:12439-12443.
    [196]Ling X. Y., Phang I. Y., Vancso G J., Huskens J., Reinhoudt D. N., Stable and Transparent Superhydrophobic Nanoparticle Films. [J]. Langmuir,2009,25: 3260-3263.
    [197]Hipp B., Kunert I., Durr M., Systematic Control of Hydrophobic and Superhydrophobic Properties Using Double-Rough Structures Based on Mixtures of Metal Oxide Nanoparticles. [J]. Langmuir,2010,26:6557-6560.
    [198]Hikita M., Tanaka K., Nakamura T., Kajiyama T., Takahara A., Super-Liquid-Repellent Surfaces Prepared by Colloidal Silica Nanoparticles Covered with Fluoroalkyl Groups. [J]. Langmuir,2005,21:7299-7302.
    [199]Gass J., Poddar P., Almand J., Srinath S., Srikanth H., Superparamagnetic Polymer Nanocomposites with Uniform Fe3O4 Nanoparticle Dispersions. [J]. Adv. Funct. Mater.,2006,16:71-75.
    [200]Hojati T. P., Azadmanjiri J., Simon G P., A simple microwave-based method for preparation of Fe3O4/carbon composite nanoparticles. [J]. Mater. Letter.,2010,64: 1684-1687.
    [201]Small A. C., Johnston J. H., Novel hybrid materials of magnetic nanoparticles and cellulose fibers. [J]. J. Colloid Interf. Sci.,2009,331:122-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700