低渗透微裂缝储层地质特征及改造技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低渗透油气藏广泛分布于全国各大油气田或主要盆地的低渗透储层。由于岩石的基质渗透率极差,裂缝对岩石物性的改善效果较为明显。但因裂缝形成和分布的复杂性,同时也给低渗透油田的开发造成较大困难。目前这类油田储量动用程度低,开发效果不理想,经济效益差。因此,研究低渗透微裂缝储层的地质特征及其改造技术,提高此类油田的开发效果,对我国石油工业持续稳定发展具有重要意义。
     腰英台油田位于松辽盆地长岭凹陷南部。作为松辽盆地南部的主要生烃凹陷,长岭凹陷呈南北走向,北深南浅。油层主要分布于青山口组,属构造-岩性油气藏。油水分布较为复杂,全区没有统一的油水界面。
     储层研究结果表明,该油田的储层岩性以细-粉砂岩为主,砂体较薄,横向连通性较好,属中低孔(12%-15%)、特低渗(1×10-3gm2-10×10-3μm2)储层,裂缝较为发育,人工压裂裂缝与天然裂缝大体一致,基本呈东西向;油藏油水分异差,部分层位原始含油饱和度低,开发初期就油水同出;天然能量不足,大部分油层不具自然产能,压裂是本区主要的完井手段;岩石的应力敏感性较严重。
     通过构造应力场研究和储层天然裂缝描述,分析了低渗透裂缝性储层的地质特征和裂缝发育状况。青一段天然微裂缝发育,多为成组的剪裂缝。天然裂缝方向介于NE85.9°-NE153.6°之间,基本呈东西向。人工压裂裂缝与天然裂缝方向一致,也基本呈东西向。天然裂缝在地层原始状态下多数是闭合的,即为隐性裂缝,但在钻井或试油过程中易形成诱导缝,通过人工压裂,可以沟通孤立溶孔和微孔,改善低渗透储层的渗流状况。
     通过室内实验和矿场试验研究,优化压裂工艺技术设计,研究出适用于高滤失裂缝性储层的斜线式/多段塞组合加砂压裂工艺,采用分级加砂工艺,结合新型支撑剂(覆膜砂),取得了明显的增产效果,平均单井日产油由2005年的3.2t,提高至2006年的4.8t和2007年的4.9t,提高了50%以上;含水率由2005年的84%降至2006年的77%和2007年的74%。
     同时形成了针对低渗透微裂缝储层的配套压裂工艺技术,如天然裂缝滤失诊断技术、压裂净压力拟合技术、砂岩双重介质降滤技术、裂缝参数优化、压裂液和压裂支撑剂的优选、控制缝高技术、压后排液技术在内的压裂工艺技术。
Low permeability reservoirs are widely distributed in large oil and gas fields or main basins in China. Due to the extremely poor permeability of the rock matrix, the fracture is important for the obvious improvement of the rock physical property. However because of complexity of fracture development and distribution, it is difficult to develop low permeability oilfields. At present, as to the kind of oilfield, the producing degree of reserves is low, the development effect is unsatisfied, and the economic results are poor. Therefore, it is of great practical significance to research how to develop this kind of oilfield economically and effectively for stable and sustained development of Chinese petroleum industry.
     Changling is a north-south strike sag, which generates hydrocarbon in the south of Songliao Basin. The northern part of the sag is deeper than the south. Yaoyingtai Oilfield is located in the south of the sag, its oil layers are mainly distributed in Qingshankou Formation, and it is a structural-lithologic hydrocarbon reservoir. Its oil-water distribution is complicated; there is no unified oil-water contact in the whole region.
     It is revealed that the lithology character of the oilfield reservoir is mainly fine sandstone-siltstone, with thin sand body and good horizontal communication. It belongs to low-to-moderate porosity (12%-15%) and extremely low permeability (1×10-3μm2-10×10-3μm2), with developed fracture, artificial hydraulic fracture generally according with natural fracture, mainly going from east to west. The reservoir is of poor oil and water differentiation; in the partial horizons, the initial oil saturation is low, and oil and water are yielded at the same time in the initial period of development. Its natural recovery phase is not enough and the oil layers submitting most reserves at present have no natural productivity, so hydraulic fracturing is main completion method in the region. Except that, the stress sensitivity of the rock is severely.
     Geologic characteristics and fracture development of low permeability fracture reservoir have been recognized, by the way of studying on tectonic stress field and description of natural fracture in reservoir. Natural micro-fractures in Qingl segment are developed, most of which are shear fractures in groups. The direction of natural fractures is NE85.9°-NE153.6°, basically going from east to west. The direction of artificial fractures is in concord with that of natural fractures, which also goes from east to west basically. Under original formation conditions, most of the natural fractures are closed, that is to say, there are potential fractures existing, but the induced fractures are easy to be formed during drilling or oil testing. Through artificial fracturing, isolated dissolved pores and micro-pores can be communicated, so as to improve seepage flow of the low permeability reservoirs.
     By means of laboratory and field experiment investigation and optimization of fracturing technical design, the combined slanted line/multi-slug sand fracturing technique has been researched for fractured reservoir with high filtration, adopting multistage sand filling technique and combining with new type of proppant (precoated sand), and the obvious stimulation effect has been obtained. The average oil produced per day of the single well has been improved from 3.2t in 2005 to 3.2t in 2006 and 4.9t in 2007, which increases more than 50%. The water content has been reduced from 84% in 2005 to 77% in 2006 and 74% in 2007.
     The matched fracturing techniques have been put forward, such as the diagnostic technology for filtration of natural fractures, the net pressure fitting technology for fracturing, the fluid loss control technology by using of sands in dual media, the optimization of fracture parameters, the optimization of fracturing fluid and proppant concentration, the fracture height control technology and the post-fracture fluid discharging technology.
引文
1.丁雁生,陈力,谢变,等.低渗透油气田“层内爆炸”增产技术研究[J].石油勘探与开发,2001,28(4)
    2.冯金德,程林松,李春兰,等.裂缝性低渗透油藏整体压裂开发电模拟研究[J].钻采工艺,2006,29(2):42-45
    3.付静,周晓君,孙宝江,等.低渗裂缝性油藏渗透率的影响因素研究[J].石油钻采工艺,2008,02期:69-71
    4.郝明强,胡永乐,刘先贵.裂缝性低渗透油藏微观结构与渗流理论研究进展[J].新疆石油天然气,2007,3(1):8-13
    5.郝明强,侯建锋,胡永乐,等.裂缝性低渗透油藏各向异性的尺度效应[J].石油勘探与开发,2007,34(6):724-728
    6.胡忠贵,朱忠德,李相明,等.沉积微相对储层物性控制作用的定量评价——以英台地区青山口组、泉头组四段Ⅰ砂组为例[J].油气地质与采收率,2004,11(4):4-6
    7.李道品,张连春.我国低渗透油田开发当前之新进展[J].低渗透油气田,2004,9(1):1-9
    8.李道品.低渗透油田高效开发决策论[M].北京:石油工业出版社,2003:3-200
    9.李松泉,程松林,李秀生,等.特低渗透油藏非线性渗流模型[J].石油勘探与开发,2008,35(5):606-612
    10.李玉喜,肖淑梅.储层天然裂缝与压裂裂缝关系分析[J].特种油气藏,2000,7(3)
    11.刘长宇,丛立春,龙增伟,等.低渗裂缝性薄层储层改造技术研究[J].钻采工艺,2008,31(5):73-75
    12.刘金林,张在田,邹皓.坪北特低渗透油田压裂工艺技术的研究与应用[J].钻采工艺,2003,26(3):42-45
    13.刘圣战,李晓明,陈浩,等.腰英台油田微裂缝发育储层压裂技术研究与工艺评价[J].钻采工艺,2007,30(6):73-75
    14.秦积舜.变围压条件下低渗砂岩储层渗透率变化规律研究[J].西安石油学院学报:自然科学版,2002,17(4):28-31
    15.沈安江,康伟力,王艳清,等.松辽盆地南部白垩纪层序地层与岩性地层油气藏勘探[M].北京:石油工业出版社,2006:51-157
    16.王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6):40-44
    17.王兴文,郭建春,赵金洲,等.裂缝性油藏加砂压裂压力递减分析研究及应用[J].钻采工艺,2005,28(6):49-51
    18.王秀娟,赵永胜,文武,等.低渗透储层应力敏感性与产能物性下限[J].石油与天然气 地质,2003,24(2):162-166
    19.王永春.松辽盆地南部岩性油藏的形成和分布[M].北京:石油工业出版社,2001:1-19
    20.王震亮,刘林玉,于轶星,周荔青,吴聿元,朱桂生.松辽盆地南部腰英台地区青山口组油气运移、成藏机理.地质学报,2007,81(3):419-427
    21.魏英杰.微裂缝发育储层压裂技术研究与应用[J].石油钻采工艺,2009,03期:94-97
    22.魏兆胜,宋新民,唐振兴,等.大情字井地区上白垩统青山口组沉积相与岩性油藏[J].石油勘探与开发,2007,34(1):28-33
    23.吴英,程林松,张斌,等.低渗透气藏提高采收率方法研究现状及发展趋势[J].油气地质与采收率,2005,12(6):46-48
    24.肖曾利,蒲春生,秦文龙.低渗砂岩油藏压力敏感性实验研究[J].钻采工艺,2008,31(3):97-98
    25.胥元刚,张琪.变裂缝导流能力下水力压裂整体优化设计方法[J].大庆石油地质与开发,2000,19(2):40-42
    26.延吉生,孟英峰.我国低渗透油气资源开发中的问题和技术需求[J].西南石油学院学报,2004,26(5):46-50
    27.杨正明,张英芝,郝明强,等.低渗透油田储层综合评价方法[J].石油学报,2006,26(2):64-67
    28.曾联波,刘洪涛,房宝才,等.大庆油田台肇地区低渗透储层裂缝及其开发对策研究[J].中国工程科学,2004,6(11):73-79
    29.张丁涌,赵金洲,赵磊,等.重复压裂造缝的应力场分析[J].油气地质与采收率,2004,11(4):58-59
    30.张流,周永胜.储层裂缝发育程度的判别准则[J].石油学报,2004,25(4):33-37
    31.张新红,秦积舜.低渗岩心物性参数与应力关系的试验研究[J].石油大学学报:自然科学版,2001,25(4):56-57,60.
    32.张琰,崔迎春.低渗气藏应力敏感性及评价方法的研究[J].现代地质,2001,15(4):453-457
    33.周德华,焦方正,葛家理.裂缝渗流研究最新进展[J].海洋石油,2004,24(2): 34-38
    34.周健,陈勉,金衍等.多裂缝储层水离裂缝扩展机理试验[J].中国石油大学学报(自然科学版),2008,32(4):51-54
    35.周新桂,张林炎,范昆.油气盆地低渗透储层裂缝预测研究现状及进展[J].地质评论,2006,52(6):777-782
    36.周永胜,张流.裂缝性储集层岩心裂缝统计分析[J].世界地质,2000,3(2):117-124
    37.周涌沂,李阳,孙焕泉,等.低渗透复杂介质中的渗流描述方法研究[J].油气地质与采收率,2002,9(2):14-16
    38. Brita R. Graham Wall, Radu Girbacea, Agim Mesonjesi, et al. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt[J]. AAPG Bulletin,2006,90(8),1227-1249
    39. Chen S,Hursan G,Beard D,et al. Correction for processing multigradient,multiple-NMR logdata[RJ. SPE 84481,2003
    40. Christian P. Veillette and Jerome J. Cuzella,Increasing Reservoir Contact by Combining Mechanical Diversion and Unique Stimulation Chemistry,SPE Hydraulic Fracturing Technology Conference,2009.1
    41. Cipolla C L, N.R. Warpinski, and M.J. Mayerhofer. Hydraulic Fracture Complexity: Diagnosis, Remediation, and Exploitation,SPE Asia Pacific Oil and Gas Conference and Exhibition,2008.10
    42. Cipolla C L, N.R. Warpinski, M.J. Mayerhofer, et al. The Relationship Between Fracture Complexity, Reservoir Properties, and Fracture Treatment Design, Carbo Ceramics,2008.9
    43. Dmitry 1. Garagash. Propagation of a plane-strain hydraulic fracture with a fluid lag: Early-time solution, Internatrional Journal of Solids and Strictures,2006(18-19)
    44. Graham C. Bradner, Lawrence C. Murdoch. Effects of skin and hydraulic fractures on SVE wells, Journal of Contaminant Hydrology,2005(4)
    45. Guerra R and V. Maritchev, M. Gaponov, et al. Optimized Fracture Designs With RPM to Control Water Cut in Ust Vakh Field in Western Siberia,2007
    46. Hukumarappan Ramurthy, Halliburton and Bill Lyons. Lessons Learned From Modeling Hydraulic Fracture Treatments in Coals Using a Fully Functional Three Dimensional Fracture Model in a San Juan Basin Project,Rocky Mountain Oil & Gas Technology Symposium,2007.4
    47. Irene L. Meglis, T. Engelder, E. K. Graham. The effect of stress-relief on ambient microcrack porosity in core samples from the Kent Cliffs (New York) and Moodus (Connecticut) scientific research boreholes[J]. Tectonophysics,1991,186(1-2):163-173
    48. John C. Lorenz, Scott P. Cooper, and William A. Olsson. Natural fracture distributions in sinuous, channel-fill sandstones of the Cedar Mountain Formation, Utah[J]. AAPG Bulletin, 2006,90 (9):1293-1308
    49. John W. Cosgrove. Hydraulic Fracturing During the Formation and Deformation of a Basin: A Factor in the Dewatering of Low-Permeability Sediments[J]. AAPG Bulletin,2001,85: 737-748
    50. Jose I. Adachi, Emmanuel Detournay. Plane strain propagation of a hydraulic fracture in a permeable rock, Engineering Fracture Mechanics,2008 (16)
    51. L.P. Moore, SPE, and H. Ramakrishnan,Restimulation:Candidate Selection Methodologies and Treatment Optimization,SPE Annual Technical Conference and Exhibition,2006.9
    52. Legarth B, E. Huenges, G. Zimmermann. Hydraulic fracturing in a sedimentary geothermal reservoir; results and implications[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(7-8):1028-1041
    53. Lourdes B. Colmenares, Mark D. Zoback. Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming:Implications for water and gas production[J]. AAPG Bulletin,2007,91:51-67
    54. Narr, W., D. W. Schechter, L. B. Thompson. Naturally fractured reservoir characterization[J] Society of Petroleum Engineers,2006,115
    55. Orlando J. Ortega, Randall A. Marrett, and Stephen E. Laubach. A scale-independent approach to fracture intensity and average spacing measurement[J]. AAPG Bulletin,2006, 90(2):193-208
    56. Phillips Z D, R.J. Halverson, J.M. Layman II, et al. A Case Study in the Bakken Formation: Changes to Hydraulic Fracture Stimulation Treatments Result in Improved Oil Production and Reduced Treatment Costs,Rocky Mountain Oil & Gas Technology Symposium,2007.4
    57. Rahman M M. Constrained Hydraulic Fracture Optimization Improves Recovery from Low Permeable Oil Reservoirs [J].Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2008,30 (6)
    58. Spivey, J P. Estimating Layer Properties for Wells in Multilayer Low-Permeability Gas Reservoirs by Automatic History-Matching Production and Production Log Data. SPE Gas Technology Symposium,2006.5
    59. Thiruvenkatachari R, S. Viqneswaran, R. Naidu. Permeable reactive barrier for groundwater remediation, Journal of industrial and Engineering Chemistry,2008(2)
    60. Vincent M.C. Examining Our Assumptions—Have Oversimplifications Jeopardized Our Ability To Design Optimal Fracture Treatments? SPE Hydraulic Fracturing Technology Conference,2009.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700