珠江口盆地惠州凹陷及东沙隆起结构构造特征、演化及其与油气成藏关系讨论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惠州凹陷作为珠江口盆地的油气主产区,是已证实的富烃洼陷。东沙隆起是临近惠州凹陷重要的油气聚集区,在东沙隆起上及隆凹过渡边缘勘探也发现了很多油气藏和含油构造,且证实了惠州凹陷的优势烃源供应,因此东沙隆起是在惠州凹陷成油体系范围内的,并具有很好的油气远景的有利区带。受勘探历史和研究程度的限制,东沙隆起结构、构造及演化等方面研究比较薄弱,且缺乏统一的隆凹联合研究思路。本文在现代石油地质理论及盆山耦合理论研究指导下,以隆凹一体化为切入点,以凹陷研究带动隆起研究为思路,以多种数据、技术、模拟等综合分析为手段,从隆凹格局及构造特征、联合演化特征及油气成藏关系等几个方面出发,在一定程度上丰富勘探新领域,完善东沙隆起惠州凹陷及东沙隆起耦合关系。
     1、惠州凹陷及东沙隆起在同一构造应力场作用下耦合存在,在结构、构造上存在一定的响应关系和差异性。惠州凹陷断陷期隆洼结构构造复杂,而东沙隆起此时由于持续隆升未沉积文昌及恩平地层,只是局部发育一些小型恩平期断陷,结构构造相对简单。凹陷内部发育多个洼陷结构,以断隆联控型为结构样式,并发育多级隆起构造。断裂体系也具有不同的级别和控制作用,分别为一级控凹型、二级控洼型和三级调节型。断层走向大致分为NE或NEE向、NW或NWW向和近东西向三类,这与东沙隆起断层走向是一致的,体现了应力场的统一控制作用。惠州凹陷和东沙隆起受先存构造控制明显,东沙隆起上表现为“三阶两脊一过渡”的构造形态和地层逐层超覆结构特征,惠州凹陷则表现为基底潜山控制沉积充填和复合半地堑结构特征。在拉张应力场作用下,惠州凹陷构造样式表现为张性断块为主,伴随扭动因子的存在,其断块类型也存在张扭性断块,因此可以识别出背斜潜山披覆构造、同向掀斜断块、反向掀斜断块、半地垒披覆构造、地垒构造、断层相关褶皱构造、牵引滑动构造等几种典型构造组合特征。
     2、从珠江口盆地所处的大地构造位置来讲,受到来自印度板块、欧亚板块的挤压碰撞,以及太平洋板块的俯冲挤压的影响,控制并决定了其形成条件及复杂的演化进程。在多期复杂的构造应力背景下,隆凹耦合更具有多期性和相互匹配性。惠州凹陷是典型的断陷盆地,具有完整的断陷演化序列,与不同演化阶段的东沙隆起构造特征相匹配,结合构造发育史及古构造演化图,将惠州凹陷及东沙隆起联合演化分为四个时期:①晚白垩世至古新世,强烈断块活动,隆凹格局初步形成;②晚始新世至早渐新世,强烈构造运动,隆起快速剥蚀与凹陷抬升相耦合;③晚渐新世至早中新世,拗陷作用为主,隆起持续沉降与凹陷沉降相匹配;④中中新世至上新世,断块活化作用,隆起先升后降与凹陷先隆后沉相匹配。惠州凹陷在晚始新世至早渐新世构造演化复杂,而东沙隆起表现为快速的隆升。通过剥蚀厚度恢复及盆地原型分析,断陷期惠州凹陷两幕演化具有一定的继承性,但恩平幕断陷作用减弱,洼陷逐渐连通;断陷作用范围扩大,在北部断阶带和南部东沙隆起均分布有恩平期断陷。
     3、讨论构造演化与成藏关系,选取了HZ27-3及LH11-1两个典型的油气藏进行解剖。对Hz27-3含油构造解剖分析,具有烃源充足、断层或地层复杂运移路径、多种圈闭样式叠合及近源成藏的特点,LH11-1油藏的分析,具有大型生物礁滩圈闭,珠海组高孔高渗的砂岩输导体,同时验证了惠州凹陷及东沙隆起沿构造脊长距离油气运移的存在。总结起来构造演化对不同时期储层建造和改造有重要作用,晚渐新世至早中新世是构造脊形成的重要时期,为LH11-1油气成藏做了突出贡献,形成了以“边界断裂—珠海组砂岩输导体—不整合面—构造脊—礁滩油气藏”的优势运移通道。揭示了不同构造演化阶段在东沙隆起上建造不同类型的圈闭,纵向上表现为“基岩潜山—披覆背斜—生物礁滩—地层或岩性”的圈闭配置关系,横向上的地层超覆关系和岩性展布特征,也是控制超覆圈闭、砂岩透镜体和上倾尖灭圈闭的重要因素。
The Huizhou depression is a confirmed depression with rich hydrocarbons, which is a major producing area of the Pearl River mouth basin. The Dongsha Massif is a important hydrocarbon accumulation adjacent with the Huizhou depression. Because mass hydrocarbon reservoirs and pay structures has been found in the Dongsha Massif and the transitionally peripheral uplift and depression area, the prevailing hydrocarbons source has displayed in the Huizhou depression, the Dongsha Massif is profitable hydrocarbon potential ranges in the range of petroleum system, the Huizhou depression. The study on the Dongsha Massif architecture, structure and evolvement is weak dimension, especially the joint study methods of uplift and depression is lack and little. The fundamental purpose is reinforced study on the relation with the Huizhou depression and the Dongsha Massif by analyzing the upwarping-downwarping pattern of the basin, the structural feature, the joint evolution and the hydrocarbon reservoir forming, taking the modern oil geological theory and basin-mountain coupling as a guide, taking integration of uplift and depression as a breakthrough point, taking the comprehensive analysis of the multiple dates, the methods and the modeling as new measures. It's enriching exploration targets.
     (1)Huizhou Depression and Dongsha Massif coupling exists at the same tectonic stress field and they have certain response relationship and differences to each other. Huizhou depression formed the complex structure with the Massif alternating with the low-lying; however, Dongsha Massif losted the Wenchang and Enping strata because of continuing uplift at that time, only some small faults developed partially during the Enping period, and the structure of the Dongsha Massif is relatively simple. Several low-lyings exsist as the structural style of combined controlling by the faults and upthrusts in the internal of the depression as well as multi-level uplift structure. Fault system also has different levels and the role of controls, respectively, concave control, low-lying control and regulation. Faults are divided into three types:the NE or NEE, NW or NWW and near EW directions which are consistent with the Dongsha Massif and this is the just reflection of the controlling of the unified stress field. Huizhou Depression and Dongsha Massif are controlled by the pre-exsisting structure significantly:in the Dongsha Massif it register as structures morpha of "three terrace- two ridges -one transition" and the structure character of ground layer overlap; Huizhou depression is shown as substrate controlling the deposition filling and composite half-graben structure characteristics. In the extensional stress field, the structural styles of Huizhou depression shows as mainly for the tension block, with the presence of the twist factor, shear type of block companied, wherefore Buried Hills anticline, the tilting off block, reverse tilted fault block, half base drape structures, horst structure, fault-related fold, traction slip fault characteristics such as composition of several typical structures can be identified.
     (2)Being established in the tectonic location of the Pearl River Mouth Basin, the study area consequents upon the following factors, the pressing and collision between the India plate and Eurasian plate, the subduction belt of Pacific plate. And those factors control its forming and complex evolution. Coupling upwarding and depression presents multiphase and couple mechanism under the multiphase tectonic setting. Huizhou depression is a classic faulted basin, and with integral evolution of faulted depression. Huizhou depression and the Dongsha massif are coupling on the tectonic feature during the evolution. The paper establishes in the structural history, palaeostructure maps, and classifies the evolution of study area into four phases. The followings:①Late Crataceous-Palaeocene, strong block movement, formed the initial frame of upwarding and depressionging;②late Eocene-early Oligocene, strong tectonic movement, coupling the fast denude on uplifting and the uplift of depression;③late Oligocene-early Miocene, depression in the predominant, the uplift coupling with depression on duration subsidence;④Middle Miocene-Pliocene, block activization, coupling the elevation and subsidence of uplift with the subsidence and elevation of depression. Huizhou depression during late Eocene-early Oligocene has the complex evolution; however, Dongsha massif displays the fast uplifting.
     (3)For discussing the relationship between tectonic evolution and accumulation, this paper selects two typical oil and gas reservoir of HZ27-3 and LH11-1 to autopsy. The anatomical analysis of Hz27-3 oil-bearing structures suggest that Hz27-3 has the features of enough source rocks, complex migration path of faults or stratum, composite multi-trap style and reservoir near the source. The analysis of LH11-1 suggest that LH11-1 characters with a large reef trap, high porosity sandstone transmission conductor of Zhuhai formation, and verify the existence of long-distance oil migration in the Huizhou Depression and east Sharon along the structural ridge. We have the conclusions that tectonic evolution plays an important role in the construction and transformation of reservoir of different periods and late Oligocene to early Miocene is an important period for the formation of structural ridge, making outstanding contributions for the LH11-1 oil and gas accumulation, engendering the dominant migration pathway of "boundary fracture-sandstone transmission conductor of Zhuhai formation-unconformity-structural ridge-reef reservoir ". This paper revealed that the different stages of tectonic evolution in East Sharon built different types of traps, and suggest the character of "rock hill-drape anticline-reef-stratum or rock" traps configuration relations in cross, and the overlap of stratum relations and lithology distribution in horizontal, which control the overlap trap, sand lens and the tilting wipe out an important factor in traps.
引文
[1]陈长民.珠江口盆地东部石油地质及油气藏形成条件初探[J].中国海上油气(地质),2000,14(2):73-83
    [2]陈长民,施和生,许仕策,等.珠江口盆地(东部)第三系油气藏形成条件[M].北京:科学出版社,2003
    [3]傅宁,李友川,汪建蓉.惠州凹陷西区油源研究[J].中国海上油气(地质),2001,15(5):322-328
    [4]郭伯举,谢家声,向凤典.珠江口盆地珠—坳陷含油气系统研究[J].中国海上油气(地质),2000,14(1):1-8
    [5]高慧.惠州凹陷油气成藏条件分析及有利构造带预测[D].中国地质大学(北京),2007
    [6]代一丁,庞雄.珠江口盆地珠二坳陷石油地质特征.中国海上油气(地质),1999,13(3):169-180
    [7]马作春,陈道秀,张景龙.珠江口盆地东部地区油源岩及煤生油探讨[M].见:南海东部石油公司勘探开发研究所编,珠江口盆地(东部)石油地质科研报告集,第三集,1989
    [8]苏乃容,曾麟,李平鲁.珠江口盆地东部中生代凹陷地质特征[J].中国海上油气(地质),1995,9(4):228-236
    [9]龚再升,李思田.南海北部大陆边缘盆地分析与油气聚集[J].北京:科学出版社,1997
    [10]刘军,施和生,杜家元,等.东沙隆起台地生物礁、滩油藏成藏条件及勘探思路探讨[J].热带海洋学报,2007,26(1):22-27
    [11]Taylor B, Hayes D E. The tectonic evolution of the South China Basin.In:Hayes D E ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Part2, Geophysical Monograpy 27, AGU,1983, 23-56.
    [12]Axen, G.J., and Bartley, J.M.. Field test of rolling hinges:Existence, mechanical types, and implications for extensional tectonics:Journal of Geophysical Research,1997, v.102:20,515-20,537
    [13]Watterson J. Fault dimessions, displacement, and growth[J].Pure and Applied Geophysics,1986,124:365-373
    [14]Anderson, E.M. The dynamics of faulting and dyke formation with applicationto Britain:Edinburgh, Oliver and Boyd,1942,191-121
    [15]C.K.Morley, P.Vanhauwaert, M.DE.Batist. Evidence for high-frequency cyclic fault activity from high-resolution seismic reflection survery, Rukwa Rift,Tanzania[J]. Journal of the Geological Society,London,2000,157:983-994
    [16]Kristian E.Meisling, Peter R.Cobbold. Segmentation of an obliquely rifted marging, Campos and Santos basins, southeastern Brazil[J]. AAPG Bulletin,2001,85:1903-1924
    [17]Bruce D.Trudgill.Structrural controls on drainage development in the Canyonlands grabens of southeast Utah[J]. AAPG Bulletin,2002,86:1095-1112
    [18]Jeffrey L.Mauk,R.C.Burruss.Water washing of Proterozoic oil in the Midcontinent rift system[J]. AAPG Bulletin,2002,86:1113-1127
    [19]Dahlstorm D D A. Blanced cross-section[J]. Canada Journal of Earth Science,1969,6 (4):743-757.
    [20]Morley C K, Nelson R A, Patton T L. Transfer zones in the East African Rift system and their relevance to hydrocarbon exploration in rifts [J].AAPG,1990.74:1234-1253.
    [21]Rosendahl B R. Architecture of continental rifts with special reference to East Africa[J].Annual Review of Earth and Plannetary Science Lettors,1987,15:445-504.
    [22]Bruce Trudgill, John R.Underhill. Introduction to the structure and stratigraphy of rift systems[J]. AAPG Bulletin,2002,86:931-933
    [23]Chris K.Morley. Evolution of large normal faults:Evidence from seismic reflection data[J]. AAPG Bulletin, 2002,86:961-978.
    [24]邹光辉,漆家福.黄哗盆地一级构造变换带的特征与成因[J].石油与天然气地质,1999,20(2):125-128
    [25]田在艺,韩屏.中国东北地区中新生代含油气盆地构造分析与形成机制,石油勘探与开发,1993,Vol.20.No.4
    [26]Aileen E.Mcleod, John R, Underhill,Sarah J,Davies, et al. The influence of fault array evolution on synrift sedimentation patterns:Controls on deposition in the Strathspey-Brent-Statfjord half graben,northern North Sea[J]. AAPG Bulletin,2002,86:1061-1093
    [27]K.R.Mcclay, T.Dooley, P.Whitehouse, et al.4-D evolution of rift systems:Insights from scaled physical models[J]. AAPG Bulletin,2002,86:935-959
    [28]Adel R. Moustafa. Controls on the geometry of transfer zones in the Suez rift and northwest Red Sea: Implications for the structural geometry of rift systems[J]. AAPG Bulletin,2002,86:979-1002
    [29]Kiram E.Lezzar, Jean-Jacques Tiercelin, Caroline Le Turdu,, et al.Control of normal fault interaction on the distribution of major Neogene sedimentary depocenters, Lake Tanganyika, East African rift[J]. AAPG Bulletin,2002,86:1027-1059
    [30]王新运,冯建辉.东淮凹陷西斜坡雁列构造特征与油气分布.石油勘探与开发.1991,Vol.18,234-241
    [31]刘光鼎,郝天珧,祝靓谊.环渤海地区油气资源探查的思考[J].地球物理学进展,2002,17(4):559-563
    [32]王英民,金武弟,刘书会,等.断陷湖盆多级坡折带的成因类展布及其勘探意义[J].石油与天然气地质,2003,24(3),200-203
    [33]林畅松,张燕梅.拉伸盆地模拟理论基础与新进展[J].地学前缘,1995,(03):458-492
    [34]焦养泉,李思田,解习农,等.多幕裂陷作用的表现形式—以珠江口盆地西部及其外围地区为例.石油实验地质,1997,19(3):222-227
    [35]王瑜著.中生代以来华北地区造山带与盆地的演化及动力学.北京,地质出版社,1998:1-12
    [36]王清晨,彭海波,孙枢.赣北安源煤系沉积对构造活动的响应.地质科学,1991,25(3):231-238
    [37]张国伟,周鼎武,于在平.大别造山带与周口断坳陷盆地.见:马杏垣,杨森楠,朱志澄主编.中国大陆构造论文集,武汉,中国地质大学出版社,1992:4-23
    [38]陈海泓,孙枢,李继亮等.前陆盆地的构造制约——以湘西中生代沅麻盆地为例.见:李继亮主编,中国东南海陆岩石圈结构与演化研究.北京,中国科学技术出版社,1992:17-31
    [39]马文璞,李学军,刘和甫等.雪峰隆起的构造性质及其对上扬子东南缘古生代盆地的改造.见:张渝昌等编,江南-雪峰地区的层滑作用及多期复合构造.北京:地质出版社,1993:120-147
    [40]刘和甫,梁慧社,王玉新.贺兰山—龙门山叠瓦冲断带与前陆盆地演化.见:中国地质学会编,“七五”地质科技重要成果学术交流会议论文选集.北京:北京科学技术出版社,1990:155-159
    [41]刘和甫,梁慧社,蔡立国等.川西龙门山冲断系构造样式与前陆盆地演化.地质学报,1994,68(2):101-118
    [42]Zoback M. D, Stephenson R.A, Cloetingh S, etal. Stresses in the lithosphere and sedimentary basin formation. Tectonophysics,1993,226:1-13
    [43]Quinlan G, Walsh J, Sassi W, etal. Relationship between deeper lithospheric processes and near-surface tectonics of basins. Tectonophysics,1993,226:217-225.
    [44]Vilotte J.P., Melosh J, Sassi W, etal.Lithosphe rerheology and sedimentary basins. Tectonophysics, 1993,226:89~95
    [45]Savoy L E, Stevenson R K and Mountjoy E W. Provenance of Upper Devonian—Lower Carboniferous miogeosynclinal strata, southeastern Canadian Cordillera:Link between tectonics and sedimentation. Jour Sedimentary Research2000,70(1):181-193.
    [46]Cibin U. Spadafora E. Zuffa GG et al. Continental collision history from arenites of episutural basin in the northern Apennines, Italy. Geol. Soc. Amer. Bull.2001,113(1):4-19.
    [47]Horton B.K. Hampton B.A. and Waanders GL. Paleogene synorogenic sedimentation in the Altiplane plateau and implications for initial mountain building in the central Andes. Geol. Soc. Amer. Bull. 2001,113(11):1387-1400.
    [48]James W.C. Foreland basin sequence in response to collisional tectonism. Geol. Soc. Amer. Bull. 2001,113(7):801-812.
    [49]Niemi N A and Wernicke B P. Distribution and provenance of the middle Miocene Eagle Mountain Formation, and implication for regional kinematic analysis of the Basin and Range province. Geol Soc Amer Bull,2002.113 (4):419-442.
    [50]Arenas C. Millan H. Pardo G Ebro basin continental sedimentation associated with late compressional Pyrenean tectonics:Controls on basin margin fans and fluvial system. Basin Research.2001,13(1):65-89.
    [51]刘和甫,夏义平,殷进垠,等.走滑造山带与盆地报合机制.地学前缘,1999,6(3):121-132.
    [52]刘和甫,夏义平,刘立群.造山带与前陆盆地连锁断滑系统.见:马宗晋主编.构造地质学—岩石圈动力学研究进展.北京:地质出版社,1999:29-40.
    [53]刘少峰,李思田,庄新国,等.鄂尔多斯西南缘前陆盆地沉降和沉积过程模拟.地质学报,1996,70(1):12-22
    [54]刘少峰,李思田,张国伟.论造山带与盆地演化的藕合与非藕合关系—以秦岭及其旁侧盆地为例.见:马宗晋主编.构造地质学—岩石圈动力学研究进展.北京:地质出版社,1999:356-363.
    [55]杨志华,张传林,朱立华,等.大陆造山带盆—山转换的类型及阶段—以秦岭造山带为例.地学前缘,1999,6(4):273-282.
    [56]丁桂道,刘伟新,崔可锐,等.造山带与盆地构造藕合关系研究—以塔里木盆地为例.见:马宗晋主编.构造地质学—岩石圈动力学研究进展.北京:地质出版社,1999:364-372.
    [57]刘和甫,梁慧社,李晓清,等.中国东部中新生代裂陷盆地与伸展山岭耦合机制.地学前缘,2000,7(4):477-486
    [58]金振民,高山.底侵作用及其壳幔演化动力学意义[J].地质科技情报,1996,15(2):1-7.
    [59]徐杰,高战武,孙建宝,等.区域伸展体制下盆—山构造藕合关系的探讨—以渤海湾盆地和太行山为例。地质学报,2001.5,75(2):165-174
    [60]王清晨,丛伯林.大别山超高压变质岩的地球动力学意义[J].中国科学(D辑),1996,26(3):271-276.
    [61]邵济安,牟保磊,何国琦,等.华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J].中国科学
    [62]高山,金振民.拆沉作用及其壳幔演化动力学意义[J].地质科技情报,1977,16(1):1-9.
    [63]丘元禧,张渝昌,马文璞,等.雪峰山的构造性质与演化[M].北京:地质出版社,中山大学出版社,1999.1-155.
    [64]杨巍然,纪克诚,孙继源,等.大陆裂谷研究中几个前沿课题[J].地学前缘,1995,2(1):93-102.
    [65]吴培康.南海北部多幕裂陷作用与含油气系统.’石油学报,1998,19(3):11-15
    [66]吴世敏,周蒂,丘学林.南海北部陆缘的构造属性问题.高校地质学报,2001,7(4):419-426
    [67]施和生,于水明,梅廉夫,等.珠江口盆地惠州凹陷古近纪幕式裂陷特征[J].天然气工业,2009,29(1):35-40
    [68]龚再升,李思田.南海北部大陆边缘盆地分析与油气聚集[J].北京:科学出版社,1997
    [69]苏乃容,曾麟,李平鲁.珠江口盆地东部中生代凹陷地质特征.中国海上油气(地质),1995,9(4):228-236
    [70]王家林,吴健生,陈冰.珠江口盆地和东海陆架盆地基底结构的综合地球物理研究.上海:同济大学出均社,1997
    [71]李平鲁,梁慧娴.珠江口盆地新生代岩浆活动与盆地演化、油气聚集的关系.广东地质,1994,9(2):23-34
    [72]李平鲁.珠江口盆地新生代构造运动[J].中国海上油气(地质),1993,7(6):11-17.
    [73]吴时国,刘展,王万银,等.东沙群岛海区晚新生代构造特征及其对弧-陆碰撞的响应.海洋与湖沼,2004.11,35(6):481-490
    [74]陈斯忠,李泽松.珠江口盆地东部油气勘探开发的回顾与展望.中国海上油气(地质),1992,6(29):21-30
    [75]李德生,姜仁旗.南海东沙隆起及其周围坳陷的地质演化.海洋学报,1989.11,11(6):737-741
    [76]栾锡武,彭学超,邱燕.南海北部陆坡高速堆积体的构造成因.现代地质,2009.4,23(2):183-199
    [77]田鹏,梅廉夫,于慧玲,等.惠州凹陷断裂特征及其对油气成藏的控制[J].新疆石油地质,2008,29(5):591-594
    [78]Kohn B.P, Green P.F. Low temperature thermo-chronology:from tectonics to landscape evolution. Tectonophysics,2002,349 (1-4):1-4
    [79]Fleischer P.L, Price P.B. Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochimica et Cosmochimica Acta,1964,28(4):1705-1714
    [80]Fleischer P.L, Price P.B and Walker, R.M. Nuclear tracks in solid. U.S, Berkeley, University of California Press.1975:133
    [81]沈传波,梅廉夫,凡元芳,等.磷灰石裂变径迹热年代学研究的进展与展望.地质科技情报,2005,24(2):57-63
    [82]Carlson W D. Mechanisms and kinetics of apatite fission-track annealing. American Mineralogist,1990, 75(8):1120-1139
    [83]Gleadow A.J.W, Duddy I.R. Green, P.F. Confined track lengths in apatite-A diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology,1986 94(1):405-415
    [84]吴堑虹.裂变径迹法在大地构造学中的一些应用.地质地球化学,2001,29(1):83-89
    [85]Grist A M, Zentilli M. Post-Paleocene cooling in the southern Canadian Atlantic region: Evidence from apatite fission track models. Canadian Journal of Earth Sciences,2003,40(9):1279-1297
    [86]Fugenschuh B, Schmid S.M, Late stages of deformation and exhumation of an orogen constrained by fission-track data: A case study in the Western Alps. Bulletin of the Geological Society of America,2003, 115(11):1425-1440
    [87]Foeken J.P.T, Duna, T.J, Bertotti G etal. Late Miocene to present exhumation in the Ligurian Alpwith evidence for accelerated denudation during the Messinian salinity crisis.Geology,2003,31(9):797-800
    [88]Bruijne C.H, Andriessen P.A.M. Far field effects of Alpine plate tectonism in the Iberian microplate recorded by fault-related denudation in the Spanish Central System. Tectonophysics,2002,349(1-4):161-184
    [89]Blythe A.E., Burgmann R. No frictional heat along the San Gabriel fault, California:Evidence from fission-track thermochronology. Geology,2003,31(6):541-544
    [90]Gleadow A J, Kohn B P, Brown R W et al. Contrasting regional denudation patterns in southeastern Australia from apatite fission track imaging.Geochimica et Cosmochimica Acta,2002,66(1):278-278
    [91]Gleadow A J W, Kohn B P. Brown R W et al. Fission track thermotectonic imaging of the Australian continent. Tectonophysics,2002,349(1-4):5-21
    [92]RaveRhurst C E, Reynolds P H. Formation of Carboniferous Pb-Zn and Brite mineralization from Bsin-drived fluids NovaScotia, Canada. Economic Geology,1989,84(6):1471-1488
    [93]Chakurian A.M,Arehart GB. Donelick R.A. etal. Timing constraints of gold mineralization along the Carlin trend utilizing apatite fission-track,40Ar/39Ar and apatite (U-Th)/He methods. Economic Geology, 2003,98(6):1159-1171
    [94]Athy LF. Density porosity and compaction of sedimentary rocks,AAPG Bulletin,1930,14:1-24
    [95]Magara K. Thickness of removed sediments paleoporepressure and paleotemperature southwestern part of Western Canada Basin,AAPG. 1976,60,554-566
    [96]Henry PH. Analysis of sonic well logs applied to erosion estimates in the Bighorn basin, Wyomin, AAPG Bulletin,,1996,80:630-647
    [97]刘景彦,林畅松,喻岳钰,等.用声波测井资料计算剥蚀量的方法改进,石油实验地质,2000,22(4):302-305
    [98]Dow WG. Kerogen studies and geological interpretation Journal of Geochemical Exploration,1977,7(2): 79-99
    [99]任建业,李思田.西太平洋边缘海盆地的扩张过程和动力学背景[J].地学前缘,2000,(03):254-261
    [100]张训华,朱银奎.大洋钻探与南海的形成[J].海洋科学,1996,(03):147-158
    [101]姚伯初.南海海盆新生代的构造演化史[J].海洋地质与第四纪地质,1996,(02):352-361
    [102]张训华,李延成,綦振华,徐世浙.南海海盆形成演化模式初探[J].海洋地质与第四纪地质,1997,(02):214-222
    [103]李家彪,金翔龙,高金耀.南海东部海盆晚期扩张的构造地貌研究[J].中国科学D辑,2002,(03):198-215
    [104]K.R.Mcclay, T.Dooley, P.Whitehouse, et al.4-D evolution of rift systems:Insights from scaled physical models[J]. AAPG Bulletin,2002,86:935-959
    [105]Anderson, E.M.The dynamics of faulting and dyke formation with applicationto Britain:Edinburgh, Oliver and Boyd,1942:191-208
    [106]黄正吉.珠江口盆地陆相烃源岩与油气生成[J].中国海上油气(地质),1998,12(4):255-261

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700