Calbindin-D28k与肌动蛋白在牙胚、牙髓组织中的分布及相互关系的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Calbindin-D28k是一种与Ca~(2+)有高度亲和力的细胞内可溶性钙结合蛋白,因其与骨、牙釉质、牙本质等硬组织形成关系密切而受到关注。目前Calbindin-D28k的功能尚不清楚。传统观点认为Calbindin-D28k在细胞内充当钙转运载体或保护性钙缓冲剂,但近来大量事实表明,Calbindin-D28k可能还参与调节细胞内许多重要的生理活动,如:作为钙敏感调节蛋白参与Ca~(2+)信号转导系统相关作用;作为激活蛋白调节多种蛋白和酶的活性以激活细胞内的一系列反应;促进细胞分化;抑制细胞凋亡,等等。牙齿是含Calbindin-D28k较丰富的组织之一。有研究表明,Calbindin-D28k在亚细胞定位上与肌动蛋白微丝关系密切,而Ca~(2+)是影响微丝骨架变化的重要因素。本研究拟通过免疫组化技术观察Calbindin-D28k和肌动蛋白在大鼠磨牙及其牙胚、成年大鼠下切牙、人正常和龋坏恒牙和损伤后大鼠磨牙牙髓中的表达和动态分布特征:应用免疫荧光双标记结合激光共聚焦显微镜技术观察两种蛋白在培养人牙乳头细胞中的共定位情况,并通过免疫沉淀方法检测二者之间是否存在直接相互作用,以期揭示Calbindin-D28k与肌动蛋白在牙齿发育、矿化和损伤修复中的作用及功能相关性。
     1、Calbindin-D28k与肌动蛋白在大鼠磨牙及其发育过程中的分布
     将成年大鼠及胎鼠、幼鼠颌骨组织制石蜡切片,采用免疫组化方法观察成年大鼠磨牙牙髓及牙胚发育不同时期Calbindin-D28k和肌动蛋白的分布情况。结果:Calbindin-D28k在整个牙胚发育过程中,只有硬组织形成期的成釉细胞呈强阳性,染色部位为整个胞浆;成年大鼠磨牙牙髓未见阳性染色。肌动蛋白在蕾状期成釉器细胞、钟状期外釉上皮细胞阳性,分布于整个胞浆;钟状晚期中间层细胞与成釉细胞之间、成釉细胞与成牙本质细胞之间出现阳性染色;硬组织形成期成釉细胞Tome's突和成牙本质细胞胞浆为阳性;成年大鼠磨牙成牙本质细胞阳性染色部位为
    
     第四军医大学硕士学位论文
     核以上胞浆及细胞突;牙乳头细胞及牙髓细胞未见阳性染色。提示:
     Calbindin028k与肌动蛋白都与釉质形成有关,但功能并不完全重叠;肌
     动蛋白参与了牙本质的形成。
     人Calbindin·D28k与肌动蛋白在大民切牙成牙本质细胞中的分布
     将成年大鼠下颌切牙制石蜡切片,采用免疫组化方法观察
     Calbindin-D28k和肌动蛋白在成牙本质细胞中的分布情况。结果:
     CalbindinD28k与肌动蛋白在大鼠切牙成牙本质细胞中的分布规律具有
     一致性。唇侧冠方2/3区域的成牙本质细胞两种蛋白均呈阳性,且阳性部
     位都集中在成牙本质细胞突;根尖区及舌侧成牙本质细胞二者均为阴性c
     提示:Calbindin028k和肌动蛋白与牙本质的形成关系密切。
     3、Calbindin*28k与肌动蛋自在钻磨后大鼠唇牙牙函中的表达
     将24只成年大鼠随机分为8组,第一磨牙钻磨穿髓后分别于Zh、sh、
     id、Zd、sd、sd、lid、14d取材制石蜡切片,寸狈同名牙作为正常寸照,
     采用免疫组化方法观察Calbindin-D28k和肌动蛋白在钻磨刺激后不同时
     间牙髓中的表达和分布情况。结果:Calbindin-D28k在各组牙髓染色均为
     阴性。肌动蛋白在正常组成牙本质细胞及细胞突阳性,血管内皮细胞及
     部分管周细胞弱阳性;牙髓受到钻磨刺激后,在创伤或炎症累及区域成
     牙本质细胞肌动蛋白转阴,同时细胞排列紊乱且与前期牙本质分离;在
     炎症发展的前沿区,血管内皮细胞及其外周一些细胞呈强阳性。提示:
     肌动蛋白在维持成牙本质细胞的排列方式及正常生理功能中有重要意
     义:肌动蛋白在血管内皮细胞及管周细胞中的表达上调可能与牙髓损伤
     的早期修复有关。
     4、Calbindin-D28k与肌动蛋白在人健康及琢坏牙齿中的分布
     将因治疗需要而拔除的第三磨牙依据临床体征和离体探察情况分为
     正常、中龋和深龋三组,制石蜡切片,采用免疫组化方法观察
     Calbindin-D28k和肌动蛋白在正常和龋坏刺激下牙髓中的表达特征。结
     果:正常组CalbindinD28k在成牙本质细胞和牙髓细胞阴性,前期牙本
     质远髓213区域染色阳性;肌动蛋白在成牙本质细胞及位于矿化牙本质中
     的细胞突呈阳性,牙髓细胞弱阳性;中龋组Calbindin-D28k在龋坏部位
     一3 一
    
     第四军医大学硕士学位论文
     所对应的前期牙本质全层呈阳性且较正常组明显增强,位于前期牙本质
     中的成牙本质细胞突呈强阳性;肌动蛋白在龋坏部位所对应的成牙本质
     细胞胞浆及位于前期牙本质中的细胞突起呈强阳性:深龋组龋坏部位所
     对应的中心区域成牙本质细胞变?
Calbindin-D28k is an intracellular soluble vitamin D-dependent calcium binding protein, which has a high affinity for Ca2"1". Previous studies have demonstrated the presence of Calbindin-D28k and its mRNA in mineralized tissues, such as bone and tooth, and suggested the involvement of Calbindin-D28k in the mineralization. Although there have been several hypotheses for the role of Calbindin-D28k, the exact function of this protein is still to be established. Traditionally, Calbindin-D28k has been regarded as calcium transporter or intracellular calcium buffer. But recently, the regulatory effects of Calbindin-D28k have been proposed. Some studies showed that Calbindin-D28k subcellularly co-localized with actin filaments in ameloblasts and odontoblasts. In the present study, the distribution of Calbindin-D28k and actin in tooth germs and adult pulps obtained either from rats or human beings was observed and compared by immunochemical method. To further investigate the relationship between the two proteins, do
    uble immunofluorescence method was applied to observe the co-localization of Calbindin-D28k and actin in cultured dental papilla cells, and then, the interaction between the two proteins was clarified by immunoprecipitation technique.
    1 Distribution of Calbindin-D28k and actin in the development of rat molars
    In this study, fetal rats (17-19 days of gestation) and new born pups (from 1 to 14 days old) were utilized to investigate the localization of Calbindin-D28k and actin in the developing molars. Immunohistochemical
    - 6 -
    
    
    results showed that Calbindin-D28k was detected only in the whole cytoplasm of the differentiated ameloblasts. However, actin was present in the enamel organ as early as at the bud stage. During the period of hard tissue formation, actin was distributed in the Tome's process of ameloblast and throughout the cytoplasm of odontoblast. In adult rat, odontoblasts were still positively stained for actin but only in the cytoplasm abovethe nucleus. These findings tended to suggest that both Calbindin-D28k and actin could be involved in enamel formation but they might function differently. In addition, actin also participateed in dentin formation.
    2 Distribution of Calbindin-D28k and actin in rat incisor odontoblasts
    Immunohistochemical method was adopted for examining and comparing the distribution of Calbindin-D28k and actin in the odontoblasts of rat's continuously erupting lower incisor. The results of the present study demonstrated that Calbindin-D28k and actin shared a similar expression pattern, that is, both proteins were detected in the odontoblasts, particularly in the processes of labial side within the 2/3 crownal portion whereas neither in those of lingual side and apical region. This could indicate that the two proteins could be in close relation to dentin formation.
    3 Distribution of Calbindin-D28k and actin in burred rat dental pulps
    In order to investigate the expression of Calbindin-D28k and actin during pulp restoration, we established the model of rat tooth injury and examined Calbindin-D28k and actin in healthy pulp and the pulps from 2 hours to 14 days after burred. No immunostaining was found for Calbindin-D28k in all the pulps examined. As for actin, positive staining was localized in odontoblasts and vessel endothelia in the healthy pulp. 2h after injury, the odontoblasts near the exposure point turned negative while the vessel endothelia and the nearby cells were strongly labelled. Such strongly immunoreactive vessels always occurred in the area where pulpitis first attacked in the 8h~5d groups. The present study tended to suggest that actin
    
    could play an important role in sustaining the odontoblasts in their specific
    lining style and physical function, and that its up-regulation in vessels might
    have something to do with the early restoration of pulp after injury.
    4 Distribution of Calbindin-D28k and actin in healthy and carious human
    teeth
    34 wisdom teeth extracted for therapeutic reasons were collected and divided into three groups: n
引文
1. Taylor AN. Tooth formation and the 28,000-dalton vitamin D-dependent calcium binding protein.an immunocytochemical study. J Histochem Cytochem, 1984,32:159
    2. Berdal A,Hotton D,Kamyab S et al. Subcellular co-localization and co-variations of tow vitamin D-dependent proteins in rat ameloblasts. Arch Oral Biol,1991,36:715
    3. Seux D,Joffre A,Fosse M et al. Immunohistochemical localization of L-type calcium channels in the developing first molar of the rat during odontoblast differentiation. Arch Oral Biol, 1994,39:167
    4. Balmain N. Calbindin-D9k.A vitamin-D-dependent,calcium-binding protein in mineralized tissues. Clin Orthop, 1991,265:265
    5. Onishi T.Ooshima T.Sobue S et al. Immunohistochemical localization of calbindin D28k during root formation of rat molar teeth. Cell Tissue Res,1999,297:503
    6. Hubbard MJ. Calbindin28kDa and calmodulin are hyperabundent in rat dental enamel cells.Identification of the protein phosphatase calcineurin as a principle calmodulin target and of a secretion-related role for calbindin28kDa. Eur J Biochem,1995,230:68
    7. Hubbard MJ. Abundant calcium homeostasis machinery in rat dental enamel cells.Up-regulation of calcium store proteins during enamel mineralization implicates the endoplasmic reticulum in calcium transcytosis. Eur J Biochem, 1996,239:611
    8. Onishi T.Ooshima T,Sobue S et al. Calbindin D28k-like immunoreactivity during the formation of the enamel-free area in the rat molar teeth. Anat Rec,2000,258:384
    9. Bawden JW. Calcium transport during mineralization. Anat
    
    Rec, 1989,224:226
    10. Berdal A,Nanci A.Smith CE et al. Differential expression of calbindin-D 28kDa in rat incisor ameloblasts throughout enamel development. Anat Rec, 1991,230:149
    11. Elms TN,Taylor AN. Calbindin-D28k localization in rat molars during odontogenesis. J Dent Res,1987,66:1431
    12. Goldberg M,Feinberg J,Lecolle S et al. Co-distribution of annexin 6 and actin in secretory ameloblasts and odontoblasts of rat incisor. Cell Tissue Res, 1991,263:81
    13. Aderson HC. Molecular biology of matrix vesicles. Clin Orthop Related Res,1995,314:266
    14. Gross M.Kumar R. Physiology and biochemistry of vitamin D-dependent calcium binding proteins. Am J Physiol,1990,259:F195
    15. Magloire H,Joffre A,Azerad J et al. Localization of 28kDa calbindin in human odontoblasts. Cell Tissue Res 1988,254:341
    16. Nishikawa S.Kitamura H.Microtubules,intermediate filaments,and actin filaments in the odontoblast of rat incisor. Anat Rec, 1987,219:144
    17. Miyawaki Y,Youn SH,Ochi K et al. Calbindin D28k-like immunoreactive nerve fibres in the predentin of rat molar teeth. Arch Oral Biol, 1997,42:773
    18. 田卫.内皮细胞中力学信号的传递与传导.国外医学生物医学工程分 册,1997,20(3) :136
    19. Norman AW,Roth J,Orci L. The vitamin D endocrine system:steroid metabolism.hormone receptors,and biological response(calcium binding proteins). Endocrine Revs, 1982,3:331
    20. Bonner F. (1990) in Intracellular calcium regulation (Bonner F.ed.) pp.415-437. Alan R.Liss.New York.
    21. Feher JJ,Fullmer CS,Wasserman RH. Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Am J Physiol
    
    1992,262:C517
    22. Corinne F,Reine B,Joelle A. Synthesis of calbindin-D28k during mineralization in human bone marrow stromal cells. Biochem 1,1998,333:817
    23. Mayel-Afshar S,Lane SM,Lawson DE. Relationship between the levels of calbindin synthesis and calbindin mRNA in chick intestine. Quantitation of calbindin mRNA. J Biol Chem 1988,263:4355
    24. 张建华.Calbindin-D28k在神经系统中的分布及功能.神经解剖学杂 志,1992,8(2) :155
    25. Magloczky ZS,Halasz P,Vajda J. Loss of calbindin-D28k immunoreactivity from dentate granule cells in human temporal lobe epilepsy. Neuroscience, 1997,76(2) :377
    26. Bronner F, Stein WD. CaBPr facilitates intracellular diffusion for Ca pumping in distal convoluted tubule. Am J Physiol,1988 ,255(3 Pt 2) :F558
    27. Hemmingsen C,Staun M,Olgaard K. The effect of 1,25-vitamin D3 on calbindin-D and calcium-metabolic variables in the rat. Pharmacol Toxicol, 1998,82:118
    28. Ghosh A,Greenberg ME. Calcium signaling in neurons:molecular mechanism and cellular consequences. Science,1995,268:239
    29. Kligman D,Hilt DC. The S100 protein family. Trends Biochem Sci,1988,13:437
    30. Norman AW,Leathers V. Intestinal calcium transport:pleiotropic effects mediated by vitamin D. Federation Proc, 1982,41:78
    31. Boouthiauy I,Lajeunesse D,Christakos S et al. Two vitamin D3-dependent calcium binding proteins increase calcium reabsorption by different mechanisms ⅠandⅡ. Kindey Int, 1994,45:469
    32. Salama AH,Zaki AE,Eisenmann DR. Cytochemical localization of Ca2+-Mg2+ adenosine triphosphatase in rat incisor ameloblasts during
    
    enamel secretion and maturation. J Histochem Cytochem, 1987,35:471
    33. Takano Y.Akai M. Demonstration of Ca2+-ATPase activity in the maturation ameloblast of rat incisor after vascular perfusion. J Electron Microsc (Tokyo), 1987,36:196
    34. Handford PA,Baron M,Mayhew M et al. The first EGF-like domain from human factor IX contains a high-affinity calcium binding site. EMBO 1,1990,9:475
    35. Christakos S,Gabrielides C,Rhoten WB. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. Endocr Rev,1989,10:3
    36. Jande SS,Maler L,Lawson DEM. Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature, 1981,294:765
    37. Thorens B,Roth J,Norman AW et al. Immunocytochemical localization of the vitamin D-dependent calcium binding protein in chick duodenum. J Cell Biol, 1982,94:115
    38. Balmain N,Brehier A,Cuisinier-Gleizes et al. Evidence for the presence of Calbindin-D28K(CaBP-28K) in the tibial growth cartilages of rats. Cell Tissue Res,1986,245:331
    39. Kagi V,Chafouleas JG,Norman AW er al. Developmental appearance of the Ca2+-binding proteins parvalbumin, calbindin D28K,S-100 proteins and calmodulin during testicular development in the rat. Cell Tissue Res,1988,252:359
    40. Heitzmann CW.Braun K. Changes in Ca2+-binding proteins in human neurodegenerative disorders. Trends Neurosci,1992,15:259
    41. Rami A,Rabie A,Thomasset M et al. Calbindin-D28k and ischemic damage of pyramidal cells in rat hippocampus. J Neurosci Res, 1992,31:89
    42. Mattson MP,Chen B,Baldwin SA et al. Brain injury and tumor necrosis
    
    factors induce calbindin D-28k in astrocytes:evidence for a cytoprotective response. J Neurosci Res, 1995,42:357
    43. Nishikawa S,Josephsen K. Cyclic localization of actin and its relationship to junctional complexes in maturation ameloblasts of the rat incisor. Anat Rec, 1987,219:21
    44. Berdal A,Balmain N,Thomasset M et al. Calbindins-D9kDa and 28kDa and enamel secretion in vitamin D-deficient and control rats. Connect Tissue Res, 1989,22:165
    45. Hand AR,Oliver C. Basic mechanisms of cellular secretion. In:Methods in Cell Biology, eds,vol.23.Academic Press,New York. 1981
    46. Karim A,Warshawsky H, The effect of colcemid on the structure and secretory activity of ameloblasts in the rat incisor as shown by radioautography after injection of ~3H-proline. Anet Rec, 1979,195:587
    47. Thesleff I.Dental papilla cells in culture.Comparison of morphology, growth and collagen synthesis with two other dental-related embryonic mesenchymal cell populations.Cell Differentiation,1986,18:189
    48.王景杰,牛忠英,倪龙兴.钙结合蛋白Calbindin-D28K在人健康和龋坏牙齿中免疫定位.牙体牙髓牙周病学杂志,2000,10(6):310
    49.王景杰,牛忠英,倪龙兴.钙结合蛋白Calbindin-D28K在人牙胚发育过程中的表达,牙体牙髓牙周病学杂志,2000,10(2):63
    50.王景杰,牛忠英,倪龙兴.1,25(OH)_2D_3对培养人牙乳头细胞Calbindin-D28K表达和矿化能力的影响,牙体牙髓牙周病学杂志,2001,11:70
    51.王景杰,牛忠英,倪龙兴.人牙乳头细胞矿化特征及分化表征表达.实用口腔医学杂志,2001,17(3):223
    52. Berdal A,Hotton D,Saffar JL et al. Calbindin-D9k and calbindin-D28k expression in rat mineralized tissues in vivo.J Bone Miner Res, 1996,11:768
    
    
    53. Hotton D,Davideau JL,Bernaudin JF et al. In situ hybridization of calbindin-D 28 k transcripts in undecalcified sections of the rat continuously erupting incisor. Connect Tissue Res, 1995,32:137
    54. Bailleul-Forestier I.Davideau JL,Papagerakis P el al. Immunolocalization of vitamin D receptor and calbindin-D28k in human tooth germ. Pediatr Res, 1996, 39(4 Pt 1) : 636
    55. Sutherland JD,Witke W. Molecular genetic approaches to undersdanding the actin cytoskeleton. Curr Opin Cell Biol, 1999,11:142
    56. Janmey PA. The cytoskeleton and cell signaling-component localization and mechanical coupling. Physiol Rev, 1998,78:763
    57. Alberts B,Bray D,Lewis J et al. Molecular Biology of the Cell, chapter 16. 3rd edition. New York and London:Garland publishing 1994:787
    58. Lombardi T,Samson J,Muhlhauser J et al. Expression of intermediate filaments and actins in human dental pulp and embryonic dental papilla. Anat Rec, 1992,234:587
    59. Pollard TD,Cooper JA. Actin and actin-binding proteins:a critical eveluation of mechanisms and functions. Annu Rev Biochem,1986,55:987
    60. Gordon DJ,Boyer JL,Korn ED. Comparative biochemistry of non-muscle actins. J Biol Chem,1977,252:8300
    61. Lesot H,Meyer JM,Ruch JV et al. Immunofluorescent localization of vimentin, prekeratin and actin during odontoblast and ameloblast differentiation. Differentiation,1982,21:133
    62. Nishikawa S,Kitamura H. Localization of actin during differentiation of the ameloblast, its related epithelial cells and odontoblasts in the rat incisor using NBD-phallacidin. Differentiation, 1986,30:237
    63. Moxham BJ,Webb PP,Benjamin M et al. Changes in the cytoskeleton of cells within the periodontal ligament and dental pulp of the rat first molar tooth during ageing. Eur J Oral Sci,1998,106 Suppl 1:376
    
    
    64. Fitzgerald M,Chiego DJ,Heys DR. Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. Arch Oral Biol,1990,35:707
    65. Berdal A,Hotton D.Pike JW et al. Cell-and stage-specific expression of vitamin D receptor and calbindin genes in rat incisor: regulation by 1,25-dihydroxyvitamin D3. Dev Biol,1993,155:172
    66. Tziafas D. Basic mechanisms of cytodifferentiation and dentinogenesis during dental pulp repair. Int J Dev Biol, 1995,39:281
    67. Wasserman RH,Taylor AN. Vitamin D3-induced calcium-binding protein in chick intestinal tissue.Science,1966,15:791

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700