超临界二氧化碳改造建材和在煤炭地下气化填埋中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境恶化以及可持续发展概念的普及,二氧化碳作为导致环境温室效应的主要气源逐渐被大众视为主要环境污染物之一。如何利用及控制大气中二氧化碳含量成为当今炙手可热的课题。本文从节约能源及环境保护的角度出发,主要分超临界二氧化碳改造材料及地下封存两部分研究了土木行业对能源及环境的可能的贡献。
     根据A. Saetta的多孔材料温度、湿度及气体流动耦合的封闭微分方程组,本文首先建立了混凝土多孔砖自然碳化数值模型,并与牛荻涛碳化深度经验公式进行对比,验证了模型正确性后通过修正二氧化碳及混凝土相关参数进行了普通和再生骨料混凝土多孔砖超临界碳化的数值模拟,结果表明与多孔砖自然碳化不同,超临界碳化时多孔砖内二氧化碳含量不是碳化反应速度的控制因素;模型结果还表示多孔砖相对湿度对超临界碳化中碳化速度的影响远大于其对自然碳化速度的影响。碳化程度及截面平均抗压强度基本按负指数规律随时间延长而增长。
     本文也探讨了二氧化碳作为助燃剂的煤炭地下气化上覆岩层移动规律的研究,并在气化过程可行性得以验证以后进行了二氧化碳地下封存的数值模拟。首先进行了煤炭地下气化过程中纵截面水平向温度分布的数值模拟,结果表明地下温度场仅影响2米以内岩层性质。利用这一结果,本文模拟了浅埋煤层地下气化时空洞发展、煤层顶板移动及地表沉降,并与已有国外结果对比,二者吻合较好,验证了本文模型的正确性。之后通过加大煤层埋深,进行了深埋煤层地下气化过程的模拟,结果显示深埋煤层地下气化完成后的地表不均匀沉降仅为浅埋煤层地表不均匀沉降的7%,因此从岩层移动角度考虑,深埋煤层地下气化的安全性更高。最后本文利用深埋煤层以1m/天的燃烧速度气化完成后的模型进行了二氧化碳埋存的可行性研究,加入二氧化碳压力影响时,地表沉降会减小,因此二氧化碳地下封存可抵消部分煤炭地下气化引起的上覆岩层的移动,对地表建筑基础更有利。
As the realization of deterioration of the environment and the spread of the idea of sustainable development, CO_2 has been treated as one of the pollutants to our environment due to its greenhouse effect. How to utilize and control the CO_2 content in the atmosphere has become a popular project. On the view of energy conservation and environment protection, this thesis mainly demonstrates the improvements of building materials and the underground sealing of CO_2, in order to make the possible contribution of civil industry on environmental protection and energy conservation.
     Based on the close differential equation set raised by Saetta about the coupling flow of temperature, moisture and gas in porous materials, this thesis develops the numerical model of natural carbonation of concrete porous brick first. After the result of the model has been proved by the experimental formula raised by Ditao Niu, this thesis develops the super-critical carbonation simulation on normal and recycled aggregates concrete porous brick separately by revising the relative parameters of CO_2 and concrete. The result demonstrates that the control factor of carbonation is not the CO_2 content in the brick, but the reaction velocity of CaCO3, which is different with the result of the natural carbonation. The result also shows that the influence of the relative humidity in the porous brick on the super-critical carbonation velocity is more significant compared with its influence on the natural carbonation. The carbonation degree and average pressure strength changes along the principle of negative exponent as time goes up.
     In the second part of this thesis, the move principle of the upper seam during the underground coal gasification using CO_2 as the ignite gas has been researched, and the simulation of the CO_2 underground storage has been represented after the possibility of UCG has been proved. This thesis first proceeds the numerical simulation of the longitudinal section temperature distribution, the result of which shows that the temperature field only influences the properties of rocks at the range of 2 meters. Based on this result, this thesis simulates the cavity development, the movement of the coal roof and the surface displacement during the shallow coal seam gasification. The result fits well with the existed result in Farhangi’s thesis, thus the model in this thesis is proved valid. The deep storage coal UCG has also been simulated in this thesis by adding the depth of coal seam to 1000 meters. The result presents that the nonuniform displacement of deep coal is only 7% to the displacement of superficial coal seam. Thus, in the view of the seam move, the safety of UCG in deep coal in higher than that in superficial coal. At last, this thesis gives the simulation of CO_2 underground storage on the basis of UCG at the gasification velocity of 1m/day. When the pressure of CO_2 is put on the cavity boundaries after UCG, the surface displacement is decreased. In the consequence, the underground storage of CO_2 is beneficial to surface building basement since the pressure of CO_2 can diminish part of the displacement caused by UCG.
引文
[1]余力,梁杰,余学东.煤炭资源开发与利用新方法——煤炭地下气化技术[J],科技导报,1999(4):33-35.
    [2]张泽祯.温室效应对水资源的影响不容忽视.大众科技报[N]. 2001-10-21(006).
    [3]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003:10-18.
    [4]龚洛书,柳春圃.混凝土的耐久性及其防护修补[M].北京:中国建筑工业出版社,1990.
    [5]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002:42-43.
    [6]周宇,张皓.混凝土碳化后的力学性能研究[J].佳木斯大学学报,2005,23(2):3-5.
    [7]袁群,何芳婵,李杉.混凝土碳化理论与研究[M].郑州:黄河水利出版社,2009:44-45.
    [8]张海燕.混凝土碳化深度的试验研究及其数学模型建立[D].陕西:西北农林科技大学硕士学位论文,2006:7-9.
    [9]沈平平,廖新维.二氧化碳地质埋存与提高石油采收率技术[M].北京:石油工业出版社,2009:26-28.
    [10]师春元,黄黎明,陈赓良.机遇与挑战:二氧化碳生产与应用[M].北京:石油工业出版社,2006:249-250.
    [11]张万仓.混凝土空心砌块与混凝土砖实用手册[M].北京:中国建材工业出版社,2007:25-27.
    [12] http://www.szhwjc.com/products_detail.asp?id=746
    [13]郝彤.再生骨料混凝土多孔砖及其砌体受力性能研究[D].河南:郑州大学博士论文,2008:27-51.
    [14]姚武.绿色混凝土[M].北京:化学工业出版社,2006:118-120.
    [15] http://www.coal.gov.uk/
    [16]余锋.煤炭地下气化结构力学模拟[J].矿业译丛,1992(2):1-3.
    [17]赵冬兵.混凝土碳化速度及碳化区物质含量分布的有限元数值模拟[J].混凝土与水泥制品,2006(2):5-7.
    [18]赵铁军,李淑进.碳化对混凝土渗透性及孔隙率的影响[J].工业建筑,2003,33(1):46-47.
    [19] K.V. Balen. Carbonation reaction of lime, kinetics at ambient temperature[J]. Cement and Concrete Research, 2005, 35:647– 657.
    [20] A.V. Saetta, B.A. Schrefler and R.V. Vitaliani. The carbonation of concrete and the mechanism of moisture, Heat and Carbon Dioxide Flow through Porous Materials[J]. Cement and Concrete Research, 1993, 23(4):761-772.
    [21] A.V. Saetta, B.A. Schrefler and R.V. Vitaliani. 2-D Model for Carbonation and Moisture/Heat Flow in Porous Materials[J]. Cement and Concrete Research, 1995, 25(8):1703-1712.
    [22] A.V. Saetta, R.V. Vitaliani. Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures. Part 2: Practical applications[J]. Cement and Concrete Research, 2005, 35:958-967.
    [23] P. Purnell, N.R. Short, C.L. Page. Super-critical carbonation of glass-fibre reinforced cement. Part1: mechanical testing and chemical analysis, Composites: Part A, 2001, 32:1777-1787.
    [24] P. Purnell, A. M. G. Seneviratne, N.R. Short, C.L. Page. Super-critical carbonation of glass-fibre reinforced cement. Part 2: Microstructural observations, Composites: Part A, 2003, 34:1105-1112.
    [25] T. Hartmann, P.P. Hartmann, J.B. Rubin, M.R. Fitzsimmons, K.E. Sickafus. The effect of supercritical carbon dioxide treatment on the leachability and structure of cemented radioactive waste-forms, Waste Management, 1999, 19:355-361.
    [26]谌伦建,吴忠,秦本东,顾海涛.煤层顶板砂岩在高温下的力学特性及破坏机理[J].重庆大学学报,2005,28(5): 123-126.
    [27]赵洪宝,尹光志,李小双.烧变后粗砂岩抗拉特性试验研究[J].岩土力学,2010,31(4):1143-1146.
    [28] G. Perkins, V. Sahajwalla. Steady-State Model for Estimating Gas Production from Underground Coal Gasification[J]. Energy& Fuels, 2005, 22:3902-3914.
    [29] G. Perkins, V. Sahajwalla. A Numerical Study of the Effects of Operating Conditions and Coal Properties on Cavity Growth in Underground Coal Gasification[J]. Energy&Fuels, 2006, 20:596-608.
    [30] S. Daggupati, R.N. Mandapati, S.M. Mahajani, A. Ganesh, D.K. Mathur, R.K. Sharma, P. Aghalayam. Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification[J]. Energy, 2010, 35:2374-2386.
    [31]龚洛书,柳春圃.混凝土的耐久性及其防护修补[M],北京:中国建筑工业出版社,1990.
    [32] L.W. Diamond, N.N. Akinfiev. Solubility of CO2 in Water from -1.5 to 100°C and from 0.1 to 100 MPa: Evaluation of Literature Data and ThermodynamicModeling[J]. Fluid Phase Equilib, 2003, 208::265-290.
    [33] V.T. Ngala, C.L. Page. Effects of Carbonation on Pore Structure and Diffusional Properties of Hydrated Cement Pastes[J]. Cement and Concrete Research, 1997, 27:995-1007.
    [34] T.V. Gerven, D.V. Baelen, V. Dutre′, C. Vandecasteele. Influence of Carbonation and Carbonation Methods on Leaching of Metals from Mortars[J]. Cement and Concrete Research, 2003:1-8.
    [35]蔡俊青,丛继坤,谭朝阳,曹吉林. Ca(OH)2-CO2-H20三相反应宏观动力学研究[J].河北工业大学学报,2006,35(1):30-33.
    [36] A.V. Saetta, R.V. Vitaliani. Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures. Part 1: Theoretical formulation[J]. Cement and Concrete Research, 2004, 34:571-579.
    [37]郭立凯.小型混凝土砌块的生产和应用[M].北京:金盾出版社,2003:1-14.
    [38]袁群,何芳婵,李杉.混凝土碳化理论与研究[M].郑州:黄河水利出版社,2009:139-140.
    [39] S. Farhangi, Geo-technical Modeling of Underground Coal Gasification by use of FLAC program[D]. University of Nottingham, 2002.
    [40] S.C. Lee. 1984, A computational method for thermo-visco-elasticity with application to rock mechanics, The Ohio State University, 1984:132-135.
    [41]杨兰和,宋全友,李耀娟.煤炭地下气化工程[M].徐州:中国矿业大学出版社,2001:17-19.
    [42]刘波,韩彦辉. FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005:18-20.
    [43]孙莹.新型墙体材料标准手册[M].北京:中国标准出版社,2008:22-25.
    [44]王经.传热学与流体力学基础[M].上海:上海交通大学出版社,2007:71-75.
    [45]彭丽敏,刘小兵.隧道工程[M].长沙:中南大学出版社,2009:88-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700