用户名: 密码: 验证码:
弹道导弹防御跟踪制导雷达探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着弹道导弹及其相关技术在世界范围内的日益发展和扩散,以及西方发达国家弹道导弹防御技术和防御系统的不断研究和部署,我国正初步处于弹道导弹攻防的双重威胁之中,对弹道导弹防御技术的研究迫在眉睫。跟踪制导雷达是弹道导弹防御系统中的核心传感器,对目标的搜索探测是其进行跟踪、成像、识别等其它处理的前提和基础。深入开展弹道导弹防御跟踪制导雷达的目标探测技术研究,不仅能够为研制我军的弹道导弹防御系统提供技术储备,同时也能够为改进我军弹道导弹突防措施、提高我军弹道导弹突防能力提供参考依据,因此是我军迫切需要解决的军事前沿课题,具有重大的军事价值和现实意义。
     本文以弹道导弹攻防对抗为研究背景,紧密结合我国弹道导弹突防和防御技术研究和发展的双重需求,以弹道导弹防御地基跟踪制导雷达为研究对象,围绕其目标搜索探测过程展开相关关键技术的深入研究,包括预警信息统计特性、雷达搜索空域划分与最优搜索策略、目标探测与参数估计等,同时还对弹道导弹攻防对抗系统的建模仿真技术进行了研究,构建了相应的分布式仿真系统,为无实际装备条件下的相关技术研究提供了良好的支撑平台。
     预警引导信息是弹道导弹防御跟踪制导雷达目标探测截获的前提和依据,预警信息的质量和引导策略对雷达的探测能力起到了决定性的作用。为此,论文首先从跟踪制导雷达的探测需求出发,对预警引导信息的组成内容进行了分析;其次,从跟踪制导雷达搜索性能的角度考虑,对不同条件下预警信息的引导时机和引导方式进行了研究;最后,重点针对预警引导信息的误差特性,以红外预警卫星和早期预警雷达为主要研究对象,以“观测误差”→“估计误差”→“预测误差”→“引导误差分布模型”为主线对误差的产生和传递过程进行了系统地推导,最终提出了引导误差分布的三种模型,给出了模型参数的计算方法。为后续雷达最优搜索策略的研究提供了依据。
     最优搜索策略是预警信息引导条件下跟踪制导雷达目标探测的关键环节,而目标高速运动是该过程中最为显著的特点,在此条件下,传统搜索策略开始出现适应性上的不足。针对该问题,本文依据目标发现时间最小化准则对一系列雷达搜索策略进行了最优化。首先,在多目标引导条件下,对雷达阵面的最优指向进行了研究,使得多目标的平均发现时间最小;其次,从空间和时间两个角度研究了搜索空域划分和更新的最优化,使雷达以最小资源实现对目标的连续高概率覆盖;最后,分两种情况对高速目标运动条件下最优搜索时序问题进行了最优化研究,即针对速度引导精度较高的情况提出了基于搜索数据率的最优搜索时序模型,以及针对速度引导精度较低的情况提出了基于概率轨迹的最优搜索时序模型,实现了最优搜索对目标高速运动的有效匹配,提高了搜索性能。
     目标检测和参数估计虽然是一个较为成熟的领域,但是在弹道导弹防御背景下,跟踪制导雷达探测的特殊性却给该问题带来了新的需求。针对目前弹头散射面积越来越小的特点,本文基于雷达资源消耗对搜索时的虚警概率进行了优化设计,使得在消耗相同的雷达资源条件下,目标的发现时间最小;针对远程相控阵雷达线性调频信号距离一多普勒耦合效应强的问题,变不利因素为有利因素,利用耦合效应带来的距离偏差信息,分别提出了匀速模型和匀加速模型,在跟踪滤波器起始之前的目标截获阶段即实现了对径向速度的高精度估计,解决了高速运动目标的快速截获问题;最后,针对弹道目标空间密集的特点,分别利用多目标条件下的距离闪烁效应和线性调频脉冲信号脉冲压缩输出主瓣的相位特性,对分辨单元内多目标的存在性实现了有效检测。
     弹道导弹防御跟踪制导雷达探测技术的研究离不开试验验证平台,在缺乏实际装备的条件下,数学仿真成为唯一有效的途径。为此,本文在最后部分对弹道导弹攻防对抗建模仿真技术进行了研究,并将目前适用于大型复杂系统仿真的先进分布式仿真协议——高层体系结构(HLA)应用到仿真系统中来,通过对仿真体系结构、关键数学模型以及分布式仿真的核心——时间管理三个主要方面的研究,构建了弹道导弹攻防对抗分布式仿真平台。最后,给出了一个与他人合作开发的典型弹道导弹攻防对抗分布式仿真系统实例。
     论文最后对全文进行了总结,指出了论文的主要创新之处,并对于今后研究方向提出了一些参考意见和想法。
Ballistic missiles and relative technologies are now being developing and proliferating throughout the world. At the same time, ballistic missile defense (BMD) technologies and programs are being researched and deployed in Western developed countries. Both of them are forcing our country to be facing double threats both of the ballistic missile penetration and defense, which make it an urgent requirement for us to research and develope our own technologies of BMD. The tracking and guiding radar is the key sensor of the BMD program. Among its processes, target detection is the precondition and basis of all the others such as tracking, imaging, recognition and so on. Deeply researching on the target detection technologies of the tracking and guiding radar can provide not only the technology support for the development of our BMD program, but the reference for the improvement of our ballistic missile penetrating capability. Therefor, it is an advanced problem with momentous martial values and practical significance, and required to be solved urgently.
     Taking the ground based tracking and guiding radar as the research object, its key technologies concerning target searching and detecting are investigated, such as warning information statistical characteristics, search region, optimal search stragety, target detection and parameter estimation and so on, which are closely tied with the requirements of our own technologies development on ballistic missile penetration and defense. The modeling and simulation technology of ballistic missile penetration and defense program is also researched here, together with the construction of the relative distributed simulation system, which will support the research above with favorable platform when short of actual equipments.
     Cuing information is the precondition and basis of target detection of the tracking and guiding radar in BMD program. The quality and cuing stragety of the cuing information has a crucial impact on the radar's detection performance. So first of all, according to the requirement of the detection of the tracking and guiding radar, the composition of the cuing information is analysized. And then, considering the detection performance of the tracking and guiding radar, the cuing time and cuing manner under different conditions is researched. Finally, the error's statistical characteristic of the cuing information, which is mainly from the space-based warning satellites and the ground-based warning radars, is analyzed especially. Through the order from measure error, to estimation error, to prediction error, the producing and transmitting of the error is generally derived. Based on the derivation above, three error distribution models are put forward and the parameter calculation methods are also given. These methods are important supports for the following research of the radar optimal search with definitive reference.
     Optimal search strategy is the key algorithm of the target detection of the tracking and guiding radar under the condition of cuing information. The high-speed movement is the most marked character of the target, and it makes the traditional search strategy cannot satisfy the application. According to this problem, a series of search strategies have been optimized using the rule of average detection time minimization. First, the optimal orientation of the radar antenna is analyzed for multi-targets, which minimizes the average detection time of them. And then, the optimal searching region and its updating period is studied, which makes the radar capable of covering the target with consecutively high probability using minimal radar resources. Finally, the radar searching order is optimized using two different models, one for high precision of velocity prediction, called data rate based model, and the other for low precision of velocity prediction, called probability trajectory based model. Those two models make the optimal search match with the target's high-speed movement, which improve the radar's search performance.
     Although target detection and parameter estimation belong to a rather mature field, the particularity of the tracking and guiding radar detection does bring new requirements to it, under the background of BMD. According to the characteristic of the reduced RCS of the warheads today, the design of false alarm probability during radar detection is optimized based on the consumption of radar resources, which minimizes the detection time of the target when the consumption of radar resources is fixed. To solve the problem of fast target capture with the high range-Doppler coupling of the linear frequency modulate pulse used by long distance phased array radars, an even-velocity model and an even-acceleration model are proposed to precisely estimate the radial velocity of the target before the construction of track filter, using the range information brought by the coupling. Finally, since the multiple targets may be dense in space, two algorithms are brought forward to detect the presence of multiple unresolved targets, using the rang glint of dense multiple targets and the phase characteristic of the main lob of the pulse compress output of LFM signal.
     The research of the tracking and guiding radar's detection technology in BMD program can hardly be complished without testing and validating platform. For this problem, when short of actual equipments, simulation becomes the only effective way. Therefore, in the last part of this dissertation, the modeling and simulation technologies of ballistic missile penetration and defense are studied, and the advanced distributed simulation protocol—High Level Archtechture (HLA) is applied to the simulation, which is applicable to large complicated system simulaton. By research on the three main aspects such as system configuration, key mathematical models and time management—the core of the distributed simulation, the distributed simulation platform of ballistic missile penetration and defense is constructed. At last, a classic ballistic missile penetration and defense distributed simulation system is introduced, which is exploited together with others.
     The last part summarizes the whole dissertation, points out the major creativeness, and especially brings out some suggestion for future work.
引文
[1]王国玉.基于雷达对抗的战区导弹突防仿真研究[D].博士学位论文.长沙:国防科技大学研究生院.1999,9.
    [2]周颖.基于弹道导弹突防的雷达干扰效果模糊综合评估[D].硕士学位论文.长沙:国防科技大学研究生院.2001,3.
    [3]周颖.电子战条件下导弹防御相控阵雷达仿真与评估研究[D].博士学位论文.长沙:国防科技大学研究生院,2005,6.
    [4]齐艳丽.美、俄战略弹道导弹的装备现状[J].导弹与航天运载技术.2003,1:53-58.
    [5]邱淮建,刘沛伟.地地战术弹道导弹发展历程[J].国防科技.2003,8:93-94.
    [6]张光义,王德纯.弹道导弹防御系统中的预警探测雷达[J].系统工程与电子技术,1995,5:39-47.
    [7].http://www.whitehouse.gov.
    [8]夏立平.导弹防御与美国亚太安全战略[J].太平洋学报.2003,4:15-24.
    [9]蒋艳清.TMD战略对东亚及我国安全的影响[D].硕士学位论文.武汉:华中师范大学.2002,3.
    [10]温羡峤等.弹道导弹防御问题.863先进防御技术通讯(A类).1998年第3期
    [11]黄槐,齐润东,文树梁.制导雷达技术[M].北京:电子工业出版社,2006.
    [12]马骏声.目标识别与GBR地基成像雷达[J].航天电子对抗,1996,4:1-5.
    [13]马骏声.GBR地基雷达的对抗技术初探[J].航天电子对抗,1998,1:1-4.
    [14]Michael Criss.Accomplishing the Mission of National Missile Defense with Current Technology[R].Naval Postgraduate School.May 2000.
    [15]赵丽娟.电子战条件下“宙斯盾”AN/SPY-1雷达系统仿真研究[D].硕士学位论文,2002,1.
    [16]马骏声.SPY-1A相控阵雷达在战区反导弹防御中的应用[J].航天电子对抗,1999(2).1-6.
    [17]林玉琛.战区导弹防御(TMD)和国家导弹防御(BMD)[J].现代防御技术,2001,29(6):1-9.
    [18]马骏声.弹道导弹弹头攻防技术的新较量[J].航天电子对抗.2004(4):1-7.
    [19]Andrew M.Sessler,John M.Cornwall,et al.Countermeasure-A Technical Evaluation of the Operational Effectiveness of the Planned US National Missile Defense System[R].MIT Security Studies Program.April 2000.
    [20]David R.Tanks.National Missile Defense:Policy Issues and Technological Capabilities[R].
    [21]James E S and Paul R C.Space-Based Infrared Satellite System(SBIRS)Requirements Management[A].IEEE Aerospace Applications Conf.Proc[C].Vol.5,1998,IEEE Comp Soc.,Los Alamitos,CA,USA:223-232.
    [22]Andreas N S.Space-Based Infrared System(SBIRS) System of Systems[A],IEEE Aerospace Applications Conf.Proc[C].Vol.7,1997:429-437.
    [23]Rudd J G,et al.,Surveillance and Tracking of Ballistic Missile Launches,IBM Journal of Research and Development,Vol.38,No.2,Mar,1994:195-216.
    [24]Sitzman G L and Drescher G H.Tactical Ballistic Missiles Trajectory State and Error Covariance Propagation,IEEE Position Location and Navigation Symposium,1994:839-844.
    [25]Woods E and Queeney T.Multi-sensor Detection and Tracking of Tactical Ballistic Missile Using Knowledge-Based State Estimation,Signal Processing,Sensor Fusion and Target Recognition Ⅲ,Proc.SPIE,Vol.2232,Apr.1994:111-121.
    [26]Rudd J G and Marsh R A.Single-scan Tracking Using N infrared Sensors,Signal and Data Processing of Small Targets 1992,Proc.SPIE,Vol.1698,1992:394-401.
    [27]Danis N J.Space-based Tactical Ballistic Missile Launch Parameter Estimation.IEEE Transactions on Aerospace and Electronic Systems,Vol.29(2),April 1993:412-424.
    [28]Yicong Li,Kirubarajan T,Bar-Shalom Y and Yeddanapudi M.Trajectory and Launch Point Estimation for Ballistic Missiles from Boost Phase LOS Measurements,IEEE Aerospace Conference Proceedings,Vol.4,1999:425-442.
    [29]Murali Yeddanapudi,Yaakov Bar-Shalom,Krishna R.Pattipati and Somnath Deb.Ballistic Missile Track Initiation from Satallite Observation[J].IEEE Trans On.AES.July 1995,31(3):1054-1071.
    [30]Gary L.Sitsman and Gregory H.Drescher.Tactical Ballistic Missiles Trajectory State & Error Covariance Propagation[J]..
    [31]Murali Yeddanapudi and Yaakov Bar-shalom.Trajectory Prediction for Ballistic Missiles Based on Boost Phase LOS Measurements[J].SPIE Vol 3163:316-328.
    [32]Yeddanapudi M,Bar-Shalom Y,et al.Ballistic Missile Track Initiation from Satellite Observations[J].IEEE Trans.On AES,July 1995,31(3):1054-1071.
    [33]Norman J.Danis.Space-Based Tactical Ballistic Missile Launch Parameter Estimation[J].IEEE Trans.On AES.April 1993,29(2):412-424.
    [34]李盾,周一宇,吕彤光,苗雨.空间预警系统对弹道导弹发射的探测[A].中国电子学会电子对抗分会第十二届学术年会论文集[C].洛阳:2001.
    [35]李盾,周一宇,吕彤光,苗雨.空间预警系统对弹道导弹的监视与跟踪[J].系统工程与电子技术.2002,24(3):52-56.
    [36]李盾.空间预警系统对目标的定位与预报[D].博士学位论文.长沙:国防科技大学研究生院,2001,10.
    [37]张涛,安玮,周一宇,李骏.基于推力加速度模板的主动段弹道跟踪方法[J].宇航 学报.2006,27(3):385-389.
    [38]邓大松.俄罗斯路基预警雷达系统大解剖[J].电子工程信息.2006,2:10-15.
    [39]花良发.俄罗斯战略相控阵雷达部署现状及发展[J].火力与指挥控制.2007.32(2):1-4.
    [40]邓大松.俄罗斯路基导弹预警雷达系统的演变升级[J].外军信息战.2006,2:27-32.
    [41]袁俊.美国的国家战略预警系统[J].中国航天.2001,11:35-40.
    [42]郑同良.弹道导弹预警探测雷达的发展[J].电子工程信息.2004,2:17-21.
    [43]毛滔.空间监视相控阵雷达数据处理建模与仿真[D].硕士学位论文.长沙:国防科技大学研究生院,2003,12.
    [44]张光义,王德纯,华海根.空间探测相控阵雷达[M].北京:科学出版社,2001年.
    [45]张毅,杨辉耀,李俊莉.弹道导弹弹道学[M].长沙:国防科技大学出版社,1999:97-98.
    [46]王献锋,李为民,申卯兴.战术弹道导弹弹道和落点预报探讨[J].空军工程大学学报.2000,1(5):65-67.
    [47]顾铁军.战术弹道导弹落点预报的一种方法[J].战术导弹技术.2002,1,(1):9-12.
    [48]温羡峤,刘谭军.地地战术弹道导弹(TBM)弹道及落点预报[J].现代防御技术.1997,(1):1-10.
    [49]赵健康,任萱,陈克俊.高轨红外扫描探测卫星对TBM预警性能的初步分析[J]..
    [50]周颖,王雪松,冯德军,丹梅.基于弹道预报的相控阵雷达监视空域研究[J].电子与信息学报.July 2006,28(7):1209-1214.
    [51]Dale R.Billetter.Multifunction Array Radar[M].Norwood:Artech House,1989.71-77.
    [52]D.K.Barton.Modern Radar System Analysis[M].Norwood:Artech House,1989:315-319.
    [53]陈明辉.弹道导弹防御相控阵雷达欺骗干扰效果仿真与评估研究[D].硕士学位论文.长沙:国防科技大学研究生院,2003,12.
    [54]库勃里亚诺夫.电子战系统导论[M].南京:信息产业部第十四研究所,1999.
    [55]Enviromental impact statement-operation of the PAVE PAWS Radar System at Otis Aircraft Base[R].AD-A069200:A-3.
    [56]Wilhelm H,Von Aulock.Properties of Phased Arrays[J].Proc.IRE,1960,1715-1727.
    [57]P.J.卡里拉斯.电扫描雷达系统设计手册[M].北京:国防工业出版社,1978:1-15.
    [58]汪茂光,吕善伟等.阵列天线分析与综合[M].成都:电子科技大学出版社, 1989:106-112.
    [59]郭燕昌,钱继曾等.相控阵和频率扫描天线原理[M].北京:国防工业出版社.1978:1-15.
    [60]翟孟云,严育林.阵列天线理论导引[M].北京:国防工业出版社,1980:50-56.
    [61]John E.Fielding.Beam Overlap Impact on Phased-Array Target Detection[J].IEEE Trans.On AES.April 1993,29(2):404-411.
    [62]Paul H.Duncan.Overlapping Search with Scanned Beam Applications[J].IEEE Trans.On AES.July 1996,32(3):984-994.
    [63]钟广海.相控阵雷达扫描波位和扫描时间的设计与优化[J].上海航天,1999,(5):1-6.
    [64]周颖,王雪松,王国玉.相控阵雷达最优波位编排的边界约束算法研究[J].电子学报,2004,32(6):997-1000.
    [65]王雪松,汪连栋等.相控阵雷达天线最佳波位研究[J].电子学报,2003,31(6):5-8.
    [66]Duane J.Matthiesen.Optimal Search[A].IEEE International Radar Conference[C].2003:259-263.
    [67]张最良,李长生,赵文志,丁富力.军事运筹学[M].北京:军事科学出版社,1993.
    [68]Wulf D.Wirth.Fast and Efficient Search with Phased Array Radars[A].IEEE international radar conference[C],April 21-23,1975:198-203.
    [69]W.Fleskes.On Search Strategies of Phased Array Radars[A].IEE Conference Publication International Conference-RADAR[C]1982.12-14.
    [70]W.Fleskes G.V.Keuk.Adaptive Control and Tracking with The ELRA Army Radar Experimental System[C].IEEE International Radar Conference,Apr 28-30,1980:8-13.
    [71]Duane J.Matthiesen.Optimization of Detection Performance[A].IEE 2002.
    [72]E.R.Billam.Design and Performance for Phased Array Radar[R].IEE Conference Publication International Conference-RADAR 82,1982:15-19.
    [73]E R Billam.Parameter Optimisation in Phased Array Radar[A].in Proc.Radar 92,1992,IEE Conf Publ.No.365:34-37.
    [74]Ayman A.Abdel-Samad and Ahmed H.Tewfik.Optimal Sequential Search Technique for Radar Target Localization[J].Part of the SPIE Conference on Radar Processing Technology and Applications Ⅲ.San Diego,California.July 1998,SPIE,Vol.3462:221-227.
    [75]Ayman A.Abdel-Samad,Ahmed H.Tewfik.Search Strategies for Radar Target Localization.IEEE International Radar Conference.1999:862-866.
    [76]Gerard V.Trunk and Dharmesh P.Patel.Optimal Number of Phased Array Faces and Signal Processors for Horizon Surveillance[J].IEEE Trans.On AES.July 1997, 33(3):1002-1006.
    [77]W.M.Waters,D.P.Patel and G.V.Trunk.Optimum Number of Faces of a Volumn-Scanning Active Array Radar[J].IEEE Trans.On AES.July 1998,34(3):1032-1037.
    [78]Allan Jablon and Ashok Agrawal.Optimal Number of Array Faces for Active Phased Array Radars[J].IEEE Trans.On AES.Jan 2006,42(1):351-360.
    [79]G.V.Trunk,D.P.Patel.Optimal Number of Phased Array Faces for Horizon Surveillance.IEEE International Radar Conference.1996:214-216.
    [80]Edward C.Posner.Optimal Search Procedures[J].IEEE Transactions on Information Theory,1963,7.157-160
    [81]Robert J.Galejs.Volumn Surveillance Radar Frequency Selection[A].IEEE International Radar Conference[C].2000:187-192.
    [82]王德纯.雷达搜索方式的最佳化[J].现代雷达.1979,3:1-16.
    [83]蔡庆宇.相控阵雷达搜索的优化方法[A].四川省电子学会雷达与火控、电子线路与系统专业委员会学术交流会10周年优秀论文集[C].四川成都,2006.
    [84]徐斌,杨晨阳,李少洪,毛士艺.相控阵雷达的最优分区搜索算法[J].电子学报,2000,28(12):69-73.
    [85]徐斌,杨晨阳,李少洪,毛士艺.相控阵雷达中的自适应搜索研究[J].电子学报,2001,29(12):1719-1722.
    [86]卢建斌,胡卫东,郁文贤.相控阵雷达资源受限时最优搜索性能研究[J].系统工程与电子技术,2004,26(10):1388-1340.
    [87]卢建斌,胡卫东,郁文贤.相控阵雷达资源受限时最优搜索性能研究[J].系统工程与电子技术.2004,26(10):1388-1390.
    [88]刘红,寇光兴.有假信号干扰时的最优搜索[J].空军工程大学学报,2001,2(3):26-29.
    [89]卢建雄.相控阵雷达的优化搜索方法[D].硕士学位论文.航天工业总公司第二十三所,1997.
    [90]Merrill l.Skolnik.左群声,徐国良,马林,王德纯等译.雷达系统导论(第三版)[M].北京:电子工业出版社,2006.186-187.
    [91]王德纯,丁家会,程望东.精密跟踪测量雷达技术[M].北京:电子工业出版社.2006.
    [92]贲德,韦传安,林幼权.机载雷达技术[M].北京:电子工业出版社.2006.
    [93]Merrill I.Skolnik主编.雷达手册(第二版).北京:电子工业出版社.2003.
    [94]文树梁,秦忠宇,袁起.相控阵雷达目标径向速度数字精确测量技术[J].电子与信息学报.2004,26(11):1752:1757.
    [95]A.A.Ksienski,R.B.McGhee.A decision theoretic approach to the angular resolution and parameter estimation problem for multiple targets.IEEE Trans.On AES, 1968,AES-4:443-455.
    [96]P.Z.Peebles,R.S.Berkowitz.Multiple target monopulse radar processing techniques.IEEE Trans.On.AES,1968,AES-4:845-854.
    [97]G.E.Pollon,G.W.Lank.Angular tracking of two closely spaced radar targets,.IEEE Trans.On.AES,1968,AES-4:541-550.
    [98]Sherman,S.M.Complex indicated angles applied to unresolved targets and multipath[J].IEEE Trans.On AES,Jan 1971:160-170.
    [99]S.J.Asseo.Effect of monopulse signal thresholding on tracking multiple targets.IEEE Trans.On AES,1974,AES-7:504-509.
    [100]S.J.Asseo.Detection of target multiplicity using quadrature monopulse angle,.IEEE Trans.OnAES,1981,AES-17:271-280.
    [101]R.J.McAulay,T.P.Mcgarty.Maximum-likelihood detection of unresolved radar targets and multipath,.IEEE Trans.On AES,1974,AES-7:821-829.
    [102]Bogler P.L.Detecting the presence of target multiplicity[J].IEEE Trans.On AES,Mar.1986:197-203.
    [103]W.D.Blair,M.Brandt-Pearce.Monopulse processing for tracking unresolved targets[R].ADA-330556.September 1997.
    [104]W.D.Blair,M.Brandt-Pearce.Unresolved Rayleigh target detection using monopulse measurements.IEEE Trans.On AES,1998,2(34):543-552.
    [105]W.D.Blair,M.Brandt-Pearce.Monopulse DOA estimation of two unresolved Rayleigh targets.IEEE Trans.On AES,2001,2(37):452-468.
    [106]W.D.Blair,M.Brandt-Pearce.Statistical description of monopulse parameters for tracking Rayleigh targets.IEEE Trans.On AES,1998,2(34):597-611.
    [107]A.Sinha,T.Kirubarajan,Y.Bar-Shalom.Maximum likelihood angle extractor for two closely spaced targets.IEEE Trans.On AES,2002,38(1):183-203.
    [108]Wang Z.,Sinha A.,Willett P.and Bar-Shalom Y.Angle Estimation for Two Unresolved Targets with Monopulse Radar[J].IEEE Trans.On AES,July 2004,40(3):998-1019.
    [109]Ned J.Corron..Resolving Closely Spaced Targets Using Linear FM Envelope Processing[A].IEEE International Radar Conference[C].1995:62-66.
    [110]R.L.米切尔.雷达系统模拟[M].北京:科学出版社,1982.
    [111]Sergey A.Leonov,Alexander I.Leonov.Handbook of Computer Simulation in Radio Engineering,Communications,and Radar[M].Artech House,2001.
    [112]G.Richard Curry.Radar Systems Performance Modeling[M].Aretech House,2001.
    [113]Yakov D.Shirman,Sergey A.Gorshkov,Sergey P.Leshchenko,Valeriy M.Orlenko.Computer Simulation of Aerial Target Radar Scattering,Recognition,Detection and Tracking[M].Artech House,2002.
    [114]王国玉,肖顺平,汪连栋.电子系统建模仿真与评估[M].长沙:国防科技大学出版社,1999.
    [115]王国玉,汪连栋等.雷达电子战系统数学仿真与评估[M].北京:国防工业出版社,2004.
    [116]曾洪祥.雷达电子战系统建模仿真技术和作战效能评估的研究[D].博士学位论文,长沙:国防科技大学研究生院,2000,8.
    [117]施龙飞.相控阵雷达系统相干视频仿真与研究[D].硕士学位论文,长沙:国防科学技术大学研究生院,2002,11.
    [118]帅鹏.“宙斯盾“AN/SPY-1D雷达系统仿真研究与实现[D].硕士学位论文.长沙:国防科技大学,2002,11.
    [119]李文臣.空间监视相控阵雷达建模与仿真研究[D].硕士学位论文.长沙:国防科技大学研究生院,2003,11.
    [120]吕雁.基于PC的单脉冲雷达系统建模与仿真[D].硕士学位论文.西安:西安电子科技大学,2002,1.
    [121]凌茵.相控阵雷达仿真系统研究与实现[D].硕士学位论文.北京:北京理工大学,2003,1.
    [122]王欣,典型体制雷达干扰技术仿真研究[D].硕士学位论文.南京:南京理工大学,2001,1
    [123]段惠萍,雷达系统的建模与仿真[D].硕士学位论文.西安:西安电子科技大学,2001,1
    [124]DMSO.High-Level Architecture Rules.Version 1.3.5 February 1998.
    [125]DMSO.High-Level Architecture Interface Specification.Version 1.3.2 April 1998.
    [126]DMSO.High-Level Architecture Object Model Template Specification.Version 1.3.20 April 1998.
    [127]周彦,戴剑伟主编.HLA仿真程序设计[M].北京:电子工业出版社,2002.
    [128][美]Frederick Kuhl,Richard Weatherly,Judith Dahmann著.付正军,王永红译.计算机仿真中的HLA技术[M].北京:国防工业出版社,2003.
    [129]E.R.Billam.The Problem of Time in Phased Array Radar[A].IEE Radar 97[C],Oct.1997:563-567.
    [130]K.H.Keil.Generic case study:Evaluation of early warning satellite cueing radars against TBM[A].Proceedings of the SPIE Conference on Signal and Data Processing of Small Targets[C].vol.3809,1999:297-307.
    [131]邵立,李双刚,孙晓泉.导弹预警卫星探测原理及其攻防技术探讨[J].红外技术.2006,28(1):43-46.
    [132]张权.国外早期预警卫星发展透视[J].电子工程信息,2005,2:4.
    [133]袁俊.弹道导弹预警关键技术的应用发展[J].中国航天.2002,(11):41-45.
    [134]马元申,尹志忠,张文静.NMD中导弹预警卫星系统的发展[J].上海航天.2003,(5):42-45.
    [135]超绍颖,杨文军.用于空间目标监视的相控阵雷达需求分析[J].现代雷达.2006,28(1):16-19.
    [136]赵锋,王雪松,肖顺平.高耦合系数条件下径向速度测量的新方法[J].信号处理.录用待刊.
    [137]张光义.相控阵雷达系统[M].北京:国防工业出版社,1994.
    [138]Albert G.Huizing and Axel A.F.Bloemen.An Efficient Scheduling Algorithm for a Multifunction Radar[J].IEEE 1996.
    [139]Xin Zhang,Peter K.Willett and Yaakov Bar-Shalom.Monopulse Radar Detection and Localization of Multiple Unresolved Targets via Joint Bin Processing[A].IEEE Trans.On SP.April 2005 53(4):1225-1236.
    [140]林茂庸,柯有安编著.雷达信号理论[M].北京:国防工业出版社,1984.
    [141]丁鹭飞,耿富录.雷达原理.西安:西安电子科技大学出版社.2003.
    [142]蒋德富.相控阵雷达系统设计的研究[J].现代雷达,1998,20(3):1-7.
    [143]Pierre Dodin,Pierre Minvielle and Jean-Pierre Le Cadre.A branch-and-bound algorithm applied to optimal radar search pattern[J].Aerospace Science and Technology.2007,11:279-288.
    [144]钟广海.相控阵雷达扫描波位和扫描时间的设计与优化[J].上海航天,1999,(5):1-6.
    [145]张祖稷,金林,束咸荣编著.雷达天线技术[M].北京:电子工业出版社.2005.
    [146]江卫,徐卫.机载相控阵火控雷达搜索方式的参数选择[J].电子科学技术评论.2005,5:15-17.
    [147]邵江达.平面相控阵面天线最佳倾角和最大单元间距的确定[J].现代雷达,1997.1:50-54.
    [148]陈宏达.相控阵雷达搜索工作方式的研究[J].系统工程与电子技术.1992,7:1-7.
    [149]张光义,刘兆磊,赵玉洁.工作方式对相控阵雷达作用距离的影响[J].现代雷达.2003,25(5):1-6.
    [150]周颖等.相控阵雷达最优波位编排的边界约束算法研究[J].电子学报,2004(6):997-1000.
    [151]罗佳.相控阵雷达仿真系统建模与模型校验关键技术研究[D].硕士学位论文.长沙:国防科技大学研究生院,2003,11.
    [152]刘克成,宋学诚.天线原理[M].长沙:国防科技大学出版社.1989.
    [153]王连成 译.现代雷达的计算机控制[M].航空航天工业部第二研究院.1992 年7月.
    [154]沈永欢等编.实用数学手册[M].科学出版社.2002年1月.
    [155]何友,关键,彭应宁等.雷达自动检测与恒虚警处理[M].北京:清华大学出版社,1999.
    [156]强勇,焦李成,保铮.一种有效的用于雷达弱目标检测的算法[J].电子学报.2003.31:440-443.
    [157]J.David R.Kramer,Jr.Wallace,et al.Track-Before-Detect Processing for an Airbome Type Radar[A].IEEE International Radar Conference[C],1990:422-427.
    [158]W.R.Wallace.The Use of Track-Before-Detect in Pulse-Doppler Radar[A].IEEE Radar International Conference[C],2002:315-319.
    [159]刘昌华,黄绍斌,张聪.一种提高警戒雷达目标检测能力的数据处理方法[J].船舶电子工程,2004,24(3):110-113.
    [160]S.Sivananthan,T.Kirubarajan and Yaakov Bar-Shalom.Radar Power Multiplier for Acquisition of Low Observables Using an ESA Radar[J].IEEE Trans.On AES.April 2001,37(2):401-416.
    [161]Fitzgerald R J.Effect of range-Doppler coupling on chirp radar tracking accuracy [J].IEEE Trans OnAES,1974,AES-10(43):528-532.
    [162]Wong W,Blair W D.Steady state tracking with LFM waveforms[J].IEEE Trans On AES,2000,AES-36(2):701-709.
    [163]Niu R,Willett P,Bar-Shalom Y.From the waveform through the resolution cell to the tracker[A].Proceedings of IEEE Aerospace Conference[C].Snowmass,CO,USA:IEEE Incorporated,1999.4:371-385.
    [164]Rago C,Willett P,Bar-Shalom Y.Detection-tracking performance with combined waveforms[J].IEEE Trans On AES,1998,AES-2(34):612-623.
    [165]Bar-Shalom Y.Negative correlation and optimal tracking with Doppler measurements[J].IEEE Trans On AES,2001,AES-37(3):1117-1120.
    [166]Farina A,Pardini S,Barontini G.Application of nonlinear filtering theory to a track-while-scan problem[A].1st Int.Conf.Information Sciences and Systems[C].Patras:CISS,1976.
    [167]Farina A,Pardini S.Tracking-while-scan Algorithm in a clutter Environment[J].IEEE Trans On AES,1978,AES-14(5):769-778.
    [168]王建国,何佩琨,龙腾.径向速度测量在Kalman滤波中的应用[J].北京理工大学学报,2002,22(2):225-227.
    [169]王建国,龙腾,何佩琨.一种线性调频波形下的目标跟踪算法[J].现代雷达,2003,2(25):26-29.
    [170]E.R.Billam.Parameter Optimization in Phased Array Radar[C].IEE Conference Publication International Conference-RADAR 92,Oct 12-13,1992:34-37.
    [171]罗鹏飞,张文明.一种多目标跟踪航迹起始新算法及其性能评估[J].国防科技大学学报,1999,(6):51-54.
    [172]赵锋,李盾,王雪松,肖顺平.导弹防御雷达仿真系统.系统仿真学报,2006,18(5):1190-1194.
    [173]张光义,赵玉洁.相控阵雷达技术.北京,电子工业出版社,2006,45-47.
    [174]弋稳.雷达接收机技术[M].北京.电子工业出版社,2006,97.
    [175]Chris A.Hamner and Mark W.Maier.Methods to reducee range glint in radars[J].IEEE International Radar Conference.1997:83-102.
    [176]D.C.施莱赫著,顾耀平等译.信息时代的电子战[M].信息产业部电子第二十九所电子对抗国防科技重点实验室.2000.
    [177]E R Billam.MESAR-The Application of Modern Technology to Phased Array Radar.
    [178]康凤举.现代仿真技术与应用[M].北京:国防工业出版社,2001.
    [179]Baugh R.A.Computer Control of Modem Radar[M].N.J.RCA,Missile and Surface Radar,1973.
    [180]Chi-Sheng Shih,Sathish Gopalakrishnan,Phanindra Ganti.Templates-Based Real-Time Dwell Scheduling with Energy Constraint[A],Proceedings of the 19th Real-Time and Embedded Technology and Application Symposium[C],2003.1808-1812.
    [181]何友,关键,孟祥伟等.雷达自动检测和CFAR处理方法综述[J].系统工程与电子技术.2001,23(1):9-14.
    [182]黄健,黄柯棣.HLA中的时间管理[J].计算机仿真,2000年7月,17(4):70-73.
    [183]陈凌云,姜振东.HLA/RTI中时间管理服务研究[J].指挥技术学院学报,2001年12月,12(6):63-67.
    [184]Fujimoto,Richard M.Parallel and Distributed Simulation Systems.Wiley Interscience.1999.
    [185]赵锋,王雪松,削顷平.高耦合系数条件下径向速度估计的新方法[J].电子学报,2005,33(9):1571-1575.
    [186]David K.Barton and Sergey A Leonov.Radar Technology Encyclopedia[M].Artech House,Boston-London,1998.
    [187]王令敏.基于HLA的雷达系统建模与仿真研究[D].硕士学位论文.长沙:国防科技大学研究生院,2004,11.
    [188]Michael Zatman.Radar Resource Management for UESA[A].IEEE International Conference,2002:73-76.
    [189]黄培康,殷红成,许小剑.雷达目标特性.北京,电子工业出版社,2006,157.
    [190]McAulay R.J.and McGarty T.P.Maximum-likelihood detection of unresolved radar targets and multipath[J].IEEE Trans.On AES,Nov 1974:520-531.
    [191]Torfieri D J.Statistical Theory of Passive Location System,IEEE Transactions on Aerospace and Electronic Systems,Vol.20(2),March 1984:183-198.
    [192]张钧屏,方艾里,万志龙.对地观测与对空监视[M].北京:科学出版社,2001:97-98.
    [193]李文臣.空间监视相控阵雷达建模与仿真研究[D].硕士学位论文.长沙:国防科技大学研究生院,2003,11.
    [194]Hahn,P.M.and Gross,S.D.Beam Shape Loss and Surveillance Optimization for Pencil Beam Arrays.IEEE Trans.On AES,July 1969,5(4):674-675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700