粒子滤波及其在光纤捷联惯性导航系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒子滤波技术是非线性滤波技术中的一种,理论上它适用于任意非线性系统的状态估计,可有效解决光纤捷联惯性导航系统中的非线性滤波问题。本文针对光纤捷联惯性导航系统的特性,对以粒子滤波为代表的非线性滤波基本理论及其在惯性器件误差补偿、惯性导航系统快速初始对准、惯性/卫星组合导航系统中的应用展开了深入研究。充分发挥和挖掘粒子滤波的优势,解决光纤捷联惯性导航系统中的非线性滤波问题,提高光纤捷联惯性导航系统的精度,为进一步提高武器装备的精确打击能力奠定基础。
     本文首先针对粒子滤波基本原理,深入研究了粒子滤波在实际应用中出现退化现象的解决方案,从选取更优重要性函数和增加粒子多样性两个方面,对粒子滤波改进算法进行了研究。论文首先从设计更优重要性函数的角度出发,结合马尓柯夫链蒙特卡罗移动方法,设计了基于二阶插值滤波器的重要性函数,研究并提出了一种基于二阶插值滤波的粒子滤波改进算法;从获取更具效率粒子、增加粒子多样性的角度出发,分析了不同近似方法的特性,研究了基于网格的粒子滤波算法;最后针对网格近似过于平均化的问题,引入分层近似的策略,进一步研究并提出了采用分层近似策略的粒子滤波改进算法。
     为了提高光纤陀螺的使用精度,本文对粒子滤波技术在光纤陀螺ARIMA降噪中的应用进行了研究。在光纤陀螺ARIMA建模方法的基础上,将光纤陀螺的ARIMA模型辨识和状态估计相结合,构建了光纤陀螺的ARIMA非线性滤波模型,研究并提出了基于粒子滤波的光纤陀螺ARIMA模型辨识方法。静态、动态情况下光纤陀螺实际数据验证结果表明,该方法可根据光纤陀螺输出对ARIMA模型参数进行估计,从而提高光纤陀螺状态估计的精度,能够适应不同运动状态下的光纤陀螺信号降噪。
     为了提高光纤捷联惯性导航系统初始对准速度和精度,本文研究并提出了两种基于粒子滤波的快速初始对准方法。在大失准角对准非线性滤波模型基础上,提出了引入等效东向陀螺信息辅助的快速初始对准方案,研究并提出了基于marginalized粒子滤波的快速初始对准方法。通过对常规二位置初始对准方法的深入分析,推导了二位置情况下的姿态角计算和滤波非线性模型,研究并提出了一种适用于光纤捷联惯性导航系统的粒子滤波二位置快速初始对准方法,有效提高光纤捷联惯性导航系统的初始对准精度和速度,具有较好的工程应用价值。
     最后,根据光纤捷联惯导系统/GPS组合导航系统的非线性特性,论文将粒子滤波与其他非线性滤波方法有效结合,充分发挥各种滤波方法的特点与优势,研究并提出了基于粒子滤波的光纤捷联惯导系统/GPS松组合导航技术方案。该方案在保证组合导航精度的前提条件下,有效降低粒子滤波计算量,从而提高了粒子滤波应用于光纤捷联惯导系统/GPS组合导航系统的实时性能。
     本文紧密结合工程应用需求,对粒子滤波技术及其在光纤捷联惯性导航系统中的应用进行了深入和系统的研究,论文研究成果对于非线性粒子滤波技术的工程应用和推广具有重要参考价值。
Particle filtering is a key technique in nonlinear filtering. It can be applied to state estimation for any nonlinear system and effectively solve the nonlinear filtering problem in fiber optic strap-down inertial navigation system. Based on the property of fiber optic strap-down inertial navigation system, this paper makes an in-depth research on the basic theory of particle filter and its application to inertial instrument error compensation, to fast initial alignment of inertial navigation system and to inertial / satellite integrated navigation system. The advantages of particle filter are brought into full play to address the non-linear filtering problem in fiber optic strap-down inertial navigation system, to improve the system precision and thus lay the foundation for the enhancement of accurate targeting and attacking of weapons and equipments.
     Firstly, based on the basic theory of particle filtering, a thorough study is made on the problem of particle degeneracy. The improved particle filtering algorithm is investigated from two aspects: the selection of better importance density and the increase of particle diversity. Started from the point of finding a better importance density, combined with MCMC transfer method, this research first designs the importance density grounded on 2-Order interpolation filters. And then brings forward an improved particle filtering algorithm based on 2-Order interpolation filtering. In terms of particle efficiency and particle diversity, the research first analyzes the characteristics of different approximation methods, studies particle filtering algorithm based on grid, then introduces stratified approximation to solve the problem of even grid approxiamtion, and finally proposes an improved particle filter algorithm using stratified approximation.
     In order to improve the applied precision of FOG, this paper has studied noise removal performance of particle filtering in fiber optic gyro ARIMA. Based on FOG ARIMA modeling method, the research combines ARIMA model identification with FOG state estimation, constructs a nonlinear filtering FOG ARIMA model and puts forward a FOG ARIMA model identification method based on particle filtering. Data collected from FOG in both static and dynamic states experiments indicates that the proposed method can estimate ARIMA model parameters in response to the outputs of FOG, improve the accuracy of FOG state estimation and reduce signal noise of FOG in different motion states.
     In view of initial alignment speed and accuracy for fiber optic SINS, this study initiates two fast initial alignment methods based on particle filter. On the basis of large misalignment angle alignment in nonlinear filtering model, this research introduces the measurement information from the equivalent of east gyro and comes up with a fast initial alignment algorithm based on marginalized particle filter. In addition, after a thorough analysis on conventional two-position initial alignment method is made, the nonlinear attitude angle calculation and filter modeling is carefully deduced. Finally, a two-position fast initial alignment algorithm for particle filter feasible to fiber optic strap-down inertial navigation system is proposed. The new approach can effectively improve the accuracy and speed of initial alignment in fiber optic strap-down inertial navigation system, and thus is of great engineering application value.
     At last, considering the nonlinear characteristics of fiber optic strap-down inertial / GPS integrated navigation system, this research effectively combines particle filtering with other nonlinear filtering method to make the best use of the traits and advantages of all the filtering methods. A fiber optic strap-down inertial / GPS loose integrated navigation scheme based on particle filter is brought forward. With the precision of integrated navigation assured, this scheme can effectively reduce the computational workload of particle filter, and thus improve the real time performance of particle filter used in fiber optic strap-down inertial / GPS integrated navigation system.
     Closely linked to engineering applications, this dissertation has carried out a thorough and systematic research on particle filtering technique and its applications to fiber optic strap-down inertial navigation system. Achievements of the study will be valuable reference to the engineering application and promotion of nonlinear particle filter technique.
引文
[1]蔺玉亭,孙付平,朱新慧.光纤陀螺的发展及其在惯导中的应用前景.测绘工程,2005, 14(1): 41~43.
    [2]赖际舟.光纤陀螺的温度补偿技术及基于FIMU的组合导航技术研究,[博士学位论文].南京:南京航空航天大学,2005.
    [3] R E Kalman. A new approach to linear filtering and prediction problems. Transactions of the ASME, Journal of Basic Engineering, 1960, 82: 34~45.
    [4]汪叔华.最优滤波与应用.南京:南京航空航天大学, 2001.
    [5]陆海勇.捷联惯性导航系统中UKF滤波技术的应用研究,[硕士学位论文].南京:南京航空航天大学,2009.
    [6] Y Sunahara. An approximate method of state estimation for nonlinear dynamical systems. Joint Automatic Control Conf, Univ. of Colorado, 1969.
    [7] Y Bar-Shalom, X R Li, and T Kirubarajan. Estimation with applications to tracking and navigation. John Wiley & Son, Inc., 2001.
    [8] G Haupt, N Kasdin. Optimal recursive iterative algorithm for discrete nonlinear least-squares estimation. Journal of Guidance, Control and Dynamics. 1996, 19(3): 643~649.
    [9] N Kasdin, G Haupt. Second-order correction and numerical considerations for the two-step optimal estimator. Journal of Guidance, Control and Dynamics. 1997, 20(2): 362~369.
    [10] M C Algrain, J Saniie. Interlaced Kalman filtering of 3-D angular motion based on Euler's nonlinear equations. IEEE Trans AES, 1994, 30(1):175~185.
    [11] S J Julier, J K Uhlmann and H F Durrant-Whyte. A new approach for filtering nonlinear system. Seattle, Washington: Proc of the American Control Conf, 1995: 1628~1632.
    [12] S J Julier, J K Uhlmann. A general method for approximating nonlinear transformations of probability distributions. Technical Report, Robotics Research Group, Department of Engineering Science, University of Oxford, 1996.
    [13] S J Julier, J K Uhlmann. A new extension of the Kalman filter to nonlinear systems. Orlando, Florida, In Proc of AeroSence: The 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls, 1997: 54~65.
    [14] S J Julier, J K Uhlmann and H F Durrant-Whyte. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3): 477~482.
    [15] S J Julier. The scaled unscented transformation. Jefferson: Proc of the American Control Conference, 2002: 4555~4559.
    [16] R van der Merwe, E A Wan. The squared-root unscented Kalman filter for state and parameter estimation. Salt Lake City : Acoustics, Speech, and Signal Processing, 2001 Proceedings, 2001 IEEE International Conference on, 2001: 3461~3464.
    [17]李丹.小卫星多传感器自主导航关键技术研究,[博士学位论文].南京:南京航空航天大学,2008.
    [18] M N?rgaard, N K Poulsen and O Ravn. New developments in state estimation for nonlinear system. Automatica, 2001, 36: 1627~1638.
    [19] K. Ito, K. Xiong. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control. 2000, 45(5): 910~927.
    [20] J M Hammersley, K W Morton. Poor man’s Monte Carlo. Jounal of the Royal Statistical Society B, 1954, 16: 23~38.
    [21] J E Handschin, D Q Mayne. Monte Carlo techniques to estimate the conditional expectation in multi-stage nonlinear filtering. International Journal of Control, 1969, 9(5): 547~559.
    [22] H Akashi, H Kumamoto. Random sampling approach to state estimation in switching environments. Automatica, 1977, 13: 429~434.
    [23] N Gordon, D J Salmond and A F M Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings-Radar, Sonar & Navigation, 1993, 140(2): 107~113.
    [24] R vander Merwe, A Doucet, N de Freitas and E Wan. The unscented particle filter. Technical Report, Department of Engineering, Cambridge University, 2000.
    [25]Jayesh H Kotecha, Petar M Djuric. Gaussian particle filtering. IEEE Transactions on Signal Processing, 2003, 51(10): 2592~2601.
    [26] D Fox. Adapting the sample size in particle filters through KLD-sampling. The International Journal of Robotic Research, 2003, 22(12): 985~1003.
    [27] Cody Kwok, Dieter Fox, Marina Meila. Real-time particle Filters. Proc of the IEEE, 2004, 92 (3) :470~471 .
    [28]李涛.非线性滤波方法在导航系统中的应用研究,[博士学位论文].长沙:国防科技大学,2003.
    [29] Thomas Sch?n, Fredrik Gustafsson. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Transactions on Signal Processing, 2005, 53(7), 2279~2289.
    [30]方正,佟国峰,徐心和.粒子群优化粒子滤波方法.控制与决策,2007,22(3):273~277.
    [31]孙伟,郭宝龙.一种伪粒子滤波的多目标跟踪方法.西安电子科技大学学报,2008,35(2):249~253.
    [32]胡士强,敬忠良.粒子滤波算法综述.控制与决策,2005,20(4),361~371.
    [33] Bogdan Kwolek. Finding location using a particle filter and histogram matching. Zakopane, Poland: Artificial Intelligence and Soft Computing - ICAISC 2004, 7th International Conference, 2004: 786~791.
    [34] Xenofon Koutsoukos, James Kurien and Feng Zhao. Estimation of distributed hybrid systems using particlefiltering methods. Prague, Czech Republic: Hybrid Systems: Computation and Control (HSCC'03),2003: 298~313.
    [35] P M Djuric, J H Kotecha and Jianqui Zhang, et al. Particle filtering. Signal Processing Magazine, IEEE 2003: 19~38.
    [36] D L Alspach, H W Soreson. Nonlinear Bayesian estimation using Gaussian sum approximation. IEEE Transaction on Automatic Control, 1972, 17(4): 439~448.
    [37] Jayesh H Kotecha, Petar M Djuric′. Gaussian sum particle filtering. IEEE Transactions on Signal Processing, 2003, 51(10): 2603~2613.
    [38]赵伟,袁信,林雪原.采用H∞滤波器的GPS/INS全组合导航系统研究.航空学报, 2002, 23(3): 265~267.
    [39]康国华,刘建业,刘瑞华,赵伟.闭环H∞滤波在无源北斗/SINS导航系统中的实现.控制与决策2007, 22(5): 566~568.
    [40]范科,赵伟,刘建业.自适应滤波算法在SINS/GPS组合导航系统中的应用研究.航空电子技术, 2008, 39(3): 11~15.
    [41] Yi Qu, Zhong Liu and Shiyan sun. The research of underwater target tracking adaptive algorithm based on bearings and time-delay. Shenzhen, China: 2007 IEEE International Conferenceon Integration Technology, 2007: 530~533.
    [42] Santong Zhang. An adaptive unscented Kalman filter for dead reckoning systems. Wuhan, China: 2009 International Conference on Information Engineering and Computer Science, 2009: 1~4.
    [43] Kwang-Hoon Kim, Gyu-In Jee, Chan-Gook Park and Jang-Gyu Lee. The stability analysis of the adaptive fading extended Kalman filter using the innovation covariance. International Journal of Control, Automation, and Systems, 2009, 7(1): 49~56.
    [44] F Knorn, D J Leith. Adaptive Kalman filtering for anomaly detection in software appliances. Phoenix AZ. USA: IEEE Conference on Computer Communications Workshops, 2008: 1~6.
    [45] J L Crassdis, F L Markley. Predictive filtering for altitude estimation without rate sensors. Journal of Guidance, Control and Dynamics, 1997, 20(3): 522~527.
    [46]张永安.非线性滤波及其在寻的制导中的应用,[博士学位论文].哈尔滨:哈尔滨工业大学, 2004.
    [47] H A P Blom, Y Bar-Shalom. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Transactions on Automatic Control, 1988, 33(8): 780~783.
    [48] Christian Hoffmann, Thao Dang. Cheap joint probabilistic data association filters in an Interacting multiple model design. Heidelberg, Germany: 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2006: 197~202.
    [49] Tan-Jan Ho, Bor-Sen Chen,. Tracking of dispersive DS-CDMA channels: an AR-embedded modified interacting multiple-model approach. IEEE Transactions on Wireless Communications, 2007, 6(1): 166~174.
    [50] N Nandakumaran, S Sutharsan and R Tharmarasa, et al. Interacting multiple model forward filtering and backward smoothing for maneuvering target tracking. Proceedings of the SPIE-The International Society for Optical Engineering, 2009, 7445, 744503.
    [51] Ruan Yanhua, Hong Lang. Use of the interacting multiple model algorithm with multiple sensors. Mathematical and Computer Modelling, 2006, 44(3-4): 332~341.
    [52]熊凯,张洪钺.粒子滤波在惯导系统非线性对准中的应用.中国惯性技术学报.2003,11(6): 20~26.
    [53]张卫明,张继惟,范子杰,钟山.UKF方法在惯性导航系统初始对准中的应用研究.系统工程与电子技术, 2007,29(4):589~592.
    [54] S P Dmitriyev, O A Stepanov, S V Shepel. Nonlinear filtering methods application in INS alignment. Aerospace and Electronic Systems, IEEE Transactions, 1997, 33(1): 260~271.
    [55] Eun-Hwan Shin, Naser El-Sheimy. An unscented Kalman filter for in-motion alignment of low-cost IMUs. Montery: Position Location and Navigation Symposium, 2004:273~279.
    [56] L Zhao, Q Nie and W Gao. A comparison of nonlinear filtering approaches for in-motion alignment of SINS. Harbin: Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, 2007: 1310~1315.
    [57] Y L Hao, Z L Xiong and Z G Hu. Particle filter for INS in-motion alignment. Singapore: The 1st IEEE Conference on Industrial Electronics and Applications, 2006:1~6.
    [58] Y Kubo, S Fujioka, M Nishiyama and S Sugimoto. Nonlinear filtering methods for the INS/GPS in-motion alignment and navigation. International Journal of Innovative Computing, Information and Control, 2006, 2(5): 1137~1151.
    [59]徐剑,毕笃彦,王洪迅,袁建国.基于卡尔曼滤波和粒子滤波器级联模型的静基座惯导初始对准算法及仿真.电光与控制.2006,13(1):27~32.
    [60]段方,刘建业,李丹.微小卫星太阳敏感器/磁强计实时标定算法研究.航空学报, 2007, 28(1): 173~176.
    [61] Babak Azimi-Sadjadi. Approximate nonlinear filtering with applications to navigation,[博士学位论文]. Baltimore: University of Maryland, 2001.
    [62] R v d Merwe, E A Wan, S Julier. Sigma-point kalman filters for nonlinear estimation and sensor-fusion: Applications to integrated navigation. Providence: AIAA Guidance, Navigation and Contol Conference, 2004.
    [63] R Karlsson, F Gustafsson, T Karlsson. Particle filtering and Cramer-Rao lower bound for underwater navigation. Hong Kong: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’03), 2003(6): VI-65-8.
    [64] P-J Nordlund, F Gustafsson. Recursive estimation of three-dimensional aircraft position using terrain-aided positioning. Orlando, Florida: IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP’02), 2002: II1121~1124.
    [65] J L Crassidis, F L Markley. Unscented filtering for spacecraft attitude estimation. Journal of Guidance Control and Dynamics, 2003:536~542.
    [66]段方,刘建业,李荣冰.基于平淡卡尔曼滤波器的微小卫星姿态确定算法.上海交通大学学报, 2005, 39(11): 1899~1903.
    [67]李荣冰. MEMS微惯性导航系统及其在微型飞行器中的应用研究,[博士学位论文].南京:南京航空航天大学, 2007.
    [68]李荣冰,刘建业,赖际舟,熊剑.Sigma-Point直接式卡尔曼滤波惯性组合导航算法.控制与决策, 2009, 24(7): 1018~1022.
    [69] V S Zaritskii, V B Svetnik and L I Shimelevich. Monte Carlo techniques in problems of optimal information processing. Automation and Remote Control, 1975, 36(3): 2015~2022.
    [70] J Carpenter, P Clifford and P Fearnhead. Improved particle filter for nonlinear problems. IEE Proc of Radar, Sonar and Navigation,1999, 146(1): 2~7.
    [71] J S Liu, R Chen. Sequential Monte Carlo methods for dynamical systems. Journal of American Statistical Association. 1998(93): 1032~1044.
    [72] C Andrieu, M Davy, A Doucet. Efficient particle filtering for jump Markov systems. Orlando, Florida : Acoustics, Speech, and Signal Processing, 2002. Proceedings, IEEE International Conference on. 2002(2): II-1625~1628.
    [73] M S Arulampalam, S Maskell, N Gordon and T Clapp. A tutorial on particle filters for online nonlinear / non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174~188.
    [74] C Musso, N Oudjane and F LeGland. Improved regularized particle filter in sequential Monte Carlo methods in practice, A. Doucet, N. de Freitas and N. Gordon, ed.s. Springer-Verlag, 2001: 247~271.
    [75]华冰,刘建业,李荣冰,赵伟,刘瑞华.余度MEMS-IMU/GPS组合导航系统,南京航空航天大学学报, 2007, 39(5): 570~575.
    [76]林玉荣,邓正隆.无陀螺卫星姿态的二阶插值非线性滤波估计.宇航学报, 2003, 24(2) : 173~179.
    [77]马建军,郑志强.基于插值非线性滤波的SINS静基座初始对准.系统仿真学报, 2007, 19 (12): 2783~2789.
    [78] E Punskaya, C Andrieu, A Doucet and W J Fitzgerald. Bayesian curve fitting using MCMC with applications to signal segmentation. Signal Processing, IEEE Transactions on, 2002: 747~758.
    [79] Zia Khan, Tucker Balch, and Frank Dellaert. An MCMC-based particle filter for tracking multiple interacting targets. Springer, Prague, Czech Republic: In European Conference on Computer Vision, 2004(4): 279~290.
    [80]许士芳,谢立,刘济林.基于MCMC粒子滤波的机器人定位.浙江大学学报(工学版), 2007, 41(7): 1083~1087.
    [81]] S J Godsill, T C Clapp. Improvement strategies for Monte Carlo particle filters In: Doucet, A. and De Freitas, J.F.G. and Gordon, N.J., (eds.) Sequential Monte Carlo Methods in Practice. Springer, 2001: 139~158.
    [82] Zhe Chen. Bayesian filtering:from kalman filters to particle filters,and beyond,[博士学位论文]. Hamilton: McMaster University, 2003.
    [83] Tai-Pang Wu, Chi-Keung Tang. Photometric stereo via expectation maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3) :546~560.
    [84] Hunsop Hong, Schonfeld D. A new approach to constrained expectation-maximization for density estimation. Las Vegas, Nevada: ICASSP 2008. IEEE International Conference on Acoustic, Speech and Signal Processes, 2008: 3689~3692.
    [85]刘东波,刘建业,赖际舟.应用小波变换的光纤陀螺动态寻北.应用科学学报, 2008,26(1): 95~99.
    [86]郑子扬,王庆,王宇.基于粒子滤波的光纤陀螺寻北方案.中国惯性技术学报, 2008,16(3): 290~293.
    [87]蒋庆仙,马小辉,陈晓璧,冯玉才.光纤陀螺寻北仪的二位置寻北方案.中国惯性技术学报, 2006, 14(3): 1~5.
    [88]周海波,刘建业,赖际舟.干涉型光纤陀螺随机噪声的分析研究.传感器与微系统, 2006, 25(11): 73~76.
    [89] Nassar, Sameh; Schwarz, Klaus-Peter; El-Sheimy, Naser. INS and INS/GPS accuracy improvement using autoregressive (AR) modeling of INS sensor errors. San Diego, California: Proceedings of the National Technical Meeting, 2004, 936~944.
    [90]朱奎宝,张春熹,张小跃.光纤陀螺随机漂移ARMA模型研究.宇航学报, 2006,27(5): 1118~1121.
    [91]郑智明.光纤陀螺随机误差的处理技术及其应用,[硕士学位论文].南京:南京航空航天大学,2010.
    [92]王新龙,陈涛,杜宇.基于ARMA模型的光纤陀螺漂移数据建模方法研究.弹箭与制导学报, 2006, 26(1):5~7.
    [93]徐帆,马广富.基于ARIMA模型的光纤陀螺随机漂移滤波方法研究.传感器与微系统, 2007, 26(2): 31~36.
    [94] S L Lu, L Xie and J B Chen. New techniques for initial alignment of strapdown inertial navigation system. Journal of the Franklin Institute, 2009,346(10): 1021–1037.
    [95] T J Li. The initial alignment of SINS based on neural network. Wuhan, China: The Sixth International Symposium on Neural Networks, 2009, 1~6.
    [96]钱伟行,刘建业,赵伟,汪叔华.平台式/捷联式惯导传递对准仿真平台的实现.系统工程与电子技术, 2007, 29(5): 795~799.
    [97] Zhang Chuanbin, Tian Weifeng and Jin Zhihua, A novel method improving the alignment accuracy of a strapdown inertial navigation system on a stationary base. Measurement Science and Technology, 2004: 765~769.
    [98] Han Songlai; Wang Jinling. A novel initial alignment method for GPS/INS integration with large initial heading error. Savannah, Georgia: 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation 2009, ION GNSS 2009, 2009, 5: 2832~2842.
    [99] Li Xiang, Yu Liu; Baoku Su and Xiaoxiong Jiang. A novel nonlinear filter for initial alignment in strapdown inertial navigation system. Shenzhen: 2nd International Symposium on Systems and Control in Aerospace and Astronautics, ISSCAA 2008, 2008: 1~6.
    [100] T B Schon, R. Karlsson and F Gustafsson. The marginalized particle filter in practice. Big Sky, Montana: Proc. of Aerospace Conference, 2006.
    [101] P J Nordlund, F Gustafsson. Marginalized particle filter for accurate and reliable terrain-aided navigation. Aerospace and Electronic Systems, IEEE Transactions on, 2009, 45(4): 1385~1399.
    [102]钱伟行.捷联惯导与组合导航系统高精度初始对准技术研究,[博士学位论文].南京:南京航空航天大学,2009.
    [103]张宗麟.惯性导航与组合导航.北京:航空工业出版社,2002.
    [104]李东明.捷联式惯导系统初始对准方法研究,[博士学位论文].哈尔滨:哈尔滨工程大学,2006.
    [105] Yin Jianjuna, Zhang Jianqiua and Mike Klaasb. The marginal Rao-Blackwellized particle filter for mixed linear/ nonlinear state space models. Chinese Journal of Aeronautics, 2007(20): 346~352.
    [106]胡健.捷联惯导系统初始对准及MINS/GPS组合导航系统自对准技术研究,[博士学位论文].南京:东南大学,2007.
    [107] J C Fang, D J Wang. A fast initial alignment method for strapdown inertial navigation system on stationary base. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1501~1505.
    [108] X L Wang, G X Shen. A fast and accurate initial alignment method for strapdown inertial navigation system on stationary base. Journal of Control Theory and Applications, 2005, 3(2): 145~149.
    [109] Yu Fei,Ben Yue-yang,Li Qian,Gao Wei. Optimal two-position alignment for strapdown inertial navigation system. Changsha, Hunan: Intelligent Computation Technology and Automation, 2008 International Conference, 2008: 158~164.
    [110]谢波,裴听国,万彦辉.双位置初始对准技术在车载捷联惯导系统中的应用研究.战术导弹技术, 2004(5): 33~37.
    [111]钱伟行,刘建业,赵伟,赵文芳.基于转动基座的SINS初始对准方法研究.宇航学报, 2008, 29(3): 928~932.
    [112] Jan Wendel, Gert F Trommer. Tightly coupled GPS/INS integration for missile applications. Aerospace Science and Technology, 2004, 8(7): 627~634.
    [113] A Giremus, A Doucet and V Calmettes, et al. A Rao-Blackwellized particle filter for INS/GPS integration. Quebec, Canada: Acoustics, Speech, and Signal Processing, 2004: 964~967.
    [114]鲍其莲,周媛媛.基于UKF的GPS/SINS伪距(伪距率)组合导航系统设计.中国惯性技术学报, 2008, 16(1): 78~82.
    [115] Audrey Giremus, Jean-Yves Tourneret. Controlling particle filter regularization for GPS/INS hybridization. Florence, Italy: European Signal Processing Conference, 2006.
    [116] A Giremus, J Y Tourneret and P M Djurid. An improved regularized particle filter for GPS/INS integration. Toulouse, France: IEEE 6th Work-shop on Signal Processing Advances in Wireless Communications, 2005:1013~1017.
    [117] T Hektor, H Karlsson and P J Nordlund. A marginalized particle filter approach to an integrated INS/TAP system. Monterey, USA:2008 IEEE/ION Position, Location and Navigation Symposium-PLANS 2008, 2008: 766~770.
    [118]周翟和,刘建业,赖际舟,熊剑. Rao-Blackwellized粒子滤波在SINS/GPS深组合导航系统中的应用研究.宇航学报, 2009(2): 515~520.
    [119] Junchuan Zhou, S Knedlik and O Loffeld. INS/GPS tightly-coupled integration using adaptive unscented particle filter. Journal of Navigation, 2010, 63(3): 491~511.
    [120]刘建业,曾庆化,赵伟,熊智.导航系统理论与应用.西安:西北工业大学出版社, 2009.
    [121] U I Bhatti, W Y Ochieng and S Feng. Integrity of an integrated GPS/INS system in the presence of slowly growing errors. Part I: a critical review. GPS Solut, 2007, (11): 173~181.
    [122] Donald Gustafson, John Dowdle, Karl Flueckiger. A deeply integrated adaptive GPS-based navigator with extended range code tracking. San Diego, CA: IEEE PLANS 2000, 2000: 118~124.
    [123] D Landis, T Thorvaldsen, B Fink, P Sherman and P Holmes. A deep integration estimator for urban ground navigation, San Diego: 2006 ION Annual Meeting/IEEE PLANS, 2006: 927~932.
    [124]陆海勇,赵伟,熊剑,赖际舟,刘建业.强跟踪UKF滤波在SINS_GPS组合导航中的应用研究.航空电子技术,2008, 39(4): 5~10.
    [125]潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述.控制与决策, 2005, 20(5): 481~494.
    [126] S J Julier, J K Uhlmann. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401~422.
    [127] Y X Wu, D W Hu, M P Wu, et al. Quasi-Gaussian particle filtering. Heideberg, German: ICCS 2006, Part I, LNCS 3991, 2006: 689~696.
    [128]周翟和,刘建业,赖际舟.组合导航直接滤波模型中的高斯粒子滤波.应用科学学报, 2009, 27(1): 97~101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700