赤道椭圆交会轨道规划与制导方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轨道机动飞行器具有较强机动能力,通过空间交会,它可对空间目标执行观测、捕获、吸附、伴飞及动能碰撞拦截等空间任务。赤道大椭圆轨道机动飞行器是指停泊在倾角为零的大椭圆轨道上可实施机动的航天器。本文以赤道大椭圆轨道机动飞行器与中、高轨目标飞行器的空间交会问题为背景,研究了交会过程设计、远程最优交会轨道规划与制导方法、近程最优交会轨道规划与制导方法和末制导导引律。全文主要研究成果如下:
     提出了赤道大椭圆停泊轨道的倾角长期漂移解析计算与保持方法。(1)分析了赤道大椭圆轨道机动飞行器与任意轨道目标飞行器的交会过程,定义、划分了各交会阶段,建立了各交会阶段的动力学模型。(2)推导了小倾角大椭圆轨道的倾角长期漂移解析计算公式,通过仿真验证了解析计算公式的正确性。
     提出了赤道椭圆交会轨道的远程最优交会轨道规划方法。(1)给出了椭圆固定时间单脉冲多圈Lambert最优交会轨道的快速确定方法,只用比较两条轨道就可确定最优交会轨道。(2)结合固定时间单脉冲多圈Lambert交会轨道,应用非最优主矢量理论、非最优轨道改进方法与非线性规划方法,提出了远程多脉冲最优交会策略。(3)研究了赤道大椭圆轨道机动飞行器与多个目标飞行器的固定时间最优交会问题,给出了省能量目标飞行器交会序列的生成方法。
     提出了考虑J2摄动的赤道椭圆交会轨道的远程最优交会轨道规划与制导方法。(1)考虑地球非球形J2项摄动,提出了一种脱靶量满足精度要求,且省燃料的固定时间远程脉冲交会轨道规划方法。(2)应用Legendre伪谱法,研究并得到了固定时间远程有限推力最优交会制导方案;针对制导优化变量多的特点,构造了优化变量初值生成器;仿真验证了制导方案与求解策略的有效性。(3)考虑地球非球形J2项摄动,采用协方差分析描述函数法与Monte Carlo仿真方法,分析了初始状态误差对远程交会的影响。(4)给出了一种基于J2摄动轨道状态转移矩阵的制导修正策略,在远程交会的惯性滑行段进行轨道修正。
     提出了赤道椭圆交会轨道的近程最优交会轨道规划与制导方法。(1)对相对动力学模型的几种模型误差进行了比较,分析了导航误差与控制误差对交会终端偏差的影响,确定椭圆线性相对运动方程为近程交会相对动力学模型;给出了椭圆线性最优交会轨道非线性规划模型。(2)应用主矢量理论、非最优主矢量理论与非线性规划方法,提出了固定时间多脉冲近程最优交会策略。(3)基于椭圆线性相对运动方程,考虑飞行器质量变化,结合最优控制混合方法与多重打靶法提出了近程有限推力最优交会制导混合优化策略。
     研究了赤道大椭圆轨道机动飞行器搭载的智能撞击器末制导导引律。(1)利用线性二次型导引提供神经网络训练数据,采用遗传算法对神经网络结构与初始连接权值、阈值进行优化设计,给出了满足脱靶量要求且省能量的神经网络末制导导引律,仿真结果表明,给出的导引律对不同目标机动方式具有优良的适用性与鲁棒性。(2)采用模糊控制逻辑取代符号切换函数,提出了模糊Terminal滑模变结构导引律,利用Lyapunov稳定性理论对模糊Terminal滑模变结构控制器的稳定性进行了分析与证明。仿真表明,给出的导引律在消除滑模变结构导引固有抖振现象的同时,对外界干扰仍具有强鲁棒性能。
     论文研究了椭圆最优交会轨道规划与制导方法,拓展了最优交会理论,具有一定理论意义。论文提出的椭圆远程、近程最优交会策略和末制导导引律可为轨道机动飞行器空间交会方案设计与轨道控制提供技术支撑。
Orbit maneuver vehicle (OMV) has high maneuver ability. It is able to perform space missions using space rendezvous technology, including the space oberservation, capture, absorption, flyby and kinetic interception to some space spacecraft. The OMV studied in the paper is specified to that parking on the high eccentric orbit in equator plane. With the background of the rendezvous missions between the OMV and the target spacecraft on medium or high earth orbit, the dissertation studies the rendezvous process design, long-distance rendezvous orbital planning and guidance approaches, near-distance rendezvous orbital planning and guidance approaches, and the terminal guidance laws. The main results achieved in this dissertation are summarized as follows.
     The analytic formulae for the long-duration drift of inclination of the elliptical parking orbit in equator plane are deduced. (1) The rendezvous process between OMV and target spacecraft on un-limited orbit is analyzed. The rendezvous process is divided into several phases, and the dynamic model of each phase is established. (2) Aiming at the orbit with small inclination and high eccentricity, the analytic formulae for the long-duration drift of inclination are deduced and validated by simulation.
     The optimal planning approaches for the long-distance elliptical rendezvous trajectory in equator plane are proposed. (1) An optimal multiple-revolution Lambert rendezvous algorithm for elliptical trajectory is provided, and the optimal rendezvous trajectory can be obtained by solving only two Lambert orbits. (2) With the single-impulse multiple-revolution Lambert rendezvous trajectory, the optimal long-distance multiple-impulse rendezvous strategy is proposed by applying the non-optimal primer vector theory, the methods improving non-optimal trajectory and nonlinear programming approach. (3) The fixed-time rendezvous between the OMV and multiple target spacecraft is also studied, and the method to obtain the fuel-optimal visiting sequence of targets is provided.
     The optimal planning and guidance approaches with considering J2 perturbation for the long-distance elliptical rendezvous trajectory in equator plane are proposed. (1) Considering the J2 perturbation, the fuel-optimal fixed-time long-distance impulsive rendezvous strategy with high precision is proposed. (2) The optimal guidance plan of finite-thrust rendezvous is proposed by using Legendre Pseudospectral Method (LPM), and an initial guess generator is provided for a large number of design variables. The proposed guidance plan and the initial guess generator is validated by simulation. (3) Considering the J2 perturbation, the nonlinear error analysis for the long-distance rendezvous trajectory with initial state errors is performed by using covariance analysis description equation technique (CADET) and Monte Carlo simulation. (4) A guidance correct strategy based on state transfer matrix with considering J2 perturbation is proposed to reduce the effect of errors on the rendezvous trajectory.
     The optimal planning and guidance approaches for the near-distance elliptical rendezvous trajectory in equator plane are proposed. (1) The modeling errors of relative dynamic models are analyzed and compared, and the influences of navigation error and control error are analyzed. The linearized elliptical relative equations are chosen to describe the relative movement during the near-distance rendezvous phase. The nonlinear planning model for the elliptical linear rendezvous planning is provided. (2) The fixed-time near-distance rendezvous optimization approach is proposed by using the non-optimal primer vector theory, the methods improving non-optimal trajectory and nonlinear programming method. (3) Considering the mass variation and the constant thrust with adjustable direction, the hybrid optimization strategy for near-distance finite-thrust optimal rendezvous is proposed by hybrid optimal control method and multiple-shooting technique.
     The guidance laws for the rendzvous terminal phase of intelligent impactor carried by OMV are studied. (1) Considering environment disturbation, the neural network guidance (NNG) law is proposed and trained with data provided by LQG guidance, and the network structure, initial connect parameters and bias parameters are optimized by genetic algorithm. Simulation results show that the NNG guidance law satisfies miss-distance requirement and is roubust to the target’s various kind of maneuver. (2) Replacing the sign function with fuzzy control logic, the fuzzy terminal variable structure guidance law is proposed. The stability of fuzzy controller is analyzed and proved by Lyapunov stability theory. Simulation results show that the provided guidance law doesn’t only have strong robustness, but also eliminates the chattering phenomenon which is inherent of a sliding mode control.
     The dissertation studies optimal planning and guidance approaches for elliptical rendezvous trajectory, and expands the optimal rendezvous theory which have some theoretical significance. The proposed optimal rendezvous strategies both for long-distance elliptical rendezvous trajectory and near-distance elliptical rendezvous trajectory and terminal guidance laws will provide technique support for the space rendezvous scheme design and orbit control of OMV.
引文
[1] Donald M W. On-Orbit Servicing of Space Systems[M]. Malabar: Keieger Publishing Company,1993
    [2] Charles F L. On-Orbit Servicing for Future Space Observatories[C]. Space 2005, California, 2005:AIAA 2005-6609
    [3]唐国金,罗亚中,张进.空间交会对接任务规划[M].北京:科学出版社,2008
    [4]程武山.智能控制理论与应用[M].上海:上海交通大学出版社,2006
    [5]黄思勇,徐培德.空间武器平台潜伏轨道分布模型研究[J].航天控制,2007,25(3): 53~56
    [6]王佳,于小红.轨道机动作战中的待机轨道研究[J].航天控制,2005,23(5):17~22
    [7]谭丽芬,闫野,周英等.对GEO卫星照相的HEO卫星变轨策略研究[J].航天控制,2009,27(4): 19~22
    [8]符俊.基于大椭圆轨道的地球同步轨道卫星抵近技术研究[D].长沙:国防科学技术大学, 2009
    [9]陈小前,袁建平,姚雯.航天器在轨服务技术[M].北京:中国宇航出版社,2009
    [10] Davis,Eldon E.Future Orbital Transfer Vehicle Technology Study[R].Seattle,USA: Boeing Aerospace Company,1982:ADA351604
    [11] Meissinger. Mission design and system requirements for a multiple-function Orbital Transfer Vehicle[C].AIAA Space Technology Conference & Exposition, Albuquerque,1999:A9942028
    [12] Pratt. Orbit Transfer Vehicle Engine Study 1[R]. East Hartford:Pratt&Whitney Aircraft Group,1980:ADA351537
    [13]李健.空间机动飞行器动力学特性及制导方法研究[D].长沙:国防科技大学,2007
    [14]吴勤.“轨道快车”计划及其军事应用[J].太空探索,2007,(5):20~23
    [15]林来兴.美国“轨道快车”计划中的自主空间交会对接技术[J].国际太空,2005, (2):23~27
    [16]张明,于小红,苏宪程.美军天基武器装备的发展及启示[J].装甲兵工程学院学报,2007,21(6): 15~19
    [17] Janicik J L. The Phase I Space Maneuver Vehicle Test Program-Leading the United States into 21st century space test and evaluation[C]. AIAA Space Technology Conference & Exposition, Albuquerque,1999,A9942099
    [18] Williams S P. Space Maneuver Vehicle Orbital Mission Planner: Development of Application and Analysis of On-Demand Maneuvering Ability[D]. Air Force Inst of Tech Wright-Patterso-nafb oh School of Engineering,1999
    [19] Anttonen, John. U.S. Air Force space operations vehicle[C]. AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, 1998
    [20] Bradford J E. Quicksat: A Two-Stage to Orbit Reusable Launch Vehicle Utilizing Air-Breath-ing Propulsion for Responsive Space Access[C]. Space 2004 Conference and Exhibit, San Diego,2004:1~20
    [21]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997
    [22]庞特里亚金.最佳过程的数学理论[M].陈祖浩等译.上海:科学技术出版社,1965
    [23]程国采.航天飞行器最优控制理论与方法[M].北京:国防工业出版社,1999
    [24]李忠应.最优过程理论及其在飞行力学中的应用[M].北京:航空航天大学出版社,1979
    [25]赵汉元.飞行器再入动力学与制导[M].长沙:国防科技大学出版社,1997
    [26] Lawden D F.Optimal trajectories for space navigation[M].London:Butterworths, 1963
    [27] Lion P M, Handelsman M. Prime Vector on fixed-time impulse trajectories[J]. AIAA Journal, 1968, 6(1): 127~132
    [28] Luo Y Z, Zhang J, et.al.Interactive Optimization Approach for Optimal Impulsive Rendezvous Using Primer Vector and Evolutionary Algorithms[J]. Acta Astronautica,2010,67:396~405
    [29]雍恩米,陈磊,唐国金.飞行器轨迹数值优化方法综述[J].宇航学报,2008,29(2): 397~496
    [30]涂良辉,袁建平,岳晓奎.基于直接配点法的再入轨迹优化设计[J].西北工业大学学报,2006, 24(5):653~657
    [31] Hargraves C R, Paris S W. Direct Trajectory Optimization Using Nonlinear Programming and Collocation[J]. Journal of Guidance,Control and Dynamics,1987,10(4):338~342
    [32] Herman A L, Conway B A. Direct Optimization Using Collocation Based on High-Order Gauss-Lobatto Quadrature Rules[J]. Journal of Guidance,Control and Dynamics,1996,19(3): 592~599
    [33] Elnagar J, Kazemi M A, Razzaghi M. The Pseudospectral Legendre Method for Discretizing Optimal Control Problems[J]. IEEE Transactions on Auotomatic Control,1995,40(10): 1793~1796
    [34] Benson A, Thorvaldsen T, Rao V. Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collacation Method[J]. Journal of Guidance,Control and Dynamics,2006, 29(6): 1435~1440
    [35] Fahroo F, Ross I M. Costate Estimation by a Legendre Pseudospectral Method[C]. AIAA Guidance,Navigation, and Control Conference and Exhibit,Boston,MA, 1998:AIAA98-4222
    [36] Fahroo F, Ross I M. Direct Trajectory Optimization by a Chebyshev Pseudospectral Method[J].Journal of Guidance,Control and Dynamics,2002,25(1): 160~166
    [37] Chen P, Shen Z, Lavalle S M. RRT-Based Trajectory Design for Autonomous Automobiles and Spacecraft[J]. Archives of Control Sciences,2001,11(3):51~78
    [38] Mettler B, Bachelder E. Combing On and Offline Optimization Techniques for Efficient Autonomous Vehicle's Trajectory Planning[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco,USA, 2005
    [39] Gao Y. Advances in Low-Thrust Trajectory Optimization and Flight Mechnics[D]. University of Missouri-Columbia,2003
    [40] Enright P J, Conway B A. Optimal Finite-Thrust Spacecraft Trajectories Using Collocation and Nonlinear Programming[J]. Journal of Guidance,Control and Dynamics,1991,14(5): 981~985
    [41]梁新刚,杨涤.应用非线性规划求解异面最优轨道转移问题[J].宇航学报,2006, 27(3): 363~368
    [42] Billik B H, Roth H L. Studies Relative to Rendezvous between Circular Orbits[J]. Acta Astronautica,1967,13:23~36
    [43] Jezewski D J, Brazzel J P. Survey of Rendezvous Trajectory Planning [J]. Advances in the Astronautical Sciences,1992,76:1373~1396
    [44] Hohmann E. Die Erreichbarkeit der Himmelsk orper[M]. Oldenbourg:Munich, Germany,1925
    [45] Prussing J E. Geometrical Interpretation of the Angles in Lambert's Problem[J]. Journal of Guidance and Control,1979,2(5):442~443
    [46] Battin R H. An Introduction to the Mathematics and Methods of Astrodynamics[M]. New York: AIAA Education Series,1987
    [47]赵瑞安.空间武器轨道设计[M].北京:中国宇航出版社,2008
    [48] Battin R H,Vaughan R M.An Elegant Lambert Algorithm[J].Journal of Guidance and Control,1984,7(6):662~670
    [49] Edelbaum T N. How Many Impulses? [C]. American Inst of Aeronautics and Astronautics, Aerospace Sciences Meeting,3rd. New York,1967
    [50] Hughes P S, Mailhe M L, Guzman J J. A comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem[J].Advances in the Astronautical Sciences,2003,113:85~104
    [51] Lawden D F. Fundamentals of space navigation[J]. Journal of the British Interplanetary Society,1954,13(2):87~101
    [52] Lawden D F. Minimal rocket trajectories[J].ARS Journal,1954,23(6):360~382
    [53] Jezewski D J, Rozendaal H L. An Efficient Method for Calculating Optimal Free-Space N-Impulse Trajectories[J]. AIAA Journal,1968,6(11):2160~2165
    [54] Eckel K G. Optimal Impulsive Transfer with Time Constraints[J]. ActaAstronautica,1982, 9(3):139~146
    [55] Jezewski D J. Optimal Rendezvous Trajectories Subjected to Arbitrary Perturbations and Constraints[C]. AIAA/AAS Astrodynamics Specialist Conference,Hilton, S.C.,1992: AIAA-92-4507: 235~245
    [56] Taur D R, Coverstone-Carrol V, Prussing J E. Optimal Impulse Time-Fixed Orbital Rendezvous and Interception with Path Constraints[J]. Journal of Guidance,Control and Dynamics,1995,18(1):54~60
    [57] Lion P M , Handelsman M. Prime Vector on fixed-time impulse trajectories[J]. AIAA Journal, 1968,6(1):127~132
    [58] Prussing J E. A Class of Optimal Two-Impulse Rendezvous Using Multiple- Revolution Lambert Solution[J]. Journal of the Astronautical Sciences, 2000,48(2):131~148
    [59] Shen H J,Tsiotras P. Optimal Two-Impulse Rendezvous Using Multiple- Revolution Lambert Solutions[J]. Journal of Guidance,Control and Dynamics, 2003,26(1):50~61
    [60] Luo Y Z, Tang G J Lei Y J, et. al. Optimization of Multiple-Impulse Multiple- Revolution Rendezvous Phasing Maneuvers[J]. AIAA Journal of Guidance, Control and Dynamics,2007,30(4):946~952
    [61]朱仁璋,蒙薇.航天器交会两点边界值问题[J].宇航学报,2006,27(6):1182~1186
    [62]韩潮.空间交会中的多圈Lambert变轨算法研究[J].中国空间科学技术,2004, 24(5):9~14
    [63]谌颖,王旭东.水平冲量作用下共面椭圆轨道上航天器的交会[J].控制工程, 1993,1(3): 9~18
    [64]谌颖,黄文虎.多冲量最优交会的动态规划方法[J].宇航学报,1993,14(2):1~7
    [65] Werner G, Eugen B, Hans J O. User's Manual of the Computer Program for Solving Constrained Optimal Control Problem[R].Oberpfaffenhofen,West Ge: Inst fuer Dynamik der Flugsysteme,1985
    [66]刘鲁华,汤国建,余梦伦.利用动态规划原理实现多冲量最优交会问题[J].国防科技大学学报,2006,28(6):38~42
    [67] Clohessy W H, Wiltshire R S. Terminal Guidance System for Satellite Rendezvous[J]. Journal of the Astronautical Sciences,1960,27(9):653~678
    [68] Prussing J E. Optimal Multiple-Impulse Orbital Rendezvous[D]. Department of Aeronautics and Astronautics Massachusetts Institute of Technology,1967
    [69] Prussing J E. Optimal Two- and Three- Impulse Fixed-Time Rendezvous in the Vicinity of a Circular Orbit[J]. AIAA Journal,1970,8(7):1221~1228
    [70] Prussing J E, Chiu J H. Optimal Multiple-Impulse Time-Fixed Rendezvous Between Circular Orbit[J]. Journal of Guidance Control and Dynamics,1986,9(1): 17~22
    [71] Stern R G, Potter J E. Optimization of Midcourse Velocity Corrections in Peaceful Uses of Automation in Outerspace[M]. New York: Plenum,1966
    [72] Neustadt L W. Optimization, a Moment Problem, and Nonlinear Programming[J]. SIAM Journal on Control,1964,2(1): 33~53
    [73] Jezewski D J. An Analytic Approach to Optimal Rendezvous using Clohessy- Wiltshire Equations[J].The Journal of the Astronautical Sciences,1979,27(3):293~ 310
    [74] Jezewski D J. Primer Vector Theory Applied to the Linear Relative-Motion Equations[J]. Optimal Control Applications and Methods,1980:387~401
    [75] Carter T E. Quadratic-based computation of four-impulse optimal rendezvous near circular orbit[J]. Journal of Guidance,Control and Dynamics,2000,23(1):109~117
    [76] Carter T E, Alvarez S A. Four-Impulse Rendezvous Near Circular Orbit[C].AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Boston,MA,1998: AIAA-1998-4546
    [77]许伦辉,徐建闽,周其节.交会对接远距离接近段制导研究[J].飞行力学,1998, 16 (2):90~96
    [78]陈新海,陈文胜.航天器四冲量固定时间最优交会[J].宇航学报,1994,15(4):71~ 79
    [79] Carter T E, Humi M. Fuel-Optimal Rendezvous Near a Point in General Keplerian Orbit[J]. Journal of Guidance,Control and Dynamics,1987,10(6):567~573
    [80] Humi M. Fuel-Optimal Rendezvous in a General Central Force Field[J]. Journal of Guidance, Control and Dynamics,1993,16(1):215~217
    [81] Carter T E. Fuel-Optimal Maneuvers of Spacecraft Relative to a Point in Circular Orbit[J]. Journal of Guidance,Control and Dynamics,1984,7(6):710~716
    [82] Jezewski D J. An Optimal, Analytical Solution to the Linear-Gravity, Constant- Thrust Trajectory Problem[J]. Journal of Spacecraft and Rockets,1971,8(7):793~ 796
    [83] Lembeck C A, Prussing J E. Optimal Impulsive Intercept with Low-Thrust Rendezvous Return[J]. Journal of Guidance,Control and Dynamics,1993,16(3): 426~433
    [84]谌颖,王旭东.多冲量最优交会[J].航天控制,1992,10(1):25~32
    [85]王华,唐国金.用遗传算法求解双冲量最优交会问题[J].中国空间科学技术,2003,23(1): 26~30
    [86]李晨光,肖业伦.多脉冲C-W交会的优化方法[J].宇航学报,2006,27(2):172~176
    [87]林来兴.空间交会对接技术[M].北京:国防工业出版社,1995
    [88]顾大可,段广仁,张卯瑞.有限推力交会的最省燃料轨迹[J].宇航学报,2010,31(1): 75~81
    [89] Tschauner J, Hempel P. Rendezvous zu Einem in Elliptischer Bahn um LaufendenZiel[J]. Astronautica Acta,1965,11(2):104~109
    [90] Yamanaka K, Finn A. New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit[J]. Journal of Guidance,Control and Dynamics,2002, 25(1):60~66
    [91] Carter T E. New Form for the Optimal Rendezvous Equations Near a Keplearian Orbit[J]. Journal of Guidance,Control and Dynamics,1990,13(1):183~186
    [92] Carter T E. Effects of Propellant Mass Loss on Fuel-Optimal Rendezvous Near Keplerian Orbit[J]. Journal of Guidance,Control and Dynamics,1989,12(1):19~26
    [93]陈长青,解永春.一类椭圆轨道交会中的动力学方程研究[J].航天控制,2008, 26(5):12~16
    [94]顾文锦,赵红超,杨智勇.变结构控制在导弹制导中的应用综述[J].飞行力学,2005,23(1):1~4
    [95] Melvin W R. Stability Properties of Functional Differential Equations[J]. Journal of Mathematical Analysis and Application,1974,48:749~763
    [96] Guelman M. The Closed Form Solution of Pure Proportional Navigation[J]. IEEE Transactions on Aerospace and Electronic Systems,1976,12(7):526~532
    [97] Guelman M. A Qualitative Study of Proportional Navigation[J]. IEEE Transactions on Aerospace and Electronic Systems,1971,7(4): 637~643
    [98] Dhar A, Ghose D. Capture region for a realistic TPN guidance law[J]. IEEE Transactions on Aerospace and Electronic Systems,1993,29(3):995~1003
    [99] Chakravarthy A, Ghose D. Capturablity of realistic generalized true proportional navigation[J]. IEEE Transactions on Aerospace and Electronic Systems,1996, 32(1):407~418
    [100]吴文海,曲建岭,王存仁.飞行器比例导引综述[J].飞行力学,2004,22(2):1~5
    [101]雷虎民,楼顺天,陈新海.一种攻击大机动目标的PID型比例导引律[J].西北工业大学学报, 1999,17(11):98~102
    [102] Yuan P J, Chen M G, Leu M J. Optimal Guidance of Extended Proportional navigation[C]. AIAA Guidance, Navigation, and Control Conference,2001:AIAA 2001-4345:1~8
    [103]侯明善.非线性PD型比例导引鲁棒性研究[J].上海航天,2007,(1):20~22
    [104] Bryson A E, Ho Y C. Applied Optimal Control[M]. Waltham, Mass: Blaisdell Publishing Company,1969
    [105] Michael E H. Optimal Guidance and Nonlinear Estimation for Interception of Accerleratin Targets[J]. Journal of Guidance,Control and Dynamics,1995,18(5): 959~968
    [106]史小平,王子才.空间拦截非线性最优末端导引规律研究[J].宇航学报,1993, (3):18~25
    [107] Capt R A, Capt J M. Optimal Guidance with Maneuvering Targets[J]. Journal ofSpacecraft,1974,11(3): 204~206
    [108] Moshe I, Oded G M, Guelman M. Optimal Planar Interception with Terminal Constraints[J]. Journal of Guidance,Control and Dynamics,1995,18(6):1273~1279
    [109] Ilan R, Levi M. Optimal Guidance for High-Order and Acceleration Constrained Missile[J]. Journal of Guidance,1991,14(3):589~596
    [110] Lee Y I, Ryoo C K, Kim E. Optimal Guidance with Constraints on Impact Angle and Terminal Acceleration[C].AIAA Guidance, Navigation,and Control Conference and Exhibit,Austin Texas,2003:AIAA 2003-5795
    [111]王业达,周军,郭建国.一种基于零脱靶量的最优制导律设计[J].计算机仿真,2009,26(2): 57~60
    [112]付国庆.LQG最优制导规律在地空导弹中的应用[J].战术导弹技术,2009,(1):50~54
    [113] Chen R H, Speyer J L, Dimitrios L. Optimal Intercept Missile Guidance Strategies with Autopilot Lag[J]. Journal of Guidance,Control and Dynamics,2010,33(4): 1264~1272
    [114]黎克波.拦截机动目标的微分几何制导律[D].长沙:国防科技大学,2010
    [115] Itkin Y. Control Systems of Variable Structure[M].New York:Wiley-Interscience Publication, 1976
    [116] Utkin V I. Variable Structure Control with Sliding Mode[J]. IEEE Transactions on Auotomatic Control,1977,22(2):212~222
    [117] Brierley S D, Longchamp R. Application of Sliding Mode Control to Air-Air Interception Problem[J]. IEEE Transactions on Aerospace and Electronic Systems,1990,26(2):306~325
    [118] Zhou D, Mu C, Xu W. Adaptive Sliding-Mode Guidance of a Homing Missile[J]. Journal of Guidance,Control and Dynamics,1999,22(4):589~594
    [119]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3): 407~418
    [120]佘文学,周军,周凤岐.一种考虑自动驾驶仪动态特性的自适应变结构制导律[J].宇航学报, 2003,24(3):245~249
    [121] Man Z H, Paplnskia P, Wu H R. A Robust MIMO Terminal Sliding Mode Control Scheme for Rigid Robot Manipulators[J]. IEEE Transactions on Automatic Control,1994,39:2464~2469
    [122] Park K B, Lee J J. Comments on A Robust MIMO Terminal Sliding Mode Control for Rigid Robot Manipulators[J]. IEEE Transactions on Automatic Control,1996,41:761~762
    [123] Park K B, Teruo T. Terminal Sliding Mode Control of Sliding-Order Nonlinear Uncertain Systems[J]. International Journal of Robust and Nonlinear Control,1999,9:769~780
    [124]王洪强,方洋旺,伍友利.基于非奇异Terminal滑模的导弹末制导律研究[J].系统工程与电子技术,2009,31(6):1391~1395
    [125]周凤岐,郭建国,周军.基于扩展滑动模态控制的末制导律设计[J].西北工业大学学报,2005, 23(2):249~252
    [126]孙未蒙,郑志强.一种多约束条件下的三维变结构制导律[J].宇航学报,2007,28(2):344~349
    [127]刘毅.基于预测脱靶量的新型滑模控制末制导律研究[J].现代防御技术,2008,36(4):51~55
    [128]王洪强,方洋旺,尹洪武.一种随机滑模变结构制导律的设计[J].系统工程与电子技术,2009, 31(10):2445~2448
    [129] Slotine J J, Sastry S S. Tracking control of nonlinear system using sliding surface with application to robot manipulator[J]. International Journal of Control,1983, 38(2):465~492
    [130]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996
    [131] Su W C, Drakunov S V, Ozguner U. Sliding Mode with Chattering Reduction in Sampled Data System[C]. Proceding of the 32nd IEEE Conference on Decision and Control,1993: 2452~2457
    [132] Kang B P, Ju J L. Sliding Mode Controller with Filter Signal for Robot Manipulators Using Virtual Plant/Controller[J]. Mechatronics,1997,7(3):277~286
    [133] Kachroo P, Tomizuka M. Chatter Reduction and Error Convergence in the Sliding-Mode Control of a Class of Nonlinear Systems[J]. IEEE Transactions on Automatic Control,1996, 41(7):1063~1068
    [134] Cottell R G, Vincent T L, Sadati S H. Minimizing Interceptor Size Using Neural Networks for Terminal Guidance Law Synthesis[J]. Journal of Guidance,Control and Dynamics,1996,(3): 557~568
    [135]董朝阳,景韶光,王青.基于模糊神经网络的导弹最优寻的末制导律[J].北京航空航天大学学报,2002,28(4):373~375
    [136] Rahbar N, Bahrami M, Menhaj M B. A New Neuro-Based Solution for Closed-Loop Optimal Guidance with Terminal Constraints[C]. AIAA Guidance,Navigation, and Control Conference and Exhibit,Portland,1999:AIAA- 1999-4068
    [137]陈磊,王海丽,任萱.基于神经网络的广义两点边值问题[J].国防科技大学学报,2001,23(2): 23~27
    [138] Huang C, Tylock J, Engel S, et. al. Comparison of Neural-Network-Based, Fuzzy-Logic-Based, and Numerical Nonlinear Inverse Flight Controls[J]. AIAA Guidance, Navigation and Control Conference,1994:AIAA-94-3645
    [139] Zadeh L A.模糊几何、语言变量及模糊逻辑[M].陈国权译.北京:科学出版社,1984
    [140] Lee C C. Fuzzy Logic in Control System: Fuzzy Logic Controller-Part 1, Part 2[J]. IEEE Transactions on Systems, Man, and Cybernetics,1990,20(2):404~435
    [141] Lin C, Chen Y. Design of Fuzzy Logic Guidance Law Against High-Speed Target[J]. Journal of Guidance,Control and Dynamics,2000,(1):17~25
    [142] Mishra K, Sarma I G. Performance Evaluation of two Fuzzy-Logic-Based Homing Guidance Schemes[J]. Journal of Guidance,Control and Dynamics,1994,17(6): 1389~1391
    [143]张天平,冯纯伯.模糊逻辑控制的一种新设计[J].东南大学学报,1995,25(3):79~ 85
    [144]黄显林.空间飞行器基于模糊逻辑的连续滑模控制[J].宇航学报,1999,20(2): 22~27
    [145]冯春杨,闫明.基于T-S模型的一类非线性系统的变结构控制算法[J].辽宁大学学报,2009, 36(4):338~341
    [146]史小平,常莹莹.非线性三维自适应模糊变结构制导规律的研究[J].宇航学报,2009,30(6): 2171~2175
    [147]周荻,幕春棣,徐文立.空间拦截智能自适应变结构导引规律研究[J].宇航学报,1999,20(4): 60~65
    [148] Rim H J, Schutz B E, Webb C. Orbit Maintenance and Characteristics for a Sar Satellite[C].AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Boston,MA,1998:AIAA-98-4394
    [149]杨维廉.太阳同步回归轨道的长期演变与控制[J].航天器工程,2008,17(2): 26~30
    [150] Soop E M. Handbook of Geostationary orbit[M]. Kluwer academic,1994
    [151]杨嘉墀,范秦鸿.航天器轨道动力学与控制(上)[M].北京:宇航出版社,1995
    [152]任萱.人造地球卫星轨道力学[M].长沙:国防科技大学出版社,1988
    [153] David R G. Lagrange Multipliers and the State Transition Matrix for Coasting Arcs[J]. AIAA Journal,1969,7(2):363~367
    [154] Heckathorn W G. Optimal, Impulsive,Direct Ascent,Time-Fixed Orbital Interception[D].University of Illinois Urdan-Champaign,1969
    [155]汤一华,陈士橹,徐敏.轨道拦截问题的一种精确初制导方法研究[J].飞行力学,2006,24(4): 53~56
    [156] Widhalm J W, Heise S A. Optimal In-Plane Orbital Evasive Maneuvers Using Continuous Low Thrust Propulsion[J]. Journal of Guidance,Control and Dynamics,1991,14(6):1323~1326
    [157] Benson A, Thorvaldsen T, Rao V. Costate Direct Trajectory Optimization and Costate Esitmation via an Orthogonal Collocation Method[J]. Journal ofGuidance,Control and Dynamics,2006,29(6):1435~1440
    [158]雍恩米,唐国金.基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J].宇航学报, 2008,26(6):1766~1772
    [159]张兵.大气层外动能拦截器末制导段性能研究[D].长沙:国防科技大学,2005
    [160]邱轶兵.试验设计与数据处理[M].合肥:中国科学技术大学出版社,2008
    [161]汤一华,陈士橹,万自明.基于零控脱靶量的大气层外拦截中制导研究[J].飞行力学,2007, 25(3):34~37
    [162]周文艳,杨维廉.月球探测器转移轨道的中途修正[J].宇航学报,2004,25(11): 89~92
    [163]朱仁璋,李颐黎.非线性相对运动方程的分析解[J].中国空间科学技术,2000, 20(2):20~29
    [164] Troy G. Fuel-Optimal Control and Guidance for Low- and Medium-Thrust Orbit Transfer[D]. Georgia Institute of Technology Atlanta, Georgia, 1995
    [165] Carter T E, Pardis C J. Optimal Power-Limited Rendezvous with Upper and Lower Bounds on Thrust[J]. Journal of Guidance,Control and Dynamics,1996, 19(5):1124~1133
    [166] Tarbet D. Optimum Continuous Control by Method of Parameterization[D]. University of Houston,1971
    [167] Robbins H M. An Analytical Study of the Impulsive Approximation[J]. AIAA Journal,1966, 4(8):1417~1423
    [168] Kern E A. Minimum-Fuel Thrust-Limited Transfer Trajectories Between Coplanar Elliptic Orbits[D]. University of Michigan,1968
    [169]马克茂,史小平,王子才.空间拦截的末制导律设计[J].航天控制,1998,16(1): 39~42
    [170]李君龙,陈杰,胡恒章.目标机动时的一种非线性末制导律[J].宇航学报,1998, 19(2):37~42
    [171] Lan M S. Adaptive Control of Unknown Dynamical Systems via Neural Networks Approach[C].American Control Conference,Pittsburgh,USA,1989:910~915
    [172] Kim B S, Calse a J. Nonlinear Flight Control using Neural Networks[J]. AIAA Journal,1997, 20:26~33
    [173] Cottrell R G, Vincent T L, Sadati S H. Minimizing Interceptor Size Using Neural Networks for Terminal Guidance Law Synthesis[J]. Journal of Guidance,Control and Dynamics,1996, 19(3):557~562
    [174]庄开宇.变结构控制理论若干问题研究及其应用[D].杭州:浙江大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700