近空间飞行器抗干扰鲁棒飞行控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近空间飞行器(Near Space Vehicle,NSV)的发展涉及国家安全与空间和平利用,它是各军事大国日益关注的新型飞行器,具有重大战略价值。NSV在飞行过程中呈现大包络、多飞行状态、多任务模式的特点,并且特殊的飞行环境也使其具有严重非线性、激烈快时变、强动态不确定和强耦合的对象特征,所以NSV飞行控制系统的设计成为一项新颖而又富有挑战性的课题。围绕这一难题,本文在近空间飞行器的建模与分析、不确定环境下姿态与轨迹的抗干扰鲁棒控制等方面开展了深入的研究,主要研究成果如下:
     首先,查阅大量的国内外公开发表的文献资料,结合本实验室已建立起来的近空间飞行器动力学模型,建立了比较完整的近空间飞行器6自由度12状态动力学方程和相应的仿真平台,通过对近空间飞行器开环特性的仿真分析可知在无控制输入的情况下,飞行特性极不稳定,结果表明所建模型具有复杂的非线性。
     其次,通过模糊逼近理论为NSV建立了基于T-S模糊控制的运动模型,借鉴线性系统前馈控制的思想,提出了一种新的模糊鲁棒跟踪控制律的设计方法。在不引入增广矩阵的条件下,采用反馈和前馈复合控制的策略,通过线性矩阵不等式求解前馈和反馈控制增益,进行控制器的设计,并将其应用于NSV姿态角抗干扰的跟踪控制中,控制效果良好。最后运用Lyapunov稳定性理论,分析了跟踪误差的收敛性。
     第三,针对存在干扰的飞行器慢回路控制系统,提出了变论域模糊控制的方法,通过对论域的伸缩因子调节,改变论域范围,减少了控制的计算量,提高了抗干扰的速度和控制精度;为了较好地克服抖振,提出了动态自适应Terminal滑模控制策略,借助中间辅助系统,进行分步控制的方法设计出控制律,同时采用Lyapunov方法严格证明了在控制律作用下,系统误差信号能够在有限时间内收敛。
     第四,针对受扰动的NSV系统,提出了快速自适应干扰观测器抗干扰方法。通过设计参数自适应调节律和逼近误差补偿项的自适应律,在自适应律中增添非线性指数项,提高干扰观测系统对复合干扰的逼近速度,能在有限时间内误差系统收敛为零,同时对闭环系统性能进行了严格的理论分析。最后在高超声速条件下对NSV进行仿真验证,结果表明所设计的控制方案在快速性和收敛性上具有满意的效果。
     最后,针对NSV纵向轨迹系统的干扰问题,提出了鲁棒自适应动态面的回馈递推控制方法,利用RBFNN对未知的复合干扰进行在线辨识,并在虚拟控制器中引入鲁棒项,来消除复合干扰对系统设计的影响,提高了系统的鲁棒性和自适应能力。最后通过纵向飞行仿真,表明了该方法在降低系统控制器复杂性的同时仍具有很好的鲁棒性。
The development of near space vehicle (NSV) is related to national security and peaceful use ofspace, and it is a new vehicle which attracts increasing attention of many military powers. The flightprocess of NSV shows characteristics such as large flight envelope, multi-flight status andmulti-tasking mode. Moreover, due to its special flight environment, NSV also possesses objectsfeatures of serious nonlinearity, fast time variation, strong uncertainty and intense coupling. Therefore,the flight control system design of the NSV has become an innovative and challenging issue. Aroundthis problem, the dissertation carries out an intensive study in NSV modeling and analysis, and thenonlinear adaptive control of attitude and trajectory system in uncertain environments. The mainresults are as follows:
     Firstly, based on the contributions of NSV modeling in our lab and the available literatures, thedynamic equations and the corresponding simulation platform of NSV are presented. Via thesimulation analysis of open-loop dynamics, it is demonstrated that once there was no control input,the complex uncertain system is unstable.
     Secondly, the T-S fuzzy model of NSV kinematic model is established based on fuzzyapproximation theory and a new fuzzy robust tracking control law is designed using the feedforwardcontrol of linear system for reference. In the case that no augmented matrix is introduced, the controllaw is designed as the compound form of feedback and feedforward, and the gains of feedback andfeedforward are solved by LMI. The strategy is applied into the anti-interference control of NSVattitudes. The convergence of tracking errors is analyzed by Lyapunov method.
     Thirdly, considering the slow loop control system of NSV with disturbances, the variable domainfuzzy control method is presented. The control accuracy and anti-interference velocity are improvedand the calculated quantity is decreased by the change of fuzzy domain. To overcome the chatteringphenomenon, the dynamic adaptive terminal sliding-mode control strategy is raised. The control lawis designed by intermediate auxiliary system step by step. Also, Lyapunov method is used to provethat the tracking errors are converged in limited time.
     Fourthly, a fast adaptive disturbance observer is presented for NSV in interference environment.The approximating rate of disturbance observer is improved by adding nonlinear exponential item intoadaptive laws of parameters and approximating errors to make the tracking errors are converged tozero in limited time. Moreover, the control characters are systematically analyzed and the superiorities in rapidity and convergence are demonstrated by simulation analysis of the control of NSV athypersonic speed.
     Lastly, longitudinal control of NSV under uncertainty is studied. An approach of backsteppingcontrol based on adaptive dynamic surface is proposed. RBFNN is used to approximate the unknowncompound disturbance and the robust item is introduced into the virtual controller to cancel theinfluence of compound disturbance and improve the robustness and adaptation of the system.Simulation results show that the proposed strategy possesses good robustness and briefness.
引文
[1]崔尔杰.近空间飞行器研究发展现状及关键技术问题[J].力学进展,2009,39(6):658-673.
    [2] Young M, Keith S. An overview of advanced concepts for near-space systems [A], In:45thAIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit [C], Colorado, USA, AIAA2009-4805:1-18.
    [3] Marcel M J, Baker J. Integration of ultra-capacitors into the energy management system of anear space vehicle [A], In:5thInternational Energy Conversion Engineering Conference andExhibit [C], Florida, USA, AIAA2007-4707:1-9.
    [4]王彦广,李健全,李勇,等.近空间飞行器的特点及其应用前景[J].航天器工程,2007,16(1):50-57.
    [5]曹秀云.近空间飞行器成为各国近期研究的热点_上[J].中国航天.2006,(6):32-35.
    [6]曹秀云.近空间飞行器成为各国近期研究的热点_下[J].中国航天.2006,(7):30-32.
    [7] Orton G F, Scuderi L F. A hypersonic cruiser concept for the21stcentury [A], AIAA98-5525:1-11.
    [8]杨亚政,李松年,杨嘉陵.高超声速飞行器及其关键技术简论[J].力学进展,2007,37(4):537-550.
    [9]吴宏鑫,孟斌.高超声速飞行器控制研究综述[J].力学进展,2009,39(6):756-765..
    [10] Yao Z H, Bao W, Jiao H Y. Modeling for coupled dynamics of integrated hypersonicairbreathing vehicle and engine [A], In:45thAIAA/ASME/SAE/ASEE Joint PropulsionConference&Exhibit [C], Denver, USA, AIAA2009-5431:
    [11] Johnson D L. Terrestrial environment (climatic) criteria guidelines for use in aerospace vehicledevelopment,2008Revision [R]. NASA TM-2008-215633:49-156.
    [12] Tan S H, Hang C C, Chai J S, Gain scheduling: from conventional to neural-fuzzy [J],Automatica,1997,33(3):411-419.
    [13]叶友达.近空间高速飞行器气动特性研究与布局设计优化[J].力学进展,2009,39(6):683-694.
    [14] Harsha P T, Keel L C, Castrogiovanni A, et al. X-43A Vehicle Design and Manufacture [A].In:AIAA/CIRA13th International Space Planes and Hypersonics Systems and Technologies [C].AIAA2005-3334:1-9..
    [15] Torrez S M, Driscoll J F, Dalle D J. Hypersonic vehicle thrust sensitivity to angle of attack andmach number [A], In: AIAA Atomospheric Flight Mechanics Conference [C], Chicago, USA,AIAA2009-6152:1-16.
    [16]常军涛,于达仁,鲍文.攻角引起的高超声速进气道不起动/再起动特性分析[J].航空动力学报,2008,23(5):816-821.
    [17]王振国,梁剑寒,丁猛,等.高超声速飞行器动力系统研究进展[J].力学进展,2009.39(6):716-739..
    [18] Huang J, Lin C F, Cloutier. C F, et al, Robust feedback linearization approach to autopilotdesign[C]. First IEEE Conference on Control Applications,1992,1:220-225.
    [19]陈予恕,郭虎伦,钟顺.高超声速飞行器若干问题研究进展[J].飞航导弹,2009,(8):26-33.
    [20] McClinton C R, Rausch V L, Stiz J, et al. Hyper-X program status [A]. In:39thAIAA AerospaceSciences Meeting and Exhibit [C], Reno, USA, AIAA2001-0828:1-11.
    [21] Joyce P J, Pomroy J B, Grindle L. The Hyper-X launch vehicle: challenges and design consi-derations for hypersonic flight testing [A]. In: AIAA/CIRA13th International Space Planes andHypersonics Systems and Technologies[C], Reston, USA: AIAA2005-3333:1-19.
    [22] Fidan B, Mirmirani M, Ioannou P A. Flight dynamics and control of air-breathing hypersonicvehicles: review and new directions [A]. In:12thAIAA International Space Planes andHypersonic Systems and Technologies [C]. Norfolk, USA, AIAA2003-7081:1-24.
    [23] Ma X, Tao G. Adaptive Actuator Compensation Control with Feedback Linearization [J]. IEEETransactions on Automatic Control,2000,45(9):1705-1710.
    [24] Singh, S N, Yim W. Feedback Linearization and Solar Pressure Satellite Attitude Control [J].IEEE Transactions on Aerospace and Electronic Systems,1996,32(2):732-741.
    [25] Franco A L D, Bourles H, De Pieri E R,et al. Robust Nonlinear Control Associating RobustFeedback Linearization and H∞Control [J]. IEEE Transactions on Automatic Control,2006,51(7):1200-1207.
    [26] Miroslav. K, Jing. S, Petar V K. Robust Control of Nonlinear Systems with Input UnmodeledDynamics [J]. IEEE Trans. Automat Contr.,1996,41(6):913-920.
    [27] Bajodah A H. Perturbed Feedback Linearization of Attitude Dynamics [A].2008AmericanControl Conference [C]. Seattle,2008:5222-5229.
    [28]武国庆,姜长生,张锐,等.基于径向基神经网络的不确定非线性系统的鲁棒自适应控制[J].航空学报,2002,23(6):530-533.
    [29]王庆超,李达.基于反馈线性化的动能拦截器姿态控制研究[J].宇航学报,2005,26(3):358-361.
    [30]朱荣刚,姜长生,邹庆元等,新一代歼击机超机动飞行的动态逆控制[J].航空学报,2003,24(3):534-539.
    [31] Zhou K. On the Parameterization H∞Controllers [J]. IEEE Trans. Automat Contr.,1992,37(9):1442–1446.
    [32] Glover K, McFarlane D. Robust Stabilization of Normalized Coprime Factor Plant Descriptionswith H∞Bounded Uncertainty [J]. IEEE Trans. Automat Contr.,1989,34(8):821-830.
    [33] Fen W. LMI-based robust model predictive control and its application to an industrial CSTRproblem[J]. Journal of Process Control,2001,11:649-659.
    [34] Silvina I B, Jorge A S, Jos′e L F. Use of state estimation for inferential nonlinear MPC: a casestudy[J]. Chemical Engineering Journal,2005,106:13-24.
    [35] Narendra K S, Annaswamy A M. Stable adaptive systems [M]. New Jersey, USA, Prentice Hall,1989.
    [36] Polycarpou M M, Ioannou P A. A Robust adaptive nonlinear control design [J]. Automatica,1996,32(3):423-427.
    [37] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers forlinearizable systems [J]. IEEE Trans. on Automatic Control,1991,36(11):1241-1253.
    [38] Yao B, Tomizuka M. Adaptive robust control of MIMO nonlinear systems in semi-strictfeedback forms [J]. Automatica,2001,37(9):1305-1321.
    [39] Liu Y S, Li X Y. Decentralized robust adaptive control of nonlinear systems with unmodeleddynamics [J]. IEEE Trans. on Automatic Control,2002,47(5):848-856.
    [40]姜长生,吴庆宪,陈文华等编著.现代鲁棒控制基础[M],哈尔滨:哈尔滨工业大学出版社,2005.
    [41] Morse AS, Global stability of parameter adaptive systems, IEEE Transactions on AutomaticControl [J],1980,25(3):433-439.
    [42]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
    [43] Yu X H, Xu J X. Advances in Variable Structure System [M]. Singapore: World ScientificPublishing,2000.
    [44] Utkin V I. Variable Structure Systems with Sliding Modes [J]. IEEE Trans. Automat Contr.,1977,22(2):212-222.
    [45] Utkin A, Guldner J, Shi J X. Sliding mode control in electromechanical system[M]. Taylor&Francis,1999.
    [46] Chen Y P, Chang J L, Chu S R. PC-based sliding mode control applied to parallel-type doubleinverted pendulum system [J]. Mechatronics,1999,9:553-564.
    [47] Yeh F K, Chien H H, Fu L C. Design of Optimal Midcourse Guidance Sliding Mode Control forMissiles with TVC [J]. IEEE Transaction on Aerospace and Electronic Systems,2003,39(3):824-837.
    [48] Perruquetti W, Barbot J P. Sliding Mode Control in Engineering [M]. New York: Marcel Dekker,2002.
    [49]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [50] Chen M S, Hwang Y R, Tomizuka M. A State-Dependent Boundary Layer Design for SlidingMode Control [J]. IEEE Trans Automat Contr.,2002,47(10):1677-1681.
    [51] Ha Q P, Nguyen Q H, Rye D C, et al. Fuzzy Sliding-Mode Controllers with Applications [J].IEEE Transactions on Industrial Electronics,2001,48(1):38-41.
    [52] Kang B P, Ju J L. Sliding Mode Controller with Filtered Signal for Robot Manipulators UsingVirtual Plant Controller [J]. Mechatronics,1997,7(3):277-286.
    [53] K B Park. Terminal sliding mode control of second-order nonlinear uncertain systems [J]. Int. J.Robust Nonlinear Control,1999,9:769-780.
    [54] Zhuang kaiyu.Adaptive terminal sliding mode control for high-order nonlinear dynamic systems[J]. Journal of Zhejiang University Science,2003,4(1):58-63.
    [55] Choi S B. Moving switching surface for robust control of second order variable structuresystem[J]. Int. J. Contr.,1993,38(1):229-245.
    [56] Slotine J J. Tracking control of nonlinear system using sliding surface with application to robustmanipulators[J]. Int. J. Contr.,1983,38(3):465-492.
    [57] Man Z H, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme forrigid robot manipulators [J]. IEEE Transaction on Automatic Control,1994,39:2464-2469.
    [58] Shuanghe Yu, Xinghuo Yu. Robust global Terminal sliding mode control of SISO linearuncertain systems [A]. Proceeding of the35th Conference on Decision and Control[C], Sydney,Australia, Dec,2000.
    [59] Xinghuo Yu, Zhihong Man. Fast Terminal sliding mode control design for nonlinear dynamicalsystems [J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory andApplications,2004,49(2):261-265.
    [60]胡孟权,王建培.自适应模糊-滑模控制在重构飞行控制中的应用[J].航空学报,2002,23(6):538-541.
    [61]苏心仪,朱纪红,胡金春,et al.基于模糊逻辑的直升机终端滑模控制[J].清华大学学报(自然科学版),2004,44(4):30-34.
    [62] Takagi T, Sugeno M. Fuzzy Identification of Systems and Its Applications to Modeling andControl [J]. IEEE Transaction on Systems, Man and Cybernetics,1985,15(1):116-132.
    [63] Wang L X. Universal approximation by hierarchical fuzzy systems [J]. Fuzzy Sets and Systems,1998,93(3):223-230.
    [64] Ying H. General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universalapproximators [J]. IEEE Trans. on Fuzzy Systems,1998,6(4):582-587.
    [65] Taniguchi T, Tanaka K, Ohtake H, et al. Model Construction, Rule Reduction, and RobustCompensation for Generalized Form of Takagi–Sugeno Fuzzy Systems [J]. IEEE Transactionson Fuzzy Systems,2001,9(4):525-538.
    [66] Lin C, Wang Q G, Lee T H. Fuzzy Descriptor Systems and Nonlinear Model Following Control[J]. IEEE Transactions on Fuzzy Systems,2006,14(4):542-551.
    [67] Wei X J, Jing Y W. A Novel Design of Fuzzy Tracking Control for Nonlinear Time-DelaySystems[A]. Proceedings of2004IEEE World Automation Congress[C].2004:263-268.
    [68] Tseng C S. Model Reference Output Feedback Fuzzy Tracking Control Design for NonlinearDiscrete-Time Systems with Time-Delay [J]. IEEE Transactions on Fuzzy Systems,2006,14(1):58-70.
    [69] TanakaK and SugenoM. Stability analysis and design of fuzzy control systems[J]. Fuzzy SetsSystems,1992,45:135-246.
    [70] TakagiT, SugenoM. A robust stabilization Problem of fuzzy control Systems and its applicationto backing up control of truek-trailer[J].IEEE Trans.on FuzzySystems,1994,2(2):119-133.
    [71] Tanaka K, Wang H O. Robust stabilization of a class of uncertain Nonlinear systems via fuzzycontrol:quadratiestability, control theory and linearmatrix inequalities [J]. IEEE Trans on FuzzySystems,1996,4(1):1-14.
    [72] Hong S K, Lee J, Nam Y. T-S fuzzy gain-scheduled control based on affine parameter dependentmodel with application to aircraft roll control[A]. In: AIAA Guidance, Navigation, and ControlConference and Exhibit[C]. AIAA,2000:1-10.
    [73] Austin K J, Jacobs P A. Application of Genetic Algorithm s to Hypersonic Flight Control [A].IFSA. World Congress and20th NAFIPS International Conference [C]. Australia,2001.2428-2433.
    [74] Wu S F, Engelen J H, BabuSka R, et al. Intelligent Flight Controller Design with Fuzzy Logicfor an Atmospheric Re-Entry Vehicle [A]. AIAA Aerospace Sciences Meeting and Exhibit [C].2000.
    [75] Song B, Ma G F, Li C J, Robust fuzzy controller design for a rigid spacecraft attitude regulationsystem [A], In:1st International Symposium on Systems and Control in Aerospace andAstronautics[C], IEEE,2006:424-429.
    [76] Wu S F, Engelen C J H, Chu Q P, et al, Fuzzy Logic Based Attitude Control of the SpacecraftX-38Along a Nominal Re-entry Trajectory [J], IFAC Journal of Control Engineering Practice,2001,9(7):699-707.
    [77] TJ Patrick. Space environment and vacuum properties of spacecraft materials [J]. Vacuum,1981,31(8):351-357.
    [78] Li J H, Lee P M. A Neural Network Adaptive Controller Design for Free-Pitch-Angle DivingBehavior of an Autonomous Underwater Vehicle [J]. Robotics and Autonomous Systems,2005,52(2-3):132-144.
    [79]刘盛平,吴立成,陆震. PPR型平面欠驱动机械臂的点位控制[J].控制理论与应用,2007,24(3):435-439.
    [80] Li T S, Yang Y S, Hong B G, et al. A Robust Adaptive Nonlinear Control Approach to ShipStraight-Path Tracking Design [A].2005American control conference [C]. Portland,2005:4016-4021.
    [81] Shaughnessy J D, Pinckney S Z, McMinn J D, et al. Hypersonic Vehicle Simulation Model:Winged-Cone Configuration [R]. NASA TM-102610,1990..
    [82]苏丙末,曹云峰,陈欣,等.基于BACKSTEPPING的无人机飞控系统设计研究[J].南京航空航天大学学报,2001,33(3):250-253.
    [83] Su Bingwei, Chen Xin, Cao Yunfeng, et al. Adaptive Backstepping Flight Control with ActuatorSaturation [J]. Transactions of Nanjing University of Aeronautics and Astronautics,2001,18(1):81-85.
    [84]连葆华,崔祜涛,崔平远.再入飞行器自动驾驶仪的自适应退步控制设计[J].中国空间科学技术,2003,(1):7-14.
    [85]刘燕斌,陆宇平.基于反步法的高超音速飞机纵向逆飞行控制[J].控制与决策,2007,22(3):313-317.
    [86] Pashilkar A A, Sundararajan N, Saratchandran P. Adaptive Back-Stepping Neural Controller forReconfigurable Flight Control Systems [J]. IEEE Transactions on control systems technology,2006,14(3):553-561.
    [87] Lee T, Kim Y. Nonlinear Adaptive Flight Control Using Backstepping and Neural NetworksController [J]. Journal of Guidance, control, and Dynamics.2001,24(4):675-682.
    [88] Li Y, Qiang S, Zhuang X, et al. Robust and Adaptive Backstepping Control for NonlinearSystems Using RBF Neural Networks [J]. IEEE Trans. Neural Networks,2004,15(3):693-701.
    [89] Ge S S, Wang C. Adaptive Neural Control of Uncertain MIMO Nonlinear Systems [J]. IEEETrans. Neural Networks,2004,15(3):674-692.
    [90]张承进,亓学广.一般严格反馈型非线性系统的自适应控制[J].控制理论与应用,2006,23(4):621-626.
    [91]卢强,梅生伟,申铁龙,等.非线性H∞励磁控制器的递推设计[J].中国科学(E辑),2000,30(1):70-78.
    [92] Steinberg M L, Page A B. Nonlinear Adaptive Flight Control with a Backstepping DesignApproach [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C].Reston: AIAA,1998:728-738.
    [93] Chao-Yong Li, Wu-Xing Jing,and Chang-Sheng Gao. Adaptive backstepping-based flight controlsystem using integral filters [J]. Aerospace Science and Technology.2009,13(3):105-113.
    [94] Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathinghypersonic vehicle [J]. Journal of Spacecraft and Rockets,2007,44(2):374-387.
    [95] Clark A D, Mirmirani M D, Wu C, et al. An aero-propulsion integrated elastic model of ageneric airbreathing hypersonic vehicle [A], In: AIAA Guidance, Navigation, and ControlConference and Exhibit [C], Keystone, USA, AIAA2006-6560:1-20.
    [96] Harsha P T, Keel L C, Castrogiovanni A, et al. X-43A Vehicle Design and Manufacture [A].In:AIAA/CIRA13th International Space Planes and Hypersonics Systems and Technologies [C].AIAA2005-3334:1-9.
    [97] Keshmiri S, Mirmirani M, Colgren R. Six-DOF modeling and simulation of a generichypersonic vehicle for conceptual design studies [A], In: AIAA Modeling and SimulationTechnologies Conference and Exhibit [C], Providence, USA, AIAA2004-4805:1-11.
    [98] Clogren R, Keshmiri S, Mirmirani M. Nonlinear ten-degree-of-freedom dynamics model of ageneric hypersonic vehicle [J]. Journal of aircraft,2009,46(3):800-813.
    [99]《世界航天器运载器大全》编委会著.世界航天器运载器大全[M].第1版,北京:宇航出版社,1996.
    [100]朱亮.空天飞行器不确定非线性鲁棒控制[D].南京:南京航空航天大学,2006.
    [101]《飞机设计手册》编辑委员会编.飞机设计手册第一卷[M].第1版,北京:航空工业出版社,1996.
    [102]鲁道夫.布罗克豪斯著.飞行控制[M].第1版,北京:国防工业出版社,1999年9月.
    [103] Bevacqua T, Best E, Huizenga A,et al. Improved Trajectory Linearization Flight Controller forReusable Launch Vehicles [A]. In:42nd AIAA Aerospace Sciences Meeting and Exhibit [C].Reno: AIAA,2004:1-16.
    [104] Zhu J J, Banker D, Hall C E. X-33Ascent Flight Control Deign by Trajectory Linearization–ASingular Perturbation Approach [A]. In: AIAA Guidance, Navigation, and Control Conferenceand Exhibit [C]. Denver: AIAA,2000:1-19.
    [105] Zhu J J, Huizenga A. A Type Two Trajectory Linearization Controller for a Reusable LaunchVehicles-A Singular Perturbation Approach [A]. In: AIAA Atmospheric Flight MechanicsConference and Exhibit [C]. Providenc: AIAA,2004:1-16.
    [106]都延丽.近空间飞行器姿态与轨迹的非线性自适应控制研究[D].南京:南京航空航天大学,2010.
    [107] Meyer G, Su R, Hunt L R. Application of Nonlinear Transformations to Automatic FlightControl [J]. Automatica,1984,20(1):103-107.
    [108] Isidori A. Nonlinear control systems [M].3rd Ed, London, UK:Springer-Verlag,1995.
    [109]杨涤,冯文剑,吴瑶华.用前馈加反馈控制实现输出跟踪[J].宇航学报,1990,(1):84-90.
    [110]段广仁,强文义,冯文剑等.模型参考控制系统设计的一种完全参数化方法[J].宇航学报,1994,1:7-13.
    [111] Hong S K, Nam Y. Stable fuzzy control system design with pole-placement constraint: an LMIapproach [J]. Computers in Industry,2003,51(1):1-11.
    [112] Wu H N, Cai K Y. H2guaranteed cost fuzzy control design for discrete-time nonlinear systemswith parameter uncertainty [J]. Automatica,2006,42:1183-1188.
    [113] Tanaka K, Ikeda T, Wang H O. Robust Stabilization of a Class of Uncertain Nonlinear Systemsvia Fuzzy Control: Quadratic stability, H∞Control Theory and Linear Matrix Inequalities [J].IEEE Transactions on Fuzzy Systems,1996,4(1):1-13.
    [114] Lo J C, Lin M L. Robust H∞nonlinear control via fuzzy static/dynamic output feedback [J].IEEE Trans. Circuits and Systems-I: Fundamental Theory and Applications,2003,50(11):1494-1502.
    [115] Tong S, Wang T, Li H X. Fuzzy robust tracking control for uncertain nonlinear systems [J].International Journal of Approximate Reasoning,2002,30(2):73-90.
    [116]师黎.基于软计算的故障诊断机理及其应用研究[D].上海:上海大学,2007.
    [117]曾珂,徐文立,张乃尧.典型T-S模糊系统是通用逼近器[J].控制理论与应用,2001,18(2):294-297.
    [118] Tseng C S. Model reference output feedback fuzzy tracking control design for nonlineardiscrete-time systems with time-delay [J]. IEEE Transactions on Fuzzy Systems,2006,14(1):58-70.
    [119] Tong S, Wang T, Li H X. Fuzzy robust tracking control for uncertain nonlinear systems[J].International Journal of Approximate Reasoning,2002,30(2):73-90.
    [120]邓长辉,王福利,王姝,等.一类时滞系统的模糊跟踪控制及其仿真[J].系统仿真学报,2006,18(1):136-139.
    [121] Cai Z, Su C Y. Output tracking control of Takagi-Sugeno fuzzy systems with application to anunder-actuated robot[A]. In: IEEE International Conference on Fuzzy Systems[C].2002,2:1416-1421.
    [122] Tanaka K, Ikeda T, Wang H O. Robust Stabilization of a Class of Uncertain Nonlinear Systemsvia Fuzzy Control: Quadratic Stabilizability, H∞Control Theory, and Linear MatrixInequalities [J]. IEEE Transactions on Fuzzy Systems,1996,4(1):1-13.
    [123] Shuanghe Yu, Xinghuo Yu. Robust global Terminal sliding mode control of SISO linearuncertain systems [A].Proceeding of the35th Conference on Decision and Control[C].Sydney,Australia, Dec,2000.
    [124] Fang C, Lee L, Chang F. Robust Control Analysis and Design for Discrete-Time SingularSystems [J]. Automatica,1994,30(11):1741-1750.
    [125] C.W. Tao, J.S. Taur, M. L. Chan. Adaptive fuzzy terminal sliding mode controller for linearsystems with mismatched time-varying uncertainties [J]. IEEE Trans. Systems, Man andCybernetics Part B,2004,34(1):255-262.
    [126] Feng Y,Yu X H,Man Z H.Non—singular adaptive terminal sliding mode control of rigidmanipulators[J].Automatica,2002,38(12):2159-2167.
    [127] Xing Wang, Yigao Deng, Yafeng Wang. Composite control of linear/adaptive TSM control formass-controlled saucer-like air vehicle[A]. Proceedings of the6th World Congress onIntelligent Control and Automation, Dalian, China, June21-23,2006.
    [128]黄辉先,史忠科,吴方向.一类非线性系统的时变滑模控制[J].控制理论与应用,2000,17(5):774-776.
    [129] Slotine J J. Tracking control of nonlinear system using sliding surface with application to robustmanipulators[J]. Int. J. Contr.,1983,38(3):465-492.
    [130] Yi Xiong. Sliding mode observer for nonlinear uncertain systems [J]. IEEE Trans. Auto. Control,2001,46(12):2012-2017.
    [131] Levant A. Robust exact differentiation via sliding mode technique [J]. Automatica,1998,34(3):379-384..
    [132]冯勇,池毓东,任倩.具有全局鲁棒性的时变滑模平面的设计方法[J].宇航学报,1997,18(3):59-64.
    [133] Shuanghe Yu, Xinghuo Yu, Zhihong Man. A fuzzy neural network approximator with fastterminal sliding mode and its applications [J]. Fuzzy Sets and Systems,2004,148(2):469-486.
    [134] B. Fernandez R. and J. K. Hedrick, Control of Multivariable Non-linear Systems by theSliding mode Method[J]. Int. J. Control,1987,46(3),1019-1140.
    [135] Xinghuo Yu, Zhihong Man. Fast Terminal sliding mode control design for nonlinear dynamicalsystems [J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory andApplications,2004,49(2):261-265.
    [136] Levant A. Universal Single-Input-Single-Output (SISO) sliding-mode controllers withfinite-time convergence [J]. IEEE Transactions on Automatic Control,2001(9):1447-1451.
    [137]葛红,毛宗源.变结构神经网络模糊控制器的研究[J].控制理论与应用,1999,16(2):184-189.
    [138] Xu H J, Mirmirani M, Ioannou P A. Robust Neural Adaptive Control of a Hypersonic Aircraft
    [A]. AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Austin: AIAA,2003:1-8.
    [139] Man Z H, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme forrigid robot manipulators [J]. IEEE Transaction on Automatic Control,1994,39:2464-2469.
    [140] Han Ho Choi. An analysis and design method for uncertain variable structure systems withbounded controllers [J]. IEEE Transactions on automatic control,2004,49(4):602-608.
    [141] Shamma J S, Athans M. Analysis of Gain scheduled control for Nonlinear Plants [J]. IEEETransactions on Automatic Control,1990,35(8):898-907.
    [142] Ha Q P, Nguyen Q H, Rye D C, Durrant-Whyte, Fuzzy sliding-mode controllers withapplications [J], IEEE Transactions on Industrial Electronics,2001,48(1):38-41.
    [143]庄开宇.变结构控制理论若干问题研究及其应用[D].杭州:浙江大学,2002.
    [144]李洪兴,苗志宏,王加银.四级倒立摆的变论域自适应模糊控制[J].中国科学(E辑),2002,45(2):213-224.
    [145]杨昔阳,尤飞.基于分层变论域模糊控制方法的倒车控制[J].模糊系统与数学,2010,24(2):152-156.
    [146]李洪兴.变论域自适应模糊控制器[J].中国科学(E辑),1999,29(1):32-42.
    [147]蒲明,吴庆宪,姜长生,等.自适应二阶动态terminal滑模在近空间飞行器控制中的应用[J].航空动力学报,2010,25(5):1169-1176..
    [148]王艳敏,冯勇,韩向伟.不确定多变量系统的高阶滑模控制[J].控制与决策,2008,23(4):455-458.
    [149]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2002.
    [150] Wen-Hua Chen. Disturbance observer based control for nonlinear systems[J]. IEEE/ASMETransactions on Mechatronics,2004,9(4):706-710.
    [151] Wei X J, Jing Y W. A novel design of fuzzy tracking control for nonlinear time-delay systems
    [A]. In: Proc.2004IEEE World Automation Congress[C]. Piscataway: IEEE,2004:263-268.
    [152]张春雨.空天飞行器建模及其自适应轨迹线性化控制研究[D].南京:南京航空航天大学,2003.
    [153] Young-Ik Son, Hyungbo Shim, Juhoon Back. Design of an adaptive observer without usingoutput derivative measurements [J]. Transactions of the Korean Institute of ElectricalEngineers.2004,53(6):395-411.
    [154] Spurgeon, Sarah K. Sliding mode observers: a survey [J]. International Journal of SystemsScience,2008,39(8):751-764.
    [155] Xinjiang Wei; Huifeng Zhang; Lei Guo. Composite disturbance-observer-based control andvariable structure control for non-linear systems with disturbances [J]. Transactions of theInstitute of Measurement&Control,2009,31(5):401-423.
    [156] Ya-Li Dong,Sheng-Wei MEI.Adaptive Observer for a Class of Nonlinear Systems[J]. ActaAutomatica Sinica,2007,33(10):1081-1084.
    [157] Khalil H K. Nonlinear Systems [M].3rd Ed, Upper Saddle River, New Jersey: Prentice-Hall,2002.
    [158] Swaroop S, Hedrick J K, Yip P P, et al. Dynamic Surface Control for a Class of NonlinearSystems [J]. IEEE Trans. Automat. Contr.,2000,45(10):1893-1899.
    [159] Wang D, Huang J. Neural Network-Based Adaptive Dynamic Surface Control for a Class ofUncertain Nonlinear Systems in Strict-Feedback Form [J]. IEEE Trans. Neural Networks,2005,16(1):195-202.
    [160]李红春,张天平.基于动态面控制的MIMO自适应神经网络控制[J].扬州大学学报,2006,9(4):17-24.
    [161] Sung Jin Yoo; Jin Bae Park; Yoon Ho Choi. Adaptive Dynamic Surface Control for Stabilizationof Parametric Strict-Feedback Nonlinear Systems With Unknown Time Delays [J]. IEEETransaction on Automatic Control,2007,52(12):2360-2365.
    [162] Yang Z J, Miyazaki K, Kanae S, et al. Robust Position Control of a Magnetic Levitation Systemvia Dynamic Surface Control Technique [J]. IEEE Trans. Ind. Electron.,2004,51(1):26-34
    [163] Narendra K S, Parthasarathy K. Identification and Control of Dynamical Systems Using NeuralNetworks [J]. IEEE Trans. on Nerual Networks,1990,1(1):4-27.
    [164] Chen F C, Khalil H K. Adaptive Control of Nonlinear Systems Using Neural Networks [J].International Journal of Control,1992,55(6):1299-1317.
    [165] Zhang T.P, S.S. Ge.Adaptive dynamic surface control of nonlinear systems with unknowndead zone in pure feedback form [J]. Automatica,2008,44(7):1895-1903.
    [166] ZHANG X.Yu, Yan Lin. A Robust Adaptive dynamic surface control for Nonlinear Systemswith Hysteresis Input [J]. Acta Automatica Sinica,2010,36(9):1264-1271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700