近空间飞行器鲁棒自适应协调控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于提高未来空间探索能力和军事防御能力,近空间飞行器(near space vehicle, NSV)具备重要的战略价值,对其开展研究工作有着深远的意义。由于飞行任务的要求和工作环境的限制,近空间飞行器在高超声速飞行时,系统将具备强烈的非线性、快速的时变性、强耦合和不确定性,这对飞行控制系统的设计带来了很大的挑战。本文针对这一问题,分别就运动数学建模、协调控制思路分析、非线性鲁棒自适应控制设计等展开了相应的研究工作。
     首先,在分析了高超声速流动特性和近空间大气物理特征的基础上,对采用带翼锥形体构型的近空间飞行器所受飞行力学情况进行系统的分析,推导出其在变化风场下6-自由度12-状态运动方程,并对其开环控制特性以及不确定和外干扰对其运动特性的影响进行了深入的分析,论证了飞控系统所呈现的严重非线性、激烈快时变、强耦合和不确定性这四大特点和挑战。
     在此基础上重点研究了不同任务下NSV的协调控制和鲁棒自适应协调控制问题。
     其一,在所建模型的基础上,提出了近空间飞行器姿态运动协调控制的设计方法,将非线性广义预测控制(NGPC)方法用于系统的协调控制器设计中,通过理论分析和仿真验证表明了该种方法来解决姿态运动协调控制问题的优化性能。
     随后,分别设计了基于滑动模干扰观测器的非线性广义预测控制和基于在线支持向量回归机的非线性广义预测控制来实现近空间飞行器姿态运动的鲁棒自适应协调控制,采用Lyapunov方法对这两种方案的闭环稳定性进行了分析,仿真结果验证了其良好的控制效果。
     其二,基于飞行/推进一体化设计思想,提出了通过综合气动舵面和发动机推力的协调控制来实现对纵向轨迹的跟踪,将所设计的滑动模广义预测控制(SGPC)用于纵向运动飞行/推进协调控制器的设计中,通过理论推导和仿真分析验证了其非线性优化性能和一定的鲁棒性。
     进一步,针对近空间飞行器纵向运动的飞行/推进鲁棒自适应协调控制,提出了基于有限样本在线SVR的滑动模广义预测控制和模糊自适应滑动模广义预测控制方法,来完成对飞行速度和飞行高度的鲁棒跟踪。通过Lyapunov方法进行了闭环性能分析,仿真得到了满意的控制效果。
     其三,基于分层递阶控制的思想,提出了NSV纵向运动的姿态/轨迹协调控制系统的设计方法。采用非线性广义预测控制和改进型滑动模干扰观测器设计了该系统各回路的非线性控制器和鲁棒自适应控制器,对控制性能进行了理论分析和仿真验证,达到了保证姿态平稳的状态下的轨迹控制这一要求。
     最后,对全文工作进行了总结和展望。
As near space vehicle (NSV) is one of the most important crafts for space exploration andmilitary defense, the research work on it deserve profound significance. Due to the requirements offlight tasks and the limit of flight environments, NSV with hypersonic velocity possesses somedistinct characters, such as serious nonlinearity, fast time variation, intense coupling and stronguncertainty. Therefore, it is a great challenge to design a flight control system for NSV. Consider thischallenging problem, some work such as modeling, coordinative control idea analysis, and nonlinearrobust adaptive control design are proposed in this dissertation.
     Firstly, based on the analysis of hypersonic flow characteristic and features of atmosphere in nearspace, the dynamic forces of NSV are systematically analyzed and then a set of six-degree-of-freedom twelve-state equations are derived to describe the motion of NSV in variational wind field.After that, the open-loop control characteristics under different conditions are studied by simulationanalysis. It is demonstrated that the characteristics of the developed model, such as seriousnonlinearity, fast time variance, intense coupling and strong uncertainty.
     Based on the modeling work, the coordinate control problems are presented as the key work ofthis dissertation to be implied for nonlinear controller design and robust adaptive controller design,listed as following.
     I. Attitude coordinative controller design methos is raised firstly to track the attitides of NSV andthe so called NGPC (nonlinear generalized predictive control) method is employed into the nonlinearcontroller design. The theoretical analysis and simulation results show the good optimizationperformance of this method.
     After thet, the SMDO-based (sliding mode disturbance observer) NGPC control strategy andonline-SVR-based (support vector regression) NGPC control strategy are employed to realize therobust adaptive coordinative control for attitude motion of NSV. The stability of each closed-loopsystem is analyzed via Lyapunov method and the excellent control performance is demonstrated bysimulation.
     II. Based on the clou of airframe/engine integration design, the coordinate control methodintegrating aerodynamic control surfaces and thrust of engine are proposed to track the longitudinaltrajectory. The SGPC (sliding-mode generalized predictive control) control strategy is employed todesign the controller for nominal system. Theorical derivation and simulation analysis demonstrate the optimization performance and a little bit robustness of this method.
     Furthermore, a new online SVR based on finite sample set is proposed to realizeonline-SVR-based SGPC coordinative control for flight/thrust integrated longitudinal motion of NSV.The fuzzy adaptive SGPC is also studied to design the robust coordinative controller for longitudinalmotion of NSV. Lapunov method is used again to analyze the performance of the both closed-loopsystems, and the simulation results show the satisfying robustness of these two adaptive controlmethods.
     III. The design method of attitude-trajectory coordinate control system is proposed based on theidea of hierarchical control. The NGPC method and the improved SMDO are employed to design thenonlinear controllers and robust adaptive controllers for each loop of this system, and the controlperformance is demonstrated via systematically analysis and simulation verification. It can stablytrack the longitudinal trajectory with smooth and steady attitudes.
     Finally, the work of this dissertation is summarized and the further work is also discussed.
引文
[1]李智斌,李果,王大轶等.近空间飞行器动力学与控制的研究现状及难点[A].动力学与控制及航天应用论文集[C].北京,中国,2008:120-142.
    [2]崔尔杰.近空间飞行器研究发展现状及关键技术问题[J].力学进展,2009,39(6):658-673.
    [3]胡孟权,张登成,董彦非,等.高等大气飞行力学[M].北京:航空工业出版社,2007.
    [4]黄志澄.高超声速飞行器空气动力学[M].北京:国防工业出版社,1995.
    [5]中国人民解放军总装备部军事训练教材编辑工作委员会.高超声速气动力试验[M].北京:国防工业出版社,2004.
    [6]申功璋,高金源,张津,等.飞机综合控制与飞行管理[M].北京:北京航空航天大学出版社,2008.
    [7]吴森堂,费玉华.飞行控制系统[M].北京:北京航空航天大学出版社,2005.
    [8]曹秀云.近空间飞行器成为各国近期研究的热点(上)[J].中国航天,2006,37(6):32-35.
    [9] Fidan B, Mirmirani M, Ioannou P A. Flight dynamics and control of air-breathing hypersonicvehicles: review and new directions [A], In:12th AIAA International Space Planes andHypersonic Systems and Technologies [C], Norfolk, USA, AIAA2003-7081:1-24.
    [10] McClinton C R, Rausch V L, Stiz J, et al. Hyper-X program status [A]. In:39th AIAAAerospace Sciences Meeting and Exhibit [C], Reno, USA, AIAA2001-0828:1-11.
    [11] Harsha P T, Keel L C, Castrogiovanni A, et al. X-43A Vehicle Design and Manufacture [A], In:AIAA/CIRA13th International Space Planes and Hypersonics Systems and Technologies [C],AIAA2005-3334:1-9.
    [12] Joyce P J, Pomroy J B, Grindle L. The Hyper-X launch vehicle: challenges and designconsiderations for hypersonic flight testing [A]. In: AIAA/CIRA13th International SpacePlanes and Hypersonics Systems and Technologies[C], Reston, USA: AIAA2005-3333:1-19.
    [13] Johnson M D, Calise A J, Johnson E N. Evaluation of an adaptive method for launch vehicleflight control [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C],Austin, USA, AIAA2003-5789:1-11.
    [14]陈予恕,郭虎伦,钟顺.高超声速飞行器若干问题研究进展[J].飞航导弹,2009,(8):26-33.
    [15]朱亮,姜长生,方炜.空天飞行器六自由度数学建模研究[J].航天控制,2006,24(4):39-44.
    [16]肖存英,临近空间大气动力学特性研究[D].北京:中国科学院研究生院,2009.
    [17]叶友达.近空间高速飞行器气动特性研究与布局设计优化[J].力学进展,2009,39(6):683-694.
    [18]郭锁凤,申功璋,吴成富,等.先进飞行控制系统[M].北京:国防工业出版社,2003.
    [19]文传源.现代飞行控制系统[M].北京:北京航空航天大学出版社,1992.
    [20]杨一栋.飞行综合控制系统[M].南京:南京航空航天大学,2003.
    [21]杨俊伟.综合火力/飞行控制系统仿真软件优化设计[J].电光与控制,1993,(4):12-18.
    [22]宋述杰,张怡哲,邓建华.综合控制系统研究及其仿真[J].飞机设计,2005,(12):33-38.
    [23]陈谋,姜长生,吴庆宪,等.基于小波神经网络的自适应飞/推控制系统设计[J].航空动力学报,2003,18(3):420-427.
    [24]杨京.舰载飞机着舰导引特殊技术研究[D].南京:南京航空航天大学,2000.
    [25]周凌峰.雷达导引的三维着舰制导系统设计及半物理仿真平台的开发研究[D].南京:南京航空航天大学,2001.
    [26]王忠俊.非线性飞行控制方法研究概述[J].飞行力学,1995,13(3):24-28.
    [27] Marcel M J, Baker J. Interdisciplinary design of near space vehicle [A]. In: Proceedings ofSoutheast Conference [C], Richmon, USA,2007,421–426.
    [28] Jiang Z P, Hill D J. A robust adaptive backstepping scheme for nonlinear systems withunmodeled dynamics [J]. IEEE Trans Automat Contr.,1999,44(9):1705-1711.
    [29] Li J H, Lee P M. A neural network adaptive controller design for free-pitch-angle divingbehavior of an autonomous underwater vehicle [J]. Robotics and Autonomous Systems,2005,52(2-3):132-144.
    [30] Li T S, Yang Y S, Hong B G, et al. A robust adaptive nonlinear control approach to shipstraight-path tracking design [A], In:2005American control conference [C], Portland,2005:4016-4021.
    [31] Becker G. Quadratic stability and performance of linear parameter dependent systems [D].Berkeley: University of California,1993.
    [32] Tan W, Packard A K, Balas G J. Quasi-LPV modeling and LPV control of a generic missile
    [A]. In: American Control Conference [C], Chicago, US, June,2000,3692-3696.
    [33] Rugh W J, Shamma J S. Research on gain scheduling [J]. Automatica,2000,36(10):1401-1425.
    [34] Tan S H, Hang C C, Chai J S. Gain scheduling: from conventional to neural-fuzzy [J].Automatica,1997,33(3):411-419.
    [35] Packard A. Gain scheduling via linear fractional transformations [J]. Systems and ControlLetter,1994,22(2):79–92.
    [36]张洪铖,王青.最优控制理论及应用[M].北京:高等教育出版社,2006.
    [37] Zhang M, Zhang W G, Sun Y, et al. Reconfigurable flight control system design usingeigenstructure assignment and particle swarm optimization algorithm [A]. In: The2nd IEEEInternational Conference on Advanced Computer Control [C], Shenyang, China,2010.
    [38] Juang J C, Youssef H M, Lee H P. Robustness of eigenstructure assignment approach in flightcontrol system design [A]. In: American Control Conference [C], San Diego, US,1990,749-754.
    [39]冯纯伯,费树岷.非线性控制系统分析与设计,第二版[M].北京:电子工业出版社,1997.
    [40] Brinker J S, Wise K A, Stability and flying qualities robustness of a dynamic inversion aircraftcontrol law [J]. Journal of Guidance, Control and Dynamics,1996,19(6):1270-1277.
    [41] Calise A J, Hovakimyan N, Idan M, Adaptive output feedback control of nonlinear systemsusing neural networks [J]. Automatica,2001,37(8):1201-1211.
    [42] Utkin V I. Variable Structure systems with sliding modes [J]. IEEE Trans. Automat Contr.,1977,22(2):212-222.
    [43]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
    [44] Chen M S, Hwang Y R, Tomizuka M. A State-dependent boundary layer design for slidingmode control [J]. IEEE Trans Automat Contr.,2002,47(10):1677-1681.
    [45] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers forfeedback linearizable systems [J]. IEEE Trans. Automat Contr.,36(11),1991:1241-1253.
    [46] Sharma M, Farrell J A, Polycarpou M, et al. Backstepping flight control using on-line functionapproximation [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit[C],Austin, USA: AIAA2003-5713:1-10.
    [47] Lee T, Kim Y. Nonlinear adaptive flight control using backstepping and neural networkscontroller [J]. Journal of Guidance, control, and Dynamics,2001,24(4):675-682.
    [48] Hu Y N, Jin Y Q, Cui P Y. RBF NN-based backstepping control for strict feedback blocknonlinear system and its application [A], Lecture Notes in Computer Science,2004,3174:129-137.
    [49] Mickle M C, Zhu J J, Skid-to-turn control of the APKWS missile using trajectory linearizationtechnique [A], In: Proceedings of the American Control Conference[C], Arlington, USA, IEEE,2001:3346-3351.
    [50] Mickle M C, Huang R, Zhu J J, Unstable, non-minimum phase, nonlinear tracking bytrajectory linearization control [A], In: Proceedings of the2004IEEE International Conferenceon Control Applications[C], Taipei, China, IEEE,2004:812-818.
    [51]张智焕,王树青.基于多模糊模型的非线性预测控制[J].信息与控制,2001,30(7):673-675.
    [52] Genceli H, Nikolaou M. Design of robust constrained model predictive controllers withVolterra series [J]. AIChE Journal,1995,41(9):2098-2107.
    [53] Rohit. S, Patwardhan S, Laksh M. Constrained nonlinear MPC using Hammerstein and Wienermodels [J]. AIChE Journal,1998,44(7):1611-1622.
    [54]李殿璞.非线性控制系统理论基础[M].哈尔滨:哈尔滨工程大学出版社,2006.
    [55] Huang J, Lin C F, Cloutier. C F, et al, Robust feedback linearization approach to autopilotdesign [A]. In: First IEEE Conference on Control Applications [C],1992,1:220-225.
    [56] Snell S A. Nonlinear dynamic-inversion flight control of supermaneuverable aircraft [D].Minnesota: University of Minnesota,1991.
    [57] McFarland M B, and Calise A J, Neural-adaptive nonlinear autopilot design for an agileanti-air missile [A], In: AIAA Guidance, Navigation and Control Conference [C], San Diego,USA, AIAA96-3914:1-9.
    [58]朱荣刚,姜长生,邹庆元等,新一代歼击机超机动飞行的动态逆控制[J].航空学报,2003,24(3):534-539.
    [59]王庆超,李达.基于反馈线性化的动能拦截器姿态控制研究[J].宇航学报,2005,26(3):358-361.
    [60] Meyer G, Su R, Hunt L R. Application of nonlinear transformations to automatic flight control[J]. Automatica,1984,20(1):103-107.
    [61]曹开田,滑模变结构控制理论在飞行器姿态控制系统中的应用研究[D].武汉:武汉大学,2004.
    [62]孙晓明,3-DOF直升机和磁悬浮球系统的全程滑模变结构控制研究[D].济南:山东大学,2008.
    [63]唐超颖,吴文海,沈春林,等.滑模变结构飞行控制系统的设计[J].飞行设计,2002,.22(4):50-53.
    [64] Xu R, Ozguner U. Sliding mode control of a quadrotor helicopter [A]. Proceedings of the45thIEEE Conference on Decision&Control [C]. San Diego, USA, December13-15,2006.
    [65] Mian A A, Wang D B, Modeling and backstepping-based nonlinear control strategy for a6DOF quadrotor helicopter [J]. Chinese Journal of Aeronautics,2008,21(3):261-268.
    [66]刘志成,朱铁夫,俞万鹏.基于Backstepping理论的直接自适应飞行控制[J].飞行设计,2009,29(6):1-4.
    [67] Lee C T, Tsai C C. Improvement in trajectory tracking control of a small scale helicopter viabackstepping [A]. In: Proceedings of International Conference on Mechatronics [C].Kumamoto Japan, May8-10,2007.
    [68] Zhu J J. A unified spectral theory for linear time-varying systems-progress and challenges
    [A], In: Proceedings of34th IEEE Conference on Decision&Control [C], New Orleans, US,1995,2540-2546.
    [69] Zhu J J, Huizenga A. A type two trajectory linearization controller for a Reusable LaunchVehicles--A Singular Perturbation Approach [A], In: AIAA Atmospheric Flight MechanicsConference and Exhibit [C], Providenc, US, AIAA,2004,1-16.
    [70] Bevacqua T, Best E, Huizenga A, and et al. Improved trajectory linearization flight controllerfor Reusable Launch Vehicles [A], In:42nd AIAA Aerospace Sciences Meeting and Exhibit
    [C], Reno, US, AIAA,2004:1-16.
    [71] Zhu J J, Banker D, and Hall CE. X-33ascent flight control deign by trajectory linearization-asingular perturbation approach [A], In: AIAA Guidance, Navigation, and Control Conferenceand Exhibit [C], Denver, US, AIAA,2000,1-19.
    [72]姜长生,吴庆宪,孙隆和,等.系统理论与鲁棒控制[M].北京:航空工业出版社,1998.
    [73] Zhou K. On the parameterization H∞controllers [J]. IEEE Transaction on Automatic Control,1992,37(9):1442–1446.
    [74] Glover K, McFarlane D. Robust stabilization of normalized coprime factor plant descriptionswith H∞bounded uncertainty [J]. IEEE Transaction on Automatic Control,1989,34(8):821-830.
    [75] Youla D, Jabr H, Bongiorno J. Modern Wiener-Hopf design of optimal controllers part II: themultivariable case [J]. IEEE Transaction on Automatic Control,1976,21(3):319–338.
    [76] Fan M K H, Tits A L, Doyle J C. Robustness in the presence of mixed parametric uncertaintyand unmodeled dynamics [J]. IEEE Transaction on Automatic Control,1991,36(1):25-28.
    [77]杨天祥,吴梅,刘小刚.定量反馈理论在导弹飞行控制系统设计中的应用[J].弹箭与制导学报,2006,26(3):29-29.
    [78] Ito D, Ward D T, Valasek J. Robust dynamic inversion controller design and analysis for theX-38[A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C], Montreal,Canada, AIAA2001-4380:1-11.
    [79] Lee H P, Reiman S E, Dillon C H, et al. Robust nonlinear dynamic incersion control for ahypersonic cruise vehicle [A], In: AIAA Guidance, Navigation, and Control Conference andExhibit [C], Hilton Head, USA, AIAA2007-6685:1-9.
    [80] Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft [J]. Journal ofGuidance, Control, and Dynamics,2000,23(4):577-585.
    [81]李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2006.
    [82] Sanner R M, Slotine J J E. Gaussian networks for direct adaptive control [J]. IEEETransactions on Neural Networks,1992,3(6):837-863.
    [83] Chen F C, Liu C C. Adaptively controlling nonlinear continuous-time systems usingmultilayer neural networks [J]. IEEE Transactions on Automatic Control,1994,39(6):1306-1310.
    [84] Chen C H, Lin C J, Lin C T. A functional-link-based neurofuzzy network for nonlinear systemcontrol [J]. IEEE Trans. on Fuzzy Systems,2008,16(5):1362-1377.
    [85] Capi G. Application of recurrent neural controllers for robot complex task performance [J].International Journal of Innovative Computing, Information and Control,2009,5(5):1171-1178.
    [86] Van den Bergh F, Engelbrech A P. A cooperative approach to particle swarm optimization [J].IEEE Trans. on Evolutionary Computation,2004,8(3):225-239.
    [87] Juang C. A hybrid of genetic algorithm and particle swarm optimization for recurrent networkdesign [J]. IEEE Transaction on Systems, Man and Cybernetics-Part B: Cybernetics,2004,34(2):997-1006.
    [88] Hu Y C, Functional-link nets with genetic-algorithm-based learning for robust nonlinearinterval regression analysis [J]. Neurocomputing,2009,72:1808-1816.
    [89]邓乃扬,田英杰.支持向量机——理论、算法与拓展[M].北京:科学出版社,2009.
    [90] Wang H, Pi D Y, Sun Y X. Online SVM regression algorithm-based adaptive control [J].Neurocomputing,2007,70(1):952-959.
    [91]袁斌,耿伯英,杨红梅,等.基于支持向量机的非线性系统辨识[J].自动化技术与应用,2007,26(1):23-26.
    [92]彭红星,陈祥光,王红旗.广义支持向量机观测器的设计与仿真[J].石油化工高等学校学报,2008,21(4):95-98.
    [93]宗群,刘文静,窦立谦.基于支持向量机的鲁棒故障诊断方法研究[J].弹箭与制导学报,2007,27(3):307-310.
    [94]王剑非,姜斌,冒泽慧.基于LSSVM的卫星姿态控制系统故障诊断[J].控制工程,2008,15(3):334-337.
    [95] Narendra K S, Annaswamy A M. Stable adaptive systems [M]. New Jersey, USA, PrenticeHall,1989.
    [96] Polycarpou M M, Ioannou P A. A Robust adaptive nonlinear control design [J]. Automatica,1996,32(3):423-427.
    [97] Tao G. Adaptive Control Design and Analysis [M] Hoboken: John Wiley&Sons,2003.
    [98] Jain S, Khorrami F. Decentralized adaptive control of a class of large-scale interconnectednonlinear systems [J]. IEEE Transactions on Automatic Control,1997,42(2):136-154.
    [99] Liu Y S, Li X Y. Decentralized robust adaptive control of nonlinear systems with unmodeleddynamics [J]. IEEE Transactions on Automatic Control,2002,47(5):848-856.
    [100] Ioannou P A, Kokotovic P V. Adaptive systems with reduced models [M]. Berlin, Germany,Springer-Verlag,1983.
    [101] Leu Y G, Wang W Y, Lee T T. Robust adaptive fuzzy-neural controllers for uncertainnonlinear systems [J]. IEEE Transactions on Robotics and Automation,1999,15(5):805-817.
    [102] Fiorentini L, Serrani A. Nonlinear robust adaptive control of flexible air-breathing hypersonicvehicles [J]. Journal of Guidance, Control, and Dynamics,2009,32(2):401-415.
    [103] Kuipers M, Ioannou P, Fidan B, et al. Robust adaptive multiple model controller design for anairbreathing hypersonic vehicle model [A], In: AIAA Guidance, Navigation, and ControlConference and Exhibit [C], Honolulu, US, AIAA2008-7142:1-21.
    [104] Tamaki K, Ohishi K, Ohnishi K. Microprocessor-based robust control of a DC servo motor [J].IEEE Control Systems Magazine,1986,6(5):30–36.
    [105] Shahruz S M, Performance enhancement of a class of nonlinear systems by disturbanceobserver [J]. IEEE/ASME Transactions on Mechatronics,2000,5(3):319-323.
    [106] Chen W H, Balance D J, Gawthrop P J, et al. A nonlinear disturbance observer for roboticmanipulators [J]. IEEE Transactions of Industrial Electronics,2000,47(4):932-938.
    [107] Chen W H, Harmonic disturbance observer for nonlinear systems [J]. Journal of DynamicSystems, Measurement and Control,2003,125:114-117.
    [108] Chen W H, Nonlinear disturbance observer enhanced dynamic inversion control of missiles [J].Journal of Guidance, Control, and Dynamics,2003,26(1):161-166.
    [109]朱亮,姜长生,张春雨.基于径向基神经网络干扰观测器的空天飞行器自适应轨迹线性化控制[J].航空学报,2007,28(3):673-677.
    [110]张春雨,姜长生,朱亮.基于模糊干扰观测器的空天飞行器轨迹线性化控制[J].宇航学报,2007,28(1):33-38.
    [111]陈谋,姜长生,吴庆宪.基于干扰观测器的一类不确定非线性系统鲁棒H∞控制[J].控制理论与应用,2006,23(4):611-614.
    [112]程路,姜长生,都延丽,等.基于滑模干扰观测器的近空间飞行器非线性广义预测控制[J].宇航学报,2010,31(2):423-431.
    [113]席裕庚.预测控制[M].北京:国防工业出版社,1993.
    [114]席裕庚,李德伟.预测控制定性综合理论的基本思路和研究现状[J].自动化学报,2008,34(10):1225-1234.
    [115]席裕庚,陈虹.预测控制性能研究的新进展[J].控制理论与应用,2000,17(4):469-475.
    [116]李书臣,徐心和,李平.预测控制最新算法综述[J].系统仿真学报,2004,16(6):1314-1319.
    [117] Mayne D Q, Rawlings J B, Rao C V, et al. Constrained model predictive control: stability andoptimality [J]. Automatica,2000,36(6):789-814.
    [118]陈薇.非线性预测控制快速算法的研究与应用[D].合肥:中国科学技术大学,2007.
    [119]杨青.非线性预测控制器设计及应用[D].北京:中国石油大学,2006.
    [120]苏成利.非线性模型预测控制的若干问题研究[D].杭州:浙江大学,2006.
    [121]李剑峰.具有积分特性的多变量系统模型预测控制研究[D].杭州:浙江大学,2007.
    [122] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control-The basic algorithm [J].Automatica,1987,7(3):137-148.
    [123] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control-II. extensions andinterpretations [J]. Automatica,1987,23:149-160.
    [124] Norguary S L, Palazoglu A, Romagnoli JA. Nonlinear model predictive control of PHneutralization using Wiener models [A]. In: Proceeding of13thIFAC Congress [C], SanFrancisco, US,1996,31-36.
    [125] Rohit S, Patwardham S, Laksh M. Constrained nonlinear MPC using Hammerstein and Wienermodels: PLS framework [J]. AIchE J,1998,44(7):1611-1622.
    [126] Genceli H, Nikolaon M. Design of Robust Constrained Model Predictive Controllers withVolterra Series [J]. AIchE J,1995,41(9):2098-2107.
    [127] Doyle F J, Ogannaike B A, Pearson R U. Nonlinear Model-Based Control UsingSecond-Order Volterra Models [J]. Automatica,1995,31(5):697-714.
    [128] Maner B R, Doyle F J, Ogunnaiue B A. Nonlinear Model Predictive Control of a SimulatedMultivariable Polymerization Reactor Using Second-Order Volterra Models [J]. Automatica,1996,32(9):1285-1301.
    [129]刘强,许晓鸣,张卫东.基于Volterra模型的非线性系统预测控制[J].控制与决策,2000,15(3):339-344.
    [130] Wang W. Generalized Predictive Control of Nonlinear Systems of the Hammerstein Forms [J].Control Theory and Applications,1994,11(6):672-680.
    [131] Fruzzetti K P, Palazoglu A, Mcdonald K A. Nonlinear Model Predictive Control UsingHammerstein Models [J]. Journal of Process Control,1997,7(1):31-41.
    [132] Pomerleau D A, Hodouin D. A procedure for the design and evaluation of decentralized andmodel-base predictive multivariable controllers for a pellet cooling process [J]. Computers andChemical Engineering,2003,27(2):217-233.
    [133]张泉灵,王树青.基于Hammerstein模型的非线性预测控制[J].浙江大学学报,2002,36(2):119-122.
    [134]李嗣福,刘勇,刘禾.基于Laguerre函数模型的预测控制算法[J].中国科学技术大学学报,1999,29(3):281-288.
    [135]夏伯锴,袁璞.基于Laguerre函数模型的大纯滞后系统预测控制[J].石油大学学报,2002,26(6):110-112.
    [136] Wang L P. Discrete model predictive controller design using Lageurre functions [J]. Journal ofProcess Control,2005,14:131-142.
    [137] Christos C Z, Dumont G A. Deterministic adaptive control based on Laguerre seriesrepresentation [J]. International Journal of Control,1998,48(6):2333-2359.
    [138]赵豫红,顾钟文,付烈勇,等.双线性系统的一种预测控制算法[J].浙江大学学报,1998,(sup):111-116.
    [139] Roubos J A F, Mollov S, Babusks B. Fuzzy Model-Based Predictive Control UsingTakogi-Sngeno Models [C]. Int J Approx Reas,1999,22:3-30.
    [140] Wong C H, Shah S L. Adaptive fuzzy relational predictive control [J]. Fuzzy Sets and Systems,2000,115(2):247-260.
    [141] Zhao F, Qu J. Pattern-base fuzzy predictive control for a chemical process with deed time [J].Engineering Applications of Artificial Intelligence,2000,13(1):37-45.
    [142] Jonas S, Mukul A. Trajectory tracking in batch processes using neural controllers [J]. Journalof Food Engineering,2002,15(3):41-51.
    [143] Tsai P F, Chu J Z. Developing a robust model predictive control architecture through regionalknowledge analysis of artificial neural network [J]. Journal of Process Control,2003,13(5):423-435.
    [144] Jose M N, Dolors G. Parameter estimation with genetic algorithm in control of fed-batchreactors [J]. Chemical Engineering and Processing,2002,41(5):303-309.
    [145] Grosman B, Lewin D R. Automated nonlinear model predictive control using geneticprogramming [J]. Computers and Chemical Engineering,2002,26(5):631-640.
    [146] Zhong Zhao, Xiaohua Xia. Nonlinear dynamic matrix control based on multiple operatingmodels [J]. Journal of Process Control,2003,13(1):41-56.
    [147] Aufderheide B, Bequette B W. Extension of dynamic matrix control to multiple models [J].Computers and Chemical Engineering,2003,27(9):1079-1069.
    [148] Lu P. Nonlinear predictive controllers for continuous systems [J]. Journal of Guidance, Controland Dynamics,1994,17(3):553-560.
    [149] Lu P. Optimal predictive control for continuous nonlinear systems [J]. International Journal ofControl,1995,62(3),633–649.
    [150] Chen W-H, Balance D J, Gawthrop P J. Optinal control of nonlinear systems: a predictivecontrol approach [J]. Automatica,2003,39(1):633-641.
    [151] Soroush M, Soroush H M. Input–output linearising nonlinear model predictive control [J].International Journal of Control,68(6),1997,1449–1473.
    [152] Siller-Alcala I. Generalized predictive control of nonlinear systems [D]. Ph.D, GlasgowUniversity,1998.
    [153] Du Y L, Wu Q X, Jiang C S, et al. Robust predictive control for hypersonic vehicles usingrecurrent functional link artificial neural networks [J]. International Journal of InnovativeComputing, Information and Control,2010,6(12):5351-5365.
    [154]程路,姜长生,都延丽,等.一类不确定系统基于滑模干扰补偿的广义预测控制[J].控制理论与应用,2010,27(2):175-180.
    [155] Bitmead R R, Gevers M, Wertz V. Adaptive optimal control–the thinking man’s GPC [M].New York: Prentice–Hall,1990.
    [156] Raelings J B, Muske K R. The stability of constrained receding horizon control [J]. IEEETransactions on Automatic Control,1993,38(10):1512-1516.
    [157] Mosca E, Lemos J M, Zhang J. Stabilizing I/O receding horizon control [A]. In: IEEEConference Decision and Control [C], Honlulu, US,1990,2518-2523.
    [158] Mayne D Q, Michalska H. Receding horizon control of nonlinear systems [J]. IEEETransactions on Automatic Control,1990,35(7):814-824.
    [159] Kouvatitakis B, Rossiter J A, Chang A O T. Stable generalized predictive control: an algorithmwith guaranteed stability [J]. IEE Proceedings–Control Theory and Applications,1992,139(4):349-362.
    [160] Michalska H, Mayne D Q. Robust receding horizon control of constrained nonlinear systems[J]. IEEE Transactions on Automatic Control,1993,38(11):1623-1633.
    [161] Yang T H, Polak E. Moving horizon control of nonlinear systems with input saturation,disturbances and plant uncertainty [J]. International Journal of Control,1993,58(4):875-903.
    [162] Oliveita S L, Morari M. Robust model predictive control for nonlinear systems [A]. In:Proceedings of the33rdIEEE Conference on Decision and Control [C], Florida US,1994,3561-3566.
    [163] Oliveita S L, Morari M. Contractive model predictive control for constrained nonlinearsystems [J]. IEEE Transactions on Automatic Control,2000,45(6):1053-1071.
    [164] Campo P J, Morari M. Robust predictive control [A]. In: Proceedings of American ControlConference [C], Minneapolis US,1987,1021-1026.
    [165]陈忠保,李嗣福.模型不确定系统的鲁棒控制[J].控制理论与应用,2000,17(2):259-263.
    [166] Tadmor G. Receding horizon revisited: an easy way to robustly stabilize an LTV system [J].Systems&Control Letters,1992,18:285-299.
    [167] Magni L, Nieoloa G D, Scattolini R. Output feedback and tracking of nonlinear systems withmodel predictive control [J]. Automatica,2001,37:1601-1607.
    [168] Nicolao G D, Magni L, Scattolini R. On the robustness properties of receding-horizon controlwith terminal constrains [J]. IEEE Transaction on Automatic Control,1996,41(3):451-453.
    [169]李阳春,许晓鸣,杨煜普.一类非线性预测控制系统的鲁棒稳定性[J].自动化学报,1999,25(6):852-855.
    [170]耿晓军,席裕庚.衰减扰动下非线性预测控制系统的鲁棒稳定性[J].控制与决策,1999,14(4):369-372.
    [171] Kothare M V, Balakrishnan V, Morari M. Robust constrained model predictive using linearmatrix inequalities [J]. Automatica,1996,32(10):1361-1379.
    [172]程路,姜长生,文杰,等.近空间飞行器飞\推一体化模糊自适应广义预测控制[J].系统工程与电子技术,2011,33(1):127-133.
    [173]周建锁,刘志远,裴润.一种非线性连续预测变结构控制方案[J].电机与控制学报,2000,4(4):227-230.
    [174]胡剑波,陈新海.反馈线性化系统的非线性预测滑模控制[J].航空学报,1997,18(5):579-582.
    [175] Du Y L, Wu Q X, Jiang C S, et al. Adaptive functional link network control of near-spacevhicles with dynamical uncertainties [J]. Journal of System Engineering and Electronics,2010,21(5):868-876
    [176] Du Y L, Wu Q X, Jiang C S, et al. Optimal generalized predictive control for a near-spacevehicle based on nonlinear disturbance observer [A]. In:2008Chinese Control&DecisionConference [C], Yantai China,2008.
    [177] Gao C, Liu H T, Zhang P. A nonlinear multi-objective receding horizon flight control design
    [A], In: AIAA Guidance, Navigation, and Control Conference [C], Chicago US, AIAA2009-5624:1-23.
    [178] Hyochoong B. Predictive control for the attitude maneuver of a flexible spacecraft, AerospaceScience and Technology [J].2004,8(1):443–452.
    [179] Kang Y, Hedrick J K. Design of nonlinear model predictive controller for a small fixed-wingunmanned aerial vehicle [A], In: AIAA Guidance, Navigation, and Control Conference andExhibit [C], Keystone, USA, AIAA2006-6685:1-11.
    [180] Benito J, Mease K D. Nonlinear predictive controller for drag tracking in entry guidance [A],AIAA/AAS Astrodynamics Specialist Conference and Exhibit [C], Honolulu, USA, AIAA2008-7350:1-14.
    [181] Bhattacharya R, Balas G J, Kaya M A, et al. Nonlinear receding horizon control of an F-16aircraft [J]. Journal of Guidance, Control, and Dynamics,2002,25(5):924-931.
    [182]张立珍.无人机自主飞行控制系统的设计[D].南京:南京航空航天大学,2011.
    [183]谢亚荣.空投任务下翼伞建模与飞行控制研究[D].南京:南京航空航天大学,2011.
    [184]张军,姜长生,方炜.变结构近空间飞行器大飞行包络控制特性研究[J].宇航学报,2009,30(2):543-549.
    [185] Froning H D, Gieseking D L.“Bank-to-turn steering” for Highly Maneuverable Missiles [A].In: AIAA Guidance and Control Conference [C], Florida, US,1973, AIAA73-860.
    [186]李秋月,李忠应.倾斜转弯导弹制导与控制系统评述[J].北京航空航天大学学报,1993,3(3):75-80.
    [187] Lee C H, Chung M J. Gain scheduled state feedback control design technique for flightvehicles [J]. IEEE Transactions on Aerospace and Electronic Systems,2001,37(1):173-182.
    [188] Riedel F W. Bank-to-turn control technology survey for homing missiles [R]. NASA-CR-3325,1980.
    [189] Arrow A. An Analysis of Aerodynamic Requirements for Coordinated Bank-to-TurnAutopilots [R]. NASA-CR-3644,1982.
    [190]叶振信,傅维贤.战术导弹BTT控制技术发展综述[J].航天控制,2009,27(5):106-112.
    [191] Sachs, G. Increase and Limit of in Super-and Hypersonic Flight [J]. Journal of Guidance,Control, and Dynamics,199922(1):181-183.
    [192] Vu P T, Biezad D J. Direct-Lift Strategy for Longitudinal Control for Hypersonic aircraft [J].Journal of Guidance, Control, and Dynamics,1994,17(6):1260-1266.
    [193] Phuong V, Daniel B. A pseudo-loop design strategy for the longitudinal control of hypersonicaircraft [A]. In: AIAA Guidance, Navigation and Control Conference, Monterey, US,1993,1021-1028.
    [194] Myers T T, Klyde D H, McRuer, D T. Influence of Path-Attitude Lag In Hypersonic FlyingQualities [A]. In:33rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, US,1995.
    [195] Torrez S, Driscoll J. Scramjet Engine Model MASIV: Role of Mixing, Chemistry and WaveInteractions [R]. AIAA-2009-4939,2009.
    [196] Torrez S, Scholten N. A Scramjet Engine Model Including Effects of Precombustion Shocksand Dissociation [R]. AIAA2008-4619,2008.
    [197] Torrez S, Driscoll J F. Effects of Improved Propulsion Modelling on the Flight Dynamics ofHypersonic Vehicles [A]. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit [C],Honolulu, Hawaii,2008, AIAA2008-63861.
    [198] Bolender M A, Doman D B. Nonlinear Longitudinal Dynamical Model of an Air-BreathingHypersonic Vehicle [J]. Journal of Spacecraft and Rockets,2007,44(2):374-387.
    [199] Burcham F W, Batterton P G. Flight Experience With a Digital Integrated Propulsion ControlSystem on an F-111E Airplane [R], AIAA-76-653,1976.
    [200] Anderson D L, Connolly G F. YF-12Cooperative Airframe/Propulsion Control SystemProgram: Volume I [R]. NASA CR-163099,1980.
    [201] Burcham F W. Summary of HIDEC Results [A]. In: Highly Integrated Digital ElectronicControl Symposium [C], NASA CP-3024,1987,358-364.
    [202] White D A, Bowers A, Iliff K, and et al. Handbook of Intelligent Control: Neural, Fuzzy, andAdaptive Approaches [M]. New York: Van Nostrand Reinhold,1992.
    [203] Schmidt D K, Mamich H, Chavez F. Dynamics and control of hypersonic vehicles: Theintegration challenge for the1990s [R]. AIAA91-5057,1991.
    [204] Whitehead A H. NASP Aerodynamics [R]. AIAA89-5013,1989.
    [205]池沛,杨艳艳,陈宗基.空天飞行器建模分析与自主重构[J].航空学报,2008,29(sup):164-169.
    [206] Wayne C D. Constrained Control Allocation: Three-Moment Problem [J]. AIAA Journal ofGuidance, Control, and Dynamics,1994,17(2):330-336.
    [207] Wayne C D. Computationally Efficient Control Allocation [J]. AIAA Journal of Guidance,Control, and Dynamics,2001,24(3):519-524.
    [208] Bodson M. Evaluation of optimization methods for control allocation [J]. AIAA Journal ofGuidance, Control, and Dynamics,2002,25(4):703-711.
    [209]鲍文,姚照辉.综合离心力/气动力的升力体高超声速飞行器纵向运动建模研究[J].宇航学报,2009,30(1):128-133.
    [210] Yao Z H, Bao W, Chang J T, et al. Modeling for couplings of an airframe-propulsion integratedhypersonic vehicle with engine safety boundaries [J]. Proceedings of the Institution ofMechanical Engineers, Part G, Journal of Aerospace Engineering,2010,224(1):43-55.
    [211]鲍文,姚照辉,齐义文,等.高超声速飞行器/超燃冲压发动机一体化协调控制方法研究
    [A]. In:第三届高超声速科技学术会议[C],中国无锡,2010, CSTAM2010-0025.
    [212]王美仙,李明,张子军.飞行器控制律设计方法发展综述[J].飞行力学,2007,25(2):1-4.
    [213]刘小刚.自主式飞行控制关键技术研究[D].西安:西北工业大学,2006.
    [214]张新国.从自动飞行到自主飞行[J].飞机设计,2003,28(3):55-59.
    [215]朱亮,姜长生,陈海通,等.基于单隐层神经网络的空天飞行器直接自适应轨迹线性化控制[J].宇航学报,2006,27(3):338-344.
    [216]黄国勇,姜长生,王玉惠.自适应Terminal滑模控制及其在UASV再入中的应用[J].控制与决策,2007,22(11):1297-130.
    [217] Parker J T., Serranit A, Yurkovich S, et al. Control-oriented modeling of an air-breathinghypersonic vehicle [J]. Journal of Guidance, Control and Dynamic,2007,30(3):856-869.
    [218]黄志澄.空天飞机的乘波外形[J].气动试验与测量控制,1992,6(3):1-9.
    [219] Nonweiler T R F. Aerodynamic problems of manned space vehicles [J]. Journal of the RoyalAeronautical Society,1959,63(9):521-528.
    [220] Rasmussen M L. Waverider configurations derived from inclined circular and elliptic cones [J].Journal of Spacecraft and Rockets,1980,17(6):537-545.
    [221] Shaughnessy J D, Pinckney S Z, McMinn J D, Cruz C I, Kelley M-L. Hypersonic VehicleSimulation Model: Winged-cone Configuration [R]. NASA TM-102610,1990.
    [222] Keshmiri S, Mirmirani M, Colgren R. Six-DOF modeling and simulation of a generichypersonic vehicle for conceptual design studies [A]. In: AIAA Modeling and SimulationTechnologies Conference and Exhibit [C]. Providence, USA,2004, AIAA2004-4805.
    [223] Clogren R, Keshmiri S, Mirmirani M. Nonlinear ten-degree-of-freedom dynamics model of ageneric hypersonic vehicle [J]. Journal of Aircraft,2009,46(3):800-813.
    [224]肖业伦,金长江.大气扰动中的飞行原理[M].北京:国防工业出版社,1993.
    [225]张春雨.空天飞行器建模及其自适应轨迹线性化控制研究[D].南京:南京航空航天大学,2007.
    [226]何庆芝.飞机设计手册:常用公式、符合、数表[M].北京:航空工业出版社,1996.
    [227] Smith O E, Adelfang S I. A compendium of wind statistics and models for the NASA spaceshuttle and other aerospace vehicle programs [R]. NASA/CR-1998-208859,1998.
    [228]都延丽.近空间飞行器姿态与轨迹的非线性自适应控制研究[D].南京:南京航空航天大学,2010.
    [229]邢建文.超声速燃烧室流场的数值模拟及与实验结果的比较[D].长沙:国防科学技术大学,2002.
    [230] David L R, Michael R P, Lee H P. Investigation of piloting aids for manual control ofhypersonic maneuvers [R]. NASA TP-3525,1995.
    [231] Gregory I M, Chowdhry R S, McMinn J D, et al. Hypersonic vehicle model and control lawdevelopment using H∞and μ Synthesis [R]. NASA TM-4562,1994.
    [232]于达仁,常军涛,崔涛,等.超燃冲压发动机控制方法[J].推进技术,2010,31(6):764-772.
    [233] Xu H, Mirmirani M, Ioannou P A. Robust neural adaptive control of a hypersonic aircraft [A].In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Austin, USA,August11-14,2003, AIAA2003-5641.
    [234]周丽.基于回馈递推方法的近空间飞行器鲁棒自适应控制[D].南京:南京航空航天大学,2008.
    [235]鲁道夫布罗克豪斯.金长江译.飞行控制[M].北京:国防工业出版社,1999.
    [236] Isidori A.王奔,庄圣贤译.非线性控制系统(第三版)[M].北京:电子工业出版社,2005.
    [237]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2002.
    [238]李殿璞.非线性控制系统[M].西安:西北工业大学出版社,2009.
    [239] Demircioglu H, Gawthrop P J. Continuous-time generalized predictive control [J]. Automatica,1991,27(1):55-74.
    [240] Gawthrop P J, Demircioglu H, Siller-Alcala I. Multivariable continuous-time generalizedpredictive control: a state-space approach to linear and nonlinear systems [J]. Proceedings IEEPart D: Control Theory and Applications,1998,145(3):241-250.
    [241] Vapnik V. Statistical Learning Theory [M]. New York: John Wiley,1998.
    [242] Parrella F. Online Support Vector Regression [D]. Genoa: University of Genoa,2007.
    [243]田英杰.支持向量回归机及其应用研究[D].北京:中国农业大学,2005.
    [244] Ma J, Theiler J, and Perkins S. Accurate on-line support vector regression [J]. NeuralComputation,2003,15:2683-2704.
    [245] Zadeh L A. Fuzzy sets [J]. Information and Control,1965,8(3):338-353.
    [246]曾珂,徐文立,张乃尧.典型T-S模糊系统是通用逼近器[J].控制理论与应用,2001,18(2):294-297.
    [247] Zeng X J, Singh M G. Approximation theory of fuzzy systems MIMO case [J]. IEEETransactions on Fuzzy Systems,1995,3(2):219-235.
    [248]王立新.王迎军译.模糊系统与模糊控制[M].北京:清华大学出版社,2003.
    [249] Takagi T, Sugeno M, Fuzzy identification of systems and its applications to modeling andcontrol [J]. IEEE Transaction on Systems, Man and Cybernetics,1985,15(1):116-132.
    [250] Wang L X. Fuzzy systems are universal approximators [A]. In: Proceeding of IEEEInternational Conf. on Fuzzy Systems [C], San Diego, US,1992:1163-1170.
    [251] Ge S S, Wang C. Adaptive Neural Control of Uncertain MIMO Nonlinear Systems [J]. IEEETransactions on Neural Networks,2004,15(3):674-692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700