交流永磁同步电机伺服系统控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高端制造业具有成长性好、附加值高、关键性强、技术和知识密集、带动性大等特点,是国家“十二五规划”的六大战略性新兴产业之一。伺服驱动系统是现代制造业的重要驱动源之一,永磁同步电机逐步取代步进电机和直流电机,成为伺服驱动的发展方向。由于永磁同步电机伺服系统易受电机参数变化、外部负载扰动等因素的影响,要获得高性能、宽调速范围永磁同步电机伺服系统,必须研究先进的控制策略与控制手段,实现系统强抗扰能力和适应性。鉴于永磁同步电机伺服系统重要的现实意义和广泛的应用前景,本文对永磁同步电机伺服控制技术进行了深入研究,并完成对伺服控制器的设计。
     首先,通过坐标变换,建立永磁同步电机在三种坐标系下的数学模型。为满足伺服控制系统高精度、宽调速范围和快速响应等性能要求,采用矢量控制算法实现永磁同步电机转矩和磁链的解耦控制。通过对矢量控制的四种不同电流控制方法的比较分析,结合小惯量面装式永磁同步电机的特点和伺服控制系统的控制要求,选定id ?0的转子磁场定向矢量控制方案。
     其次,按照自动控制系统调节器的工程设计方法,设计电流环和速度环PI调节器,分析电流和速度微分负反馈抑制动态响应超调的机理,通过速度微分负反馈实现速度环的全状态反馈控制。针对单自由度控制器无法同时兼顾跟踪性和抗扰性的问题,研究二自由度控制算法对速度环进行改善,设计简化的滤波型二自由度速度控制器,提高了转速控制的跟踪性能和抗扰性能。
     再次,为提高位置环控制性能,采用位置复合前馈控制对位置环比例控制器进行改进,消除反馈控制产生的滞后误差,实现位置快速跟踪和准确定位。针对位置环控制性能易受转动惯量变化的影响,通过朗道算法实现转动惯量参数辨识,设计位置环自适应控制器,仿真结果表明位置环具备良好的抗参数摄动能力。
     最后,研究适于工程实践的永磁同步电机参数测量方法,为控制器设计打下基础。搭建以高性能32位MCU TC1166为核心处理芯片的永磁同步电机伺服系统硬件平台,设计数字控制器,实现高性能控制算法。实验结果表明,系统能够实现位置的快速准确定位和速度的无超调快速响应,满足伺服系统的性能需求。
High-level manufacturing industry is one of the six emerging strategic industries of "Twelfth National Five-Year Plan", which has the many advanced characters, including intensive technology and knowledge, high added value, good growth, etc. Servo system is an important driving source of modern manufacturing, and it is a trend that permanent magnet synchronous motor(PMSM) replaces the stepper motor and DC motor to become the main actuator of servo system. As PMSM servo system is vulnerable to motor parameters and external load disturbance, advanced control strategies should be studied to achieve strong anti-interference ability and adaptability. In view of the great practical significance and practical value of AC servo system, control technology for PMSM servo system is studied and a PMSM servo controller is designed in this paper.
     Firstly, the mathematical model for PMSM is established under three types of coordinate. On that basis, different speed-control strategies for PMSM are analysed, and the vector control algorithms with different current control objective are compared. Ultimately, basic control strategy for PMSM servo control is determined. Three-loops design of the servo system is accomplished by an inside-outside design method. Simulation results show that the design is reasonable.
     Secondly, to solve the existing problems for inner two-loops design of servo system and meet the performance requirements of servo system, more advanced control strategies for PMSM servo system are discussed. Based on the differential negative feedback control strategy, a filter set two-degree-of-freedom control method is finally used in the speed loop, which achieves excellent performances in both tracking and disturbance rejecting.
     Thirdly, to achieve fast and accurate response, a feed-forward control strategy is used in the position loop, which can eliminate the error caused by the tracking lag. An identification method for the moment of inertia is designed. On that basis, an adaptive inertia control method of position loop is proposed.
     Finally, to ensure the accuracy of the three loops design of servo systems, a measurement method for PMSM parameters is studied. An experimental platform of PMSM servo system is built based on the tricore MCU TC1166, realizing the digital design of servo control strategy. The experimental results demonstrate the system has good dynamic performance and steady state accuracy, and the proposed control strategy is reasonable and feasible.
引文
[1]李训杰,耿连发.现代永磁电动机交流伺服系统的发展和应用[J].电机技术,2009(5):20-22.
    [2]李烨,严欣平.永磁同步电动机伺服系统研究现状及应用前景[J].微电机,2001,34(4):30-33.
    [3]秦忆,周永鹏.现代交流伺服系统[M].武汉:华中理工大学出版社,1995.
    [4] Chen H C,Liaw C M. Current-mode Control for Sensorless BDCM Drive with Intelligent Commutation Tuning[J]. IEEE Transactions on Power Electronics,2002(17):747-756.
    [5]郭庆鼎,孙宜标,王丽梅.现代永磁电动机交流伺服系统[M].北京:中国电力出版社,2006.
    [6]暨绵浩.永磁同步电动机及其调速系统综述和展望[J].微特电机,2007(3):49-52.
    [7]谢玉春,苏健勇,杨贵杰,李铁才.基于XE164的无传感器PMSM驱动控制系统设计[J].微特电机,2011(1):19-22.
    [8]黄伟忠,宋春华.永磁交流伺服电机国内外市场概况[J].微特电机,2009(1):59-62.
    [9]许晓华.永磁交流伺服电动机发展前景[J].伺服控制,2005.11:29-31.
    [10] Jezernik K,Rodic M. High Precision Motion Control of Servo Drives[J]. IEEE Transactions on Industrial Electronics,2009,56(10):3810~3816.
    [11] Petar R Matic,Branko D Blanusa,Slobodant N Vukosavic. A Novel Direct Torque and Flux Control Algorithm for the Induction Motor Drive[J]. IEEE Transactions on Industry Applications,2003(5).
    [12] Zhong L,Rahman M F,Hu W Y. Analysis of Direct Toque Control in Permanent Magnet Synchronous Motor Drives[J]. IEEE Transactions on Power Electronics,1997,12(3):528-536.
    [13] Hector M,Paul I R. Magnetic Servo Levitation by Sliding-Mode Control of Nonaffine Systems With Algebraic Input Invertibility[J]. IEEE Transactions on Industrial Electronics,2005,52(5).
    [14] Rojko A,Jezernik K. Sliding-Mode Motion Controller With Adaptive Fuzzy Disturbance Estimation[J]. IEEE Transactions on Industial Electronics,2004,51(5).
    [15] Li S H,Li Z G. Adaptive Speed Control for Permanent-Magnet Synchronous Motor System with Variations of Load Inertia[J]. IEEE Transactions on IndustrialElectronics,2009,56(8):3050-3059.
    [16] Samuel J U,Iqbal H. Online Parameter Estimation and Adaptive Control of Permanent-Magnet Synchronous Machines[J]. IEEE Transactions on Industrial Electronics,2010,57(7):2435-2443.
    [17] Liutanakul P,Pierfederici S,Meibody-Tabar F. Application of SMC with I/O Feedback Linearization to the Control of the Cascade Controlled-Rectifier Inverter-Motor Drive System with Small Dc-Link Capacitor[J]. IEEE Transactions on Power Electronics,2008,23(5):2489-2499.
    [18]叶云岳,陆凯元.直线电机的PID控制与模糊控制[J].电工技术学报, 2001,16(3):11-15.
    [19]郝东丽,郭彤颖,贾凯.基于神经网络的永磁同步电机矢量控制[J].电力电子技术,2004,38(4):54-55.
    [20]黄祯祥,邓怀雄,郭延文.数控机床交流伺服系统的复合控制研究[J].中国制造业信息化,2005,34(2):115-116.
    [21] Huang X D,Shi L T. Simulation on a Fuzzy-PID Position Controller of the CNC Servo System[C]. Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications,2006.
    [22] Hu B G,Mann K I G,Gosine G R. New Methodology for Analytical and Optimal Design of Fuzzy PID Controllers[J]. IEEE Transactions on Fuzzy Systems,1999,7(5):521-539.
    [23] Bowes S R, Li J. New Robust Adaptive Control Algorithm for High-Performance AC Drives[J]. IEEE Transactions on Electronics,2000,47(2):325-336.
    [24] Wang J S,Lee C S G. Self-Adaptive Neuro-Fuzzy Inference Systems for Classification Applications[J]. IEEE Transactions on Fuzzy Systems,2002, 10(6):790- 802.
    [25] Li H K,Wang Q L. Sliding Mode Controller Based on Fuzzy Neural Network Optimization for Direct Torque Controlled PMSM[C]. Proceedings of the 8th World Congress on Intelligent Control and Automation,2010:2434-2438.
    [26] Wang L M,Tiara M X,Gao Y P. Fuzzy Self-adapting PID Control of PMSM Servo System[C]. IEEE International Conference on Electric Machines and Drivers,2007.
    [27]林伟杰.永磁同步电机伺服系统控制策略的研究[D].杭州:浙江大学博士论文,2005:9-18.
    [28] Xu Longya,Fu Minghua,and Li Zhen. A DSP Based Servo System Using Permanent Magnet Synchronous Motors(PMSM). Texas InstrumentsSemiconductors.
    [29] Zhou Zhaoyong,Li Tiecai,Takahashi T,et al. FPGA Realization of a High-performance Servo Controller for PMSM[C]. Applied Power Electronics Conference and Exposition, proc. of APEC '04,Nineteenth Annual IEEE,2004:1604-1609.
    [30]王秀和等.永磁电机[M].北京:中国电力出版社,2007:257~258.
    [31]唐任远等.现代永磁电机理论与设计[M].北京:机械工业出版社,2005:261-262.
    [32] Casadei D,Profumo F,Serra G,et al. FOC and DTC:Two Viable Schemes for Induction Motors Torque Control[J]. IEEE Transactions on Power Electronics,2002,17(5):779-787.
    [33]吴茂刚.矢量控制永磁同步电动机交流伺服系统的研究[D].杭州:浙江大学博士论文,2006:6-34.
    [34]王宏,于冰,徐殿国.永磁同步电动机位置伺服系统[J].中国电机工程学报,2004,24(7):151-155.
    [35]姜飞荣.永磁同步电机伺服控制系统研究[D].杭州:浙江大学博士论文,2006:13-21.
    [36]陈荣.永磁同步电机伺服系统研究[D].南京:南京航空航天大学博士论文,2004:
    [37]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2008:76-94.
    [38] Teela , Pralvl. Global Stabilizabilitv and Observability Imply Semi-global Stabilizability by Output Feedback[J]. Syst Contr Lett,1994(22):313-325.
    [39] Shyu K K,Lai C K,et al. A Newly Robust Controller Design for the Position Control of Permanent Magnet Synchronous motor[J]. IEEE Transactions on Industrial Electronics,2002,49(3):558-565.
    [40] Jongsun K,Sungkoo Y,Youngil K. A Robust Adaptive Precision Position Control of PMSM[C]. IEEE 2002 37th IAS Annual Meeting Pittsburgh Pennsylvania,USA,2002(1):120-125.
    [41]陈荣,邓智泉,严仰光.微分反馈控制在永磁伺服系统中的应用研究[J].电工技术学报,2005,20(9):92-97.
    [42]周志超,庄圣贤,易一鹏.基于二自由度内模控制的电动变桨距伺服控制系统设计[J].西华大学学报,2011,30(1):43-47.
    [43]舒鑫东,庄圣贤,关晓明,刘思佳,梁英.交流永磁同步电机二自由度PID控制[J].电气传动,2009,39(12):54-56.
    [44]龚淑秋. PMSM的模糊自调整二自由度控制器的研究[D].沈阳:沈阳工业大学,2007:12-42.
    [45] Fujimoto Y. Robust Two Degree-of-freedom Control for AC Servo System[C]. IPEMC,1997.
    [46] Fujimoto Y,Kawamura A. Robust Servo-system Based on Two-degree of Freedom Control with Sliding Mode[J]. IEEE Transactions on Industrial Electronics,1995,42 (3):272-280.
    [47] Choi J W,Lee S C,Kim H G. Inertia Identification Algoritlun for High Performance Speed Control of Electric Motors[J]. IEEE Proceedings of Electric Power Applications,2006,153(3):379-386.
    [48] Wang Gaolin,Xu Dianguo,Yu Yong. Low Speed Control of Permanent Magnet Synchronous Motor Based on Instantaneous Speed Estimation[C]. The Sixth World Congress on Intelligent Control and Automation,2006:8033-8036.
    [49] Lee K B,Yoo J Y,Song J H,et al. Improvement of Low Speed Operation of Electric Macliure with an Inertia Identification Using ROELO[J]. IEEE Proceedings of Electric Power Applications,2004,151(1):116-120.
    [50] Lee H S,Tomizuka M. Robust Motion Controller Design for High-accuracy Positioning Systems[J]. IEEE Transactions on Industrial Electronics,1996,43(1):48-55.
    [51]胡庆波,吕征宇.全数字伺服系统中位置前馈控制器的设计[J].电气传动,2005,35(5):24-27.
    [52] Guo Y J,Huang L P,Muramatsu M. Research on Inertia Identification and Auto-turning of Speed Controller for AC Servo System[J]. IEEE,PCC,2002.
    [53] Mobarakeh B N,Tabar F M,Sargos F M. On-line Identification of PMSM Electrical Parameters Based on Decoupling Control[C]. IEEE Industry Applications Society Annual Meeting,2001:266-273.
    [54]鲁文其,胡育文,梁骄雁,黄文新.永磁同步电机伺服系统抗扰动自适应控制[J].中国电机工程学报,2011,31(3):75-81.
    [55]刘军.永磁电动机控制系统若干问题的研究[D].上海:华东理工大学博士论文,2010:33-70.
    [56]张平化.基于VSR_VSI的永磁同步电机驱动控制系统研究[D].哈尔滨:哈尔滨工业大学博士论文,2010:97-113.
    [57]张清石.电压型PWM整流器反馈线性化控制方法的研究[D].哈尔滨:哈尔滨工业大学硕士论文,2010:63-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700