重油在胶州湾沉积物上的吸附解吸行为及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油烃类化合物是海洋环境中常见的有机污染物,已成为近岸海域最主要的有机污染物之一。这些石油类污染物通过发生一系列的物理、化学和生物作用,对海洋生态环境造成了严重的破坏,危害人类健康。油类污染物进入水体后,随着风化过程的进行,其中的轻组分容易通过蒸发、溶解、乳化等作用其含量不断降低,而重组分有很大一部分会在悬浮颗粒物上吸附而随之沉降到海底沉积物,在沉积物有机质和粘土矿物中发生吸附分配等作用。一定条件下吸附在沉积物上的油类污染物又会向上覆水体中释放,成为一种内源污染,造成水体二次污染。油类污染物在沉积物-水界面处的吸附解吸是影响其在海洋环境中迁移、转化、和生物利用等的重要途径,因而研究其在近岸海洋环境中的吸附解吸具有重要的意义。
     本论文运用实验室模拟的方法,在尽可能保持颗粒原结构的基础上,采用湿筛法处理的胶州湾沉积物为吸附剂,研究在人工海水介质中,重油的吸附解吸行为,并讨论了相关的影响因素,重点考察了阴离子表面活性剂十二烷基苯磺酸钠(sodium dodecylbenzene sulfonate,SDBS)和非离子表面活性剂失水山梨醇聚氧乙烯(20)醚月桂酸酯(Polyoxyethylene (20) sorbitan Monolaurate,Tween20)存在时重油在胶州湾沉积物上的吸附解吸行为,得到的主要结论如下:
     1.吸附过程
     (1)动力学研究发现沉积物对重油的吸附速率较快,吸附动力学曲线符合伪二级非线性速率方程,SDBS的加入能够加快重油在沉积物上的吸附,且吸附速率常数k2随SDBS初始浓度的增大而增大,而Tween20存在下,重油在沉积物上的吸附速率随Tween20初始浓度的增大而减小。
     (2)热力学研究发现,沉积物对重油的吸附等温线较好地符合Freundlich等温线,吸附系数KF随SDBS浓度的增大而增大,SDBS能够显著提高沉积物对重油的吸附量;而Tween20不利于重油在沉积物上的吸附,KF随Tween20浓度的增大而减小,说明Tween20与重油的竞争吸附作用大于增强吸附作用。
     (3)重油在HCl、H_2O、H_2O_2处理沉积物上的吸附行为均可用Freundlich等温线描述,吸附等温线的线性程度随沉积物有机碳含量的升高而升高,表明沉积物对重油的吸附是通过分配作用和表面吸附作用来完成的,有机质的分配作用占主导。沉积物粒径的增大导致其吸附能力的降低,原因主要是不同粒径的沉积物具有的比表面积、有机碳、粘土矿物含量不同。
     (4)环境因素研究表明,三种体系下重油在沉积物上的吸附量均随盐度的增加而增大,其中SDBS存在下盐度的影响较显著,而Tween20影响下不明显。温度对重油吸附的影响表现为温度的升高吸附量降低,因为温度会影响重油在溶液中的溶解度和沉积物中有机组分向溶液中释放的程度,最终影响了沉积物有机碳的分配作用。
     (5)沉积物对重油吸附过程的热力学函数ΔG~φ<0,ΔH~φ<0,即该过程是一个自发、放热的物理吸附过程。在20mg·L~(-1) SDBS影响下,重油在沉积物上的吸附有较大的标准吸附自由能变(|ΔG~φ|)和标准吸附焓变(|ΔH~φ|),更大的标准吸附熵变(|ΔS~φ|)。而在20 mg·L~(-1) Tween20存在下,重油在沉积物上吸附过程的|ΔG~φ|、|ΔH~φ|,较单一体系的小,且ΔS~φ>0。
     2.解吸过程
     (1)重油在沉积物上的解吸较慢,分两个阶段,第一阶段的快解吸阶段,第二阶段是从沉积物内部微孔扩散到溶液中的过程,解吸动力学符合二室一级动力学模型。
     (2)SDBS和Tween20均有利于重油在沉积物上的解吸,且解吸速率常数随表面活性剂浓度的增加而加快,但在相同的表面活性剂浓度下,Tween20的影响较显著。
     (3)环境因素研究表明,随着介质盐度的减小和温度的升高,沉积物对重油的解吸量和解吸速率常数均增加;重油在较大粒径的沉积物上的解吸较为明显,可能与粒径大的沉积物的比表面积较小,重油不易在其上面吸附有关。
Petroleum hydrocarbon is a common organic pollutant in ocean environment, which has become one of the main organic pollutants in the offshore areas. These petroleum contaminants cause serious damage to the marine eco-environment and are harmful to human being through a series of physical, chemical, and biological processes. When oil pollutants enter into water system, the light components will disappear through evaporation, dissolution, emulsification, and so on. However, the heavy contents will be adsorbed onto suspension particle, and then set down to the bottom. Oil pollutants on sediments will release to seawater under certain conditions, and will cause secondary pollution to seawater. The adsorption and desorption of heavy oil in sediment/water interface is an important way to affect their migration, transformation, and biological utilization in marine environment. Therefore, it is very important to study the sorption and desorption behaviour of oil on marine sediments.
     In this paper, the sorption and desorption behaviors of heavy oil on Jiaozhou bay sediments were comprehensively studied through laboratory experiments. The sediment sample was wet sieved in order to keep the original nature of the particulate. Some related factors were also discussed to study the mechanisms of the sorption and desorption, such as treated method, particle size, salinity, temperature and surfactant. The main conclusions are as follows:
     1. Sorption process
     1)The sorption rate of heavy oil on sediment was rapid and the kinetic process was proven to follow the pesudo-second-order kinetic rate equation. The sorption was accelerated remarkably with the addition of anionic surfactant sodium dodecyl benzene sulfonate(SDBS), while was retarded with the presence of nonionic surfactant polyoxyethylene(20)sorbitan Monolaurate (Tween20).
     2)The sorption isotherms of heavy oil on sediment could be described by the Freundlich equation. The sorption capacity could be enhanced by SDBS obviously, while
     decreased with the presence of Tween20. 3)The equilibrium experiments of heavy oil sorption on HCl, H_2O and H_2O_2 treated sediments revealed that the isotherms became more linear for sediment with higher organic carbon, which indicated that heavy oil sorption onto sediments was through partition function and surface sorption effect, while the former was dominant. The sorption ability of sediment decreased with increasing particle sizes. The reason may be that sediments with different sizes had different specific surface areas, TOC values, and mineral compositions.
     4)The sorption capability was increased under higher salinity and lower temperature circumstances. In the presence of SDBS the effect of salinity was significant, while the influence of Tween20 was not clear. The temperature influenced the solubility of heavy oil and the organic matters in sediments, thus affacted the partition effect of sediment.
     5)Calculation of thermodynamic parameters indicated that the sorption process of heavy oil was spontaneous (ΔG~φ<0), exothermic (ΔH~φ<0) and was a physical process. In the presence of 20 mg·L~(-1) SDBS, the│ΔG~φ│and│ΔH~φ│values became higher, while in the presence of 20mg·L~(-1) Tween20, the effect was reverse.
     2. Desorption process
     1)The desorption rate of heavy oil on Jiaozhou bay sediment was slow, and the kinetic process could be divided into two stages: The first stage was rapid which took place on sediment surface, while the second one was slow and due to the diffusion from the internal micropores of sediment. The desorption process of heavy oil according well with a two-compartment first order kinetic rate equation.
     2)SDBS and Tween20 could remarkably enhance the desorption of heavy oil from sediment. The desorption rate constant increased with the increasing concentration of surfactants. Under the same circumstances, the influence of Tween20 was more obvious.
     3)Larger particle size was favourable for the desorption of heavy oil from sediment. Environmental factors research indicated that the desorption capacity and rate constant of heavy oil was significantly increased at lower salinity and higher temperature.
引文
[1] Aksu Z. Application of biosorption for the removal of organic pollutants: a review [J]. Process Biochemistry, 2005, 40(3-4): 831-847.
    [2] Amy M C, William C K, Cheng H H. Sorption-desorption of phenolic acids as affected by soil properties [J]. Biology and Fertility of Soils, 2004, 39(4): 235-242.
    [3] Ball W P, Roberts P V. Long-term sorption of halogenated organic chemicals by aquifer material.1. Equilibrium [J]. Environmental Science and Technology, 1991, 25(7): 1223-1237.
    [4] Beveridge A, Pickering W F. The influence of surfactants on the adsorption of heavy metal ions by clays [J]. Water Research, 1983, 17(2): 215-225.
    [5] Braida W J, Pignatello J J, Lu Y F, et al. Sorption hysteresis of benzene in charcoal particles[J]. Environmental Science and Technology, 2003, 37(2): 409-417.
    [6] Chang M Y, Juang R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay [J]. Journal of Colloid and Interface Science, 2004, 278(1): 18-25.
    [7] Chen J S, Chiu C Y. Characterization of soil organic matter in different particle-size fractions in humid subalpine soils by CP/MAS 13C NMR [J]. Geoderma, 2003, 117(1-2): 129-141.
    [8] Chiou C T, Kile D E. Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter [J]. Environmental Science and Technology, 1994, 28(6): 1139-1144.
    [9] Chiou C T, Peters L J, Freed V H. A physical concept of soil-water equilibria for nonionic organic compounds [J]. Science, 1979, 206(4420): 831-832.
    [10] Chiou M S, Li H Y. Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads [J]. Journal of Hazardous Materials, 2002, 93(2): 233-248.
    [11] Gamerdinger A P, Achin R S, Traxler R W. Approximating the impact of sorption on biodegradation kinetics in soil-water systems [J]. Soil Science Society of America Journal, 1997, 61(6): 1618-1626.
    [12] Haigh S D. A review of the interaction of surfactants with organic contaminants in soil [J]. Science of the Total Environment, 1996, 185(1-3): 161-170.
    [13] Hand V C, Williams G K. Structure-activity relationship for sorption of linear alkylbenzene sulfonates [J]. Environmental Science and Technology, 1987, 21(4): 370-373.
    [14] Hubert J, Lis W J. Influence of pH and solution composition on the sorption of glyphosate and prochloraz to a sandy loam soil [J]. Chemosphere, 1999, 39(5): 753-763.
    [15] Ick T Y, Ghosh M M, Cox C D. Kinetic aspects of surfactant solubilization of soil-bound polycyclic aromatic hydrocarbons [J]. Environmental Science and Technology, 1996, 30(5): 1589-1595.
    [16] Inoue K, Kaneko K, Yoshida M. Adsorption of dodecylbenzene sulfonates by soids colloids and influence of soil colloids on their degradation [J]. Soil Science Plant Nutrition, 1978, 24(1): 91-102.
    [17] Jaycock M J, Parfitt G D. Chemistry of Interfaces [M]. Ellis Horwood Limited, 1981:12-13.
    [18] Johnson M D, Keinath II T M, Weber Jr W J. A distributed reactivity model for sorption by soils and sediments. 14. Characterization and modeling of phenanthrene desorption rates [J]. Environmental Science and Technology, 2001, 35(8): 1688-1695.
    [19] Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on natural sediments[J]. Water Research, 1979, 13(3): 241-248.
    [20] Kile D E, Chiou C T. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above their critical micelle concentration [J]. Environmental Science and Technology, 1989, 23(7): 832-838.
    [21] Kubicki J D, Apitz S E. Models of natural organic matter and interactions with organic contaminants [J]. Organic Geochemistry, 1999, 30(8): 911-927.
    [22] Leboeuf E J, Weber W J Jr. A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: discovery of a humic acid glass transition and an argument for a polymer-based model [J]. Environmental Science and Technology, 1997, 31(6): 1697-1702.
    [23] Lu Y F, Pignatello J J. Demonstration of the“conditioning effect”in soil organic matter in support of a pore deformation mechanism for sorption hystersis[J]. Environmental Science and Technology, 2002, 36(21): 4553-4561.
    [24] Means J C. Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons [J]. Marine Chemistry, 1995, 51(1): 3-16.
    [25] Meyers P A. Qujnn J G. Association of hydrocarbons and mineral particles in saline solution [J]. Nature, 1973, 224: 23-24.
    [26] Morselli L, Setti L, Iannuccilli A, et al. Supercritical fluid extraction for the determination of petroleum hydrocarbons in soil [J]. Journal of Chromatography A, 1999, 845(1-2): 357-363.
    [27] Mulligan C N, Yong R N, Gibbs B F, et al. Metal removal from contaminated soil and sediments by the biosurfactant surfactin [J]. Environmental Science and Technology, 1999, 33(21): 3812-3820.
    [28] Northcott G L, Jones K C. Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment [J]. Environ Pollution, 2000, 108(1): 19-26.
    [29] ?zcan A, ?nc? E M, ?zcan A S. Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277(1-3): 90–97.
    [30] Pan G, Jia C X, Zhao D Y, et al. Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments [J]. Environmental Pollution, 2009, 157(1): 325-330.
    [31] Piatt J J, Baekhus D A, Capel P D, et al. Temperature-dependent sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments [J]. Environmental Science and Technology, 1996, 30(3): 751-760.
    [32] Pignatello J J, Xing B S. Mechanisms of slow sorption of organic chemicals to natural particles [J]. Environmental Science and Technology, 1996, 30(1): 1-11.
    [33] Qu Z Q, Yediler A, He Y W, et al. Effects of Linear Alkylbenzene Sulfonate (LAS) on the adsorption behaviour of phenanthrene on soils [J]. Chemosphere, 1995, 30(2): 313-325.
    [34] Rama Krishna K, Philip L. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils [J]. Journal of Hazardous Materials, 2008, 160(2-3): 559-567.
    [35] Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry [M]. New York: John Wily and Son, Ine, 1993, 291-328.
    [36] Sun S B, Inskeep W P, Boyd S A. Sorption of nonionic organic compounds in soil-water systems containing a micelle-forming surfactant [J]. Environmental Science and Technology, 1995, 29(4): 903-913.
    [37] Turner A, Rawling M C. The influence of salting out on the sorption of neutral organic compounds in estuaries [J]. Water Research, 2001, 35(18): 4379-4389.
    [38] Urum K, Pekdemir T, Gopur M. Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions[J]. Process Safaety and Environmental Protection, 2003, 81(3):203-209.
    [39] Voice T C, Weber Jr W J. Sorption of hydrophobic compounds by sediments, soils and suspended solids(Ⅰ)-Theory and background [J]. Water Research, 1983, 17(10): 1433-1441.
    [40] Walter T, Ederer H J, Forst C, et al. Sorption of selected polycyclic aromatic hydrocarbons on soils in oil-contaminated systems [J]. Chemosphere, 2000, 41(3): 387-397.
    [41] Wang P, Keller A A. Soil particle-size dependent partitioning behavior of pesticides within water-soil-cationic surfactant systems [J]. Water research, 2008, 42(14): 3781-3788.
    [42] Weber Jr W J, McGinley P M, Katz L E. A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments [J]. Environmental Science and Technology, 1992, 26(10): 1955-1962.
    [43] Wu S C, Gschwend P M. Sorption kinetics of hydrophobic organic compounds to natural sediments and soils [J]. Environmental Science and Technology, 1986, 20(7): 717-725.
    [44] Xia G S, Ball W P. Polanyi-based models for the competitive sorption of low-polarity organic contaminants on a natural sorbent [J]. Environmental Science and Technology, 2000, 34(7): 1246-1253.
    [45] Xing B S, Pignatello J J, Gigliotti B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents [J]. Environmental Science and Technology, 1996, 30(8): 2432-2440.
    [46] Xing B S, Pignatello J J. Competitive sorption between l, 3-dichlorobenzene or 2, 4-dichlorophenol and natural aromatic acids in soil organic matter [J]. Environmental Science and Technology, 1998, 32(5): 614-619.
    [47] Yang G P, Zhang Z B. Adsorption of dibenzothiophene on marine sediments treated by a sequential procedure [J]. Journal of Colloid and Interface Science, 1997, 192(2): 398-407.
    [48] Yang Y, Ratte D, Smets B F, et al. Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption [J]. Chemosphere, 2001, 43(8): 1013-1021.
    [49] Zhao X K, Yang G P, Gao X C. Studies on the sorption behaviors of nitrobenzene on marine sediments [J]. Chemosphere, 2003, 52(5): 917-925.
    [50] Zhao X K, Yang G P, Wu P, et al. Study on adsorption of chlorobenzene on marine sediment [J]. Journal of Colloid and Interface Science, 2001, 243(2): 273-279.
    [51] Zhou W J, Zhu L Z. Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant [J]. Environmental Pollution, 2007, 147(2): 350-357.
    [52] Zhu L Z, Feng S L. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants [J]. Chemosphere, 2003, 53(5): 459-467.
    [53]鲍艳宇,周启星,万莹,等. 3种四环素类抗生素在褐土上的吸附和解吸[J].中国环境科学, 2010, 30(10): 1383-1388.
    [54]陈宝梁,朱利中,陶澍.非离子表面活性剂对菲在水/土壤界面间吸附行为的影响[J].环境科学学报, 2003, (1): 1-5.
    [55]陈华林,陈英旭.沉积物对菲和五氯酚的吸附性能[J].环境化学, 2003, 22(2): 156-165.
    [56]陈家煌,李丽.粘性土颗粒分析技术改进初探[J].合肥工业大学学报(自然科学版), 2003, 26(2): 311-314.
    [57]陈立宏.墨西哥湾漏油事故及其影响[J].环境保护与循环经济, 2010, 7: 4-6.
    [58]陈静,王学军,胡俊栋,等.多环芳烃(PAHs)在砂质土壤中的吸附行为[J].农业环境科学学报, 2005, 24(1): 69-73.
    [59]陈静,胡俊栋,王学军,等.表面活性剂对土壤中多环芳烃解吸行为的影响[J].环境科学, 2006, 27(2): 361-365.
    [60]陈尧.中国近海石油污染现状及防治[J].工业安全与环保, 2003, 29(11): 20-24.
    [61]戴树桂,董亮.表面活性剂对受污染环境修复作用的研究进展[J].上海环境科学, 1999, 18(9): 420-424.
    [62]党志,于虹,黄伟林,等.土壤沉积物吸附有机污染物机理研究的进展[J].化学通报, 2001, 64(2): 81-85.
    [63]富丽锟,马启敏.沉积物对重质燃料油的吸附研究[J].环境化学, 2008, 27(3): 357-359.
    [64]傅献彩,沈文霞,姚天扬.物理化学[M].南京:高等教育出版社, 2000, 949-960.
    [65]甘居利,蔡文贵,黄创良,等.海上溢油的行为特征及其对海洋渔业的危害[J].水产科技, 1997, 1: 3-5.
    [66]高敏苓,宋文华,依艳丽.棕壤不同粒径组分对阿特拉津吸附-解吸作用的影响[J].南开大学学报(自然科学版), 2009, 42(6): 92-98.
    [67]国家海洋局.海洋监测规范[M].北京:海洋出版社, 1998, 221-223.
    [68]韩化雨.阳离子表面活性剂和DDT复合体系在海洋沉积物上的吸附行为: [硕士学位论文].青岛:中国海洋大学, 2010.46sc3dk8
    [69]侯玲,赵元慧,郎佩珍,等.有机污染物的迁移转化及模拟研究[J].东北师大学报(自然科学版), 1999, 2: 48-56.
    [70]贾晓平,林钦.南海原油和燃料油对仔虾和仔鱼的急性毒性实验[J].热带海洋, 1998, 17(1): 93-97.
    [71]贾成霞,潘纲,陈灏,全氟辛烷磺酸盐在天然水体沉积物中的吸附-解吸行为[J].环境科学学报, 2006, 26(10): 1611-1617.
    [72]姜礼燔,邢红平,朱伟.石油化工废水对鱼类性腺及胚胎发育的影响[J].内陆水产, 2007, 6: 40-41.
    [73]金相灿.沉积物污染化学[M].北京:中国环境科学出版社, 1992, 1-39.
    [74]李崇明,赵文谦,罗麟.河流泥沙对石油的吸附、解吸规律及影响因素的研究[J].中国环境科学, 1997, 17(1): 23-26.
    [75]李改枝,赵慧,吕三虎.苯甲酸在土壤中的吸附研究[J].内蒙古师范大学学报, 2004, 33(1): 57-62.
    [76]李克斌,陈经涛,魏红,等.表面活性剂和土壤有机质对莠去津在土壤上吸附的相互影响[J].西北农林科技大学学报(自然科学版), 2008, 36(8): 119-124.
    [77]李克斌,刘惠君,马云,等.不同类型表面活性剂在土壤上的吸附特征比较研究[J].应用生态学报, 2004, 15(11): 2067-2071.
    [78]李克斌,魏红,陈经涛,等.灭草松和莠去津在土壤中的竞争吸附[J].环境科学学报, 2006, 26(7): 1164-1171.
    [79]李晓薇.不同吸附剂对除草剂在土壤中吸附/解吸行为的影响: [硕士学位论文].哈尔滨:东北农业大学, 2009.
    [80]李芯芯.三种典型表面活性剂在海洋沉积物上的吸附研究46sc3dk8: [硕士学位论文].青岛:中国海洋大学, 2008.
    [81]刘松长,李继睿,何文.农药在土壤环境中的吸附-解吸作用[J].广东化工, 2007, 34(175): 101-103.
    [82]刘维屏,季瑾.农药在土壤-水环境中归宿的主要支配因素-吸附和脱附[J].中国环境科学, 1996, 16(1): 25-30.
    [83]刘文科,曹小华,彭述明,等.氧化层对钛吸附与解吸氘的动力学影响研究(Ⅱ)—氧化层对氘化钛热解吸动力学的影响[J].原子能科学技术, 2005, 39(3): 222-225.
    [84]刘亚琼,王营章,刘志强,等.胜利油田土壤对原油吸附过程的试验研究[J].青岛理工大学学报, 2008, 29(5): 94-98.
    [85]娄保锋.有机污染物在沉积物上的竞争吸附效应及影响因素: [博士学位论文].浙江:浙江大学, 2004.
    [86]吕新刚,赵昌,夏长水,等.胶州湾水交换及湾口潮余流特征的数值研究[J].海洋学报, 32(2): 20-30.
    [87]马爱军,何任红,周立祥,除草剂草萘胺在土壤-水环境中的吸附行为及其机理[J].环境科学学报, 2006, 26(7): 1159-1163.
    [88]聂新华.胶州湾近岸沉积物中有机污染物的吸附解吸研究46sc3dk8: [硕士学位论文].青岛:中国海洋大学, 2006.
    [89]青岛市海洋与渔业局. 2009年青岛市海洋环境质量公报. 2010, 3-5.
    [90]区自清,贾良清,何耀武,等.洗涤剂LAS在土壤上吸附行为及机理研究[J].应用生态学报, 1995, 6(2): 206-211.
    [91]沈学优,卢瑛莹,朱利中.对-硝基苯酚在水/有机膨润土界面的吸附行为-热力学特征及机理[J]. 2003, 23(4): 367-370.
    [92]舒月红,黄小仁,贾晓珊. 1,2,4,5-四氯苯在沉积物中的解吸动力学[J].环境科学, 2009, 30(3): 743-747.
    [93]孙娟,郑西来,吴俊文.滨海沙土对可溶性油的吸附作用和影响因素研究[J].中国海洋大学, 2007, 37(4): 663-666.
    [94]史红星,石油类污染物在黄土高原地区环境中迁移转化规律的研究: [硕士学位论文].西安:西安建筑科技大学, 2001.
    [95]王艮梅,孙成,谢学群.表面活性剂Tween80及DOM对土壤中菲、芘解吸的影响[J].环境科学. 2007, 28(4): 832-837.
    [96]王宏光,郑连伟.表面活性剂在多环芳烃污染土壤修复中的应用[J]. 2006, 26(6): 471-474.
    [97]王劲文,刘文,文巩,等,菲与吡啶在沉积物及粘土矿物上的吸附行为[J].环境化学, 2009, 28(2): 185-190.
    [98]王祖纲,董华.美国墨西哥湾溢油事故应急响应、治理措施及其启示[J].国际石油经济, 2010, 6: 1-4.
    [99]魏淑伟.模拟海水中分散油在固—液界面上的吸附研究: [硕士学位论文].青岛:中国海洋大学, 2007.
    [100]吴俊文.沙质滩涂石油污染物吸附与释放过程研究: [硕士学位论文].青岛:中国海洋大学, 2006.
    [101]杨建涛,朱琨,马娟.表面活性剂对黄土中石油污染物的解吸影响研究[J].环境污染治理技术与设备, 2003, 4(2): 6-9.
    [102]杨瑾.浅议胶州湾的污染现状与环湾保护[J].海洋开发与管理, 2010, 27(9): 44-47.
    [103]杨桂朋,戚佳琳.海水中萘的光化学降解研究[J].海洋与湖沼, 2003, 34(1): 56-66.
    [104]杨坤,朱利中,许高金,等.分配作用对沉积物吸附对硝基苯酚的贡献[J].中国环境科学, 2001, 24(4): 297-300.
    [105]于向阳,应光国,刘贤进,等.土壤中黑碳对农药敌草隆的吸附-解吸迟滞行为研究[J]. 2007, 44(4): 650-655.
    [106]展惠英,姜梅,周文军,等.玉门矿区污染黄土中原油的解吸研究[J].安全环境学报, 2003, 3(2): 54-56.
    [107]袁平夫.表面活性剂在土壤中的吸附解吸行为及其对土壤微生物和酶活性的影响: [硕士学位论文].长沙:湖南农业大学, 2005.
    [108]岳钦艳,解建坤,高宝玉,等.污泥活性炭对染料的吸附动力学研究[J].环境科学学报, 2007, 27(9): 1431-1438.
    [109]张德见,魏先勋,曾光明,等.基于非线性拟合的污泥衍生吸附剂对铅子等温吸附特性研究[J].离子交换与吸附, 2004, 20(1): 1-6.
    [110]张景环,曾溅辉.温度和表面活性剂对土壤吸附柴油的影响[J].农业环境科学学报, 2007, 26(2), 592-597.
    [111]张学佳,纪巍,康志军,等.水环境中石油类污染物的危害及其处理技术[J].石化技术与应用, 2009, 27(2): 181-186.
    [112]章苏宁,张健,宋晓秋,等.稳态荧光探针法测定Tween系列非离子表面活性剂临界胶束浓度[J].光谱实验室, 2010, 27(4): 1231-1236.
    [113]赵云英,杨庆霄.溢油在海洋环境中的风化过程[J].海洋环境科学, 1997, 16(1): 45-52.
    [114]郑翠英.阳离子表面活性剂和重油复合体系在海洋沉积物上的吸附行为: [硕士学位论文].青岛:中国海洋大学, 2010.
    [115]郑西来,李永乐,林国庆,等.土壤对可溶性油的吸附作用及其影响因素分析[J].地球科学, 2003, 28(5): 563-567.
    [116]周岩梅,刘瑞霞,汤鸿霄.溶解有机质在土壤及沉积物吸附多环芳烃类有机污染物过程中的作用研究[J].环境科学学报, 2003, 23(2): 216-223.
    [117]朱达.盐度对有机污染物在海底沉积物上吸附行为的影响[J].环境保护, 1995, 4: 34-37.
    [118]朱利中,徐霞,胡松.西湖底泥对水中苯胺、苯酚的吸附性能及机理[J].环境科学, 2000, 20(2): 28-31.
    [119]朱利中,杨坤,许高金.对硝基苯酚在沉积物上的吸附特征-吸附等温线和吸附热力学[J].环境科学学报, 2001, 21(6): 674-678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700