生防木霉菌对植物的解盐促生作用及其机制的硏究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球环境的恶化,土壤的沙漠化、盐渍化问题日益威胁着人类赖以生存的有限的土地资源,据不完全统计,世界盐碱土面积约占总土地面积的7%左右,并有逐年增加的趋势。此外,设施土壤的次生盐渍化也在影响着农业生产与生态环境。在我国,由于温室栽培灌溉措施不当以及过度施用农药化肥造成的土壤板结、积盐加重、耕地退化的土壤次生盐渍化问题,已成为农业生产中的重要限制因子。土壤的盐渍化不仅影响植物代谢和光合作用,还会降低植物对土壤养分及微量元素的摄入,由于土壤中的铁主要以难溶性的高价氧化物等形式存在,而盐碱土又会进一步降低土壤可溶性铁的含量,从而导致植物的缺绿症。因此,生长在盐渍化土壤中的植物往往同时受到盐胁迫的危害以及铁缺乏的威胁。
     木霉菌(Trichoderma spp.)是一类能够刺激作物生长并增强其抗生物和非生物胁迫的多功能益生真菌。但目前国内外对于生防木霉菌在增强植物耐盐性及其作用机理方面尚缺乏深入、系统的研究。本文结合生产实际,从分离、筛选具有解盐促生特性的生防木霉菌入手,通过盆栽及水培试验对分离并鉴定的木霉菌株在盐胁迫条件下对黄瓜幼苗的促生作用及其嗜铁素在解盐促生中的作用进行初步研究,利用亲和层析法对该菌产生的嗜铁素进行分离纯化,并对其类型进行鉴定。具体结果如下:
     1.从大棚作物根际土中分离得到一株具有多种促生特性的生防木霉菌Q1,此株木霉菌对黄瓜枯萎病菌(F. oxysporum f. sp. Cucumerinum)、西瓜枯萎病菌(F. oxysporum f. sp. Niveum)、茄镰孢菌(Fusarium solani)等多种植物病原菌具有良好的生物拮抗作用。同时,此株木霉菌还具有溶磷、产生植物激素、嗜铁素及ACC脱氨酶活性的植物促生特性,经形态学和分子生物学方法将其鉴定为棘孢木霉(Trichoderma asperellum)。结果表明,木霉菌Q1是一株兼具多种促生特性的生防菌。
     2.通过盆栽试验系统研究了棘孢木霉(Trichoderma asperellum)菌Q1对黄瓜幼苗的解盐促生作用,并分别测定了添加菌(Q1)、盐(salt)、盐+菌(Q1+salt)、清水(control)四种处理的生理生化反应和光合效率的变化。结果发现,无论在有无盐胁迫条件下,接种木霉菌株Q1孢子悬浮液均可促进黄瓜幼苗的生长,与对照相比,处理25d后,黄瓜幼苗的株高、叶绿素含量,叶片中渗透分子(可溶性糖和可溶性蛋白)含量、抗氧化酶活性(SOD和POD)以及净光合速率(PN)、蒸腾速率(Evap)、气孔导度(GS)、胞间CO2浓度(C Int)等光合参数均有不同程度的提高,有效降低了黄瓜幼苗在盐胁迫条件下受到的生理损伤。
     3.为进一步完善棘孢木霉(Trichoderma asperellum)菌Q1对植物解盐促生机制的研究,本文针对该菌产生的大量嗜铁素,通过水培试验研究了嗜铁素在提高植物抗盐中的作用。采用含NaCl 60 mmol l-1的缺铁水培液对黄瓜幼苗进行盐胁迫,在有无难溶性铁(Fe3+)以及有无菌株Q1嗜铁素发酵滤液(SCF)的4组处理(SCF+Fe)、(SCF-Fe)、(Non-SCF+Fe)、(Non-SCF-Fe)中,添加难溶性Fe3+及嗜铁素发酵滤液(SCF+Fe)的黄瓜幼苗获得了最大的生物量,植株的茎/根长以及第一片真叶叶面积增加,植株的萎蔫率及缺绿症明显降低,说明棘孢木霉嗜铁素缓解了盐胁迫及缺铁条件下对植物产生的负面影响。
     4.为确定棘孢木霉(Trichoderma asperellum)嗜铁素的类型,本文利用固相化金属离子亲和层析法(Immobilized Metal Affinity Chromatography, IMAC)对木霉菌株Q1嗜铁素发酵滤液进行分离纯化,并通过四唑盐实验将菌株Q1分泌的嗜铁素鉴定为无荧光的异羟肟酸型。这一研究结果是对棘孢木霉(Trichodermaasperellum)嗜铁素类型研究的有效补充,为今后深入了解其化学结构及嗜铁素对铁的转运机制提供了一定的理论依据。
With the global environmental deterioration, soil desertification and salinizationproblems are increasingly threats to the limited land resources for human survival.Approximately 7% of the global land surface is covered with saline soil. Moreover,there exist wide areas of secondary soil salinization in China, which effects theagricultural production and the ecological environment, due to poor irrigation systemwithout proper drainage and inorganic fertilizer management. These cultivated landsaffected by salts may adversely cause oxidative damage to the soil which in turnaffects the plant growth by reducing plant’s nutrient uptake and metabolic andphotosynthetic activities. In addition, most of the saline soils have alkaline pH valueand most iron exists in an insoluble form (Fe3+), which prevents plants from optimalgrowth and even leads to leaf chlorosis. Thus plants growing on this kind of soils areoften simultaneously subject to salinity and iron deficiency.
     Trichoderma spp. are versatile beneficial fungi which can stimulate growth andplant resistance to biotic and abiotic stresses. They have long been recognized asagents for their plant disease control and plant growth promotion, but there are fewreports on their ability to improve salt tolerance of plant and the specific knowledgeabout the underlying mechanisms remain to be explored. For further research of thepotential of Trichoderma in promoting the cucumber growth under salt stress and itspossible mechanisms, we isolated a biocontrol fungus Trichoderma isolate Q1 withplant growth-promoting activities and evaluated its potential in promoting cucumbergrowth and the role of siderophore produced by the strain in alleviating negativeeffect of salinity. In addition, the siderophore was purified by using immobilizedmetal affinity chromatography (IMAC) and identified the type. The specific results srepresented as follows:
     1. Strain Q1 was isolated from the rhizosphere in greenhouse and identified as Trichoderma asperellum based on its morphological features and the molecularphylogenetic analyses. The Trichoderma asperellum Q1 showed antagonism againstmany phytopathogenic fungi, such as F. oxysporum f. sp. Cucumerinum, F. oxysporumf. sp. Niveum and Fusarium solani. In addition, it exhibited some plantgrowth-promoting attributes of phosphate solubilization,1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, auxin and siderophoreproduction. These results indicated that Trichoderma asperellum Q1 as biologicalcontrol agents are able to produce potential growth-promoting metabolites tostimulate plant growth.
     2. The pot trial was conducted to study the effects of Trichoderma asperellum Q1on the growth of cucumber seedlings by assaying the changes in physiological andbiochemical parameters and photosynthetic efficiency under salt stress. Fourtreatments were set up as follows: cucumber seedlings inoculated with strain Q1 (Q1),strain Q1 and NaCl (Q1+salt), uninoculated but NaCl-treated (salt), uninoculated andwithout salt stress (control). Cucumber seedlings were inoculated with sporesuspension of strain Q1 with or without exposure to salt conditions, and changes ingrowth and biochemical parameters such as plant height, chlorophyll content, theosmosis molecules soluble sugar, soluble protein, malondialdehyde (MDA) and theactivities of antioxidant enzyme superoxide dismutase (SOD), peroxidase (POD) incucumber leaves as well as several plant physiological parameters like netphotosynthesis (PN), transpiration rate (Evap), stomatal conductance (GS),intercellular CO2concentration (C Int) were evaluated at 25 days after inoculation.The results indicated that application of strain Q1 could significantly promoteseedlings growth and alleviated growth suppression induced by salt stress comparedwith the uninoculated and salt stressed controls of cucumber seedlings.
     3. Furthermore, the role of siderophores was proved through solution cultureexperiments. In culture solution with limiting iron and 60 mmol l-1NaCl stress, fourtreatments were set up as follows: SCF with and without 30μmol l–1Fe3+(SCF±Fe),uninoculated MM9 medium with and without 30μmol l–1Fe3+(Non-SCF±Fe), andthe treatment of Non-SCF-Fe was used as control. The result indicted that the biomass of cucumber seedlings is maximum under the treatment of siderophore culture filtrate(SCF) of strain Q1 with insoluble Fe3+in salt stress, compared to the other treatments.Meanwhile, cucumber shoot or root length and first euphylla leaf area were increased,and the percentage of wilted cucumber seedlings was decreased greatly. This clearlydemonstrated that siderophores may play an important role in alleviating thedeleterious effects of salinity to cucumber seedlings, especially under iron deficientconditions.
     4. For identified the type of siderophore produced by Trichoderma asperellumstrain Q1, the siderophore-containing culture filtrate is purificated by usingimmobilized metal affinity chromatography (IMAC). It was identified as hydroxamatetype siderophore and no fluorescence based on MTT test. This result supplementedeffectively study of siderophore types, and may provided theoretical basis for thechemistry structure study and its role in iron transport.
引文
[1] Ruiz Lozano J M, Azcon R, Gomez M. Alleviation of salt stress by arbuscular‐mycorrhizalGlomus species in Lactuca sativa plants[J]. Physiologia plantarum, 1996, 98(4): 767-772.
    [2] Harman G E. Overview of Mechanisms and Uses of Trichoderma spp.[J]. Phytopathology,2006, 96(2): 190-194.
    [3] Tester M, Davenport R. Na+tolerance and Na+transport in higher plants[J]. Annals of Botany,2003, 91(5): 503-527.
    [4] Almansouri M, Kinet J M, Lutts S. Effect of salt and osmotic stresses on germination in durumwheat (Triticum durum Desf.)[J]. Plant and Soil, 2001, 231(2): 243-254.
    [5] Misra N, Dwivedi U N. Genotypic difference in salinity tolerance of green gram cultivars[J].Plant Science, 2004, 166(5): 1135-1142.
    [6] Wang Y, Zhang W, Li K, et al. Salt-induced plasticity of root hair development is caused byion disequilibrium in Arabidopsis thaliana[J]. Journal of plant research, 2008, 121(1): 87-96.
    [7] Kao W Y, Tsai H C, Tsai T T. Effect of NaCl and nitrogen availability on growth andphotosynthesis of seedlings of a mangrove species, Kandelia candel (L.) Druce[J]. Journal ofplant physiology, 2001, 158(7): 841-846.
    [8] Kurban H, Saneoka H, Nehira K, et al. Effect of salinity on growth, photosynthesis andmineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.)[J]. Soil science andplant nutrition, 1999, 45(4): 851-862.
    [9] Flexas J, Bota J, Galmés J, et al. Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress[J]. Physiologia Plantarum, 2006,127(3): 343-352.
    [10]林莺,李伟,范海,等.海滨锦葵光合作用对盐胁迫的响应[J].山东师范大学学报(自然科学版), 2006, 21(2): 118-120.
    [11] Gadallah M. Effects of proline and glycinebetaine on Vicia faba responses to salt stress[J].Biologia plantarum, 1999, 42(2): 249-257.
    [12] Romero-Aranda R, Soria T, Cuartero J. Tomato plant-water uptake and plant-waterrelationships under saline growth conditions[J]. Plant Science, 2001, 160(2): 265-272.
    [13] Tanou G, Molassiotis A, Diamantidis G. Induction of reactive oxygen species and necroticdeath-like destruction in strawberry leaves by salinity[J]. Environmental and ExperimentalBotany, 2009, 65(2-3): 270-281.
    [14] M ller I M. Plant mitochondria and oxidative stress: electron transport, NADPH turnover,and metabolism of reactive oxygen species[J]. Annual review of plant biology, 2001, 52(1):561-591.
    [15]吕杰,王秀峰,魏珉,等.不同盐处理对黄瓜幼苗生长及生理特性的影响[J].植物营养与肥料学报, 2008, 13(6): 1123-1128.
    [16] Khavari-Nejad R A, Mostofi Y. Effects of NaCl on photosynthetic pigments, saccharides, andchloroplast ultrastructure in leaves of tomato cultivars[J]. Photosynthetica, 1998, 35(1):151-154.
    [17] Soussi M, Lluch C, Ocana A, et al. Comparative study of nitrogen fixation and carbonmetabolism in two chick-pea (Cicer arietinum L.) cultivars under salt stress[J]. Journal ofexperimental botany, 1999, 50(340): 1701-1708.
    [18] Farias De Aragao M E, Jolivet Y, Guia Silva Lima M, et al. NaCl-induced changes of NAD(P) malic enzyme activities in Eucalyptus citriodora leaves[J]. Trees-Structure and Function,1997, 12(2): 66-72.
    [19] El-Shintinawy F, El-Shourbagy M N. Alleviation of changes in protein metabolism inNaCl-stressed wheat seedlings by thiamine[J]. Biologia plantarum, 2001, 44(4): 541-545.
    [20] Parida A K, Das A B, Mohanty P. Defense potentials to NaCl in a mangrove, Bruguieraparviflora: differential changes of isoforms of some antioxidative enzymes[J]. Journal ofplant physiology, 2004, 161(5): 531-542.
    [21] Hassanein A M. Alterations in protein and esterase patterns of peanut in response to salinitystress[J]. Biologia plantarum, 1999, 42(2): 241-248.
    [22] Yue H, Mo W, Li C, et al. The salt stress relief and growth promotion effect of Rs-5 oncotton[J]. Plant and Soil, 2007, 297(1): 139-145.
    [23]郑元元,岳海涛,石在强,等.盐胁迫下解盐促生细菌Rs-5和Rs-198促进棉花种子发芽的机理探讨[J].中国农业科学, 2008, 41(5): 1326-1332.
    [24]贺学礼,赵丽莉,李英鹏. NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响[J].生态学报, 2005, 25(1): 188-193.
    [25] Mayak S, Tirosh T, Glick B R. Plant growth-promoting bacteria confer resistance in tomatoplants to salt stress[J]. Plant Physiology and Biochemistry, 2004, 42(6): 565-572.
    [26] Saravanakumar D, Samiyappan R. ACC deaminase from Pseudomonas fluorescens mediatedsaline resistance in groundnut (Arachis hypogea) plants[J]. Journal of applied microbiology,2007, 102(5): 1283-1292.
    [27] Zahir Z A, Ghani U, Naveed M, et al. Comparative effectiveness of Pseudomonas andSerratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticumaestivum L.) under salt-stressed conditions[J]. Archives of microbiology, 2009, 191(5):415-424.
    [28]郭英,刘栋,赵蕾.生防枯草芽孢杆菌胞外植酸酶对小麦耐盐性的影响[J].应用与环境生物学报, 2009, 15(1): 39-43.
    [29] Bacilio M, Rodriguez H, Moreno M, et al. Mitigation of salt stress in wheat seedlings by agfp-tagged Azospirillum lipoferum[J]. Biology and fertility of soils, 2004, 40(3): 188-193.
    [30]李敏,辛华,郭绍霞,等. AM真菌对盐渍土壤中番茄,辣椒生长和矿质养分吸收的影响[J].莱阳农学院学报, 2005, 22(1): 38-41.
    [31] Kaya C, Higgs D, Kirnak H, et al. Mycorrhizal colonisation improves fruit yield and wateruse efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered andwater-stressed conditions[J]. Plant and Soil, 2003, 253(2): 287-292.
    [32] Al-Karaki G N. Growth of mycorrhizal tomato and mineral acquisition under salt stress[J].Mycorrhiza, 2000, 10(2): 51-54.
    [33]冯固,张福锁.丛枝菌根真菌对棉花耐盐性的影响研究[J].中国生态农业学报, 2003,11(2): 21-24.
    [34] Penrose D M, Glick B R. Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria[J]. Physiologia Plantarum, 2003, 118(1):10-15.
    [35] Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to highsalinity[J]. Annual review of plant biology, 2000, 51(1): 463-499.
    [36] Feng G, Zhang F, Li X, et al. Improved tolerance of maize plants to salt stress by arbuscularmycorrhiza is related to higher accumulation of soluble sugars in roots[J]. Mycorrhiza, 2002,12(4): 185-190.
    [37] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in plant science, 2002,7(9): 405-410.
    [38] Ghorbanli M, Ebrahimzadeh H, Sharifi M. Effects of NaCl and mycorrhizal fungi onantioxidative enzymes in soybean[J]. Biologia Plantarum, 2004, 48(4): 575-581.
    [39] Harman G E, Howell C R, Viterbo A, et al. Trichoderma species—opportunistic, avirulentplant symbionts[J]. Nature Reviews Microbiology, 2004, 2(1): 43-56.
    [40] Harman G E, Petzoldt R, Comis A, et al. Interactions between Trichoderma harzianum strainT22 and maize inbred line Mo17 and effects of these interactions on diseases caused byPythium ultimum and Colletotrichum graminicola[J]. Phytopathology, 2004, 94(2): 147-153.
    [41] Celar F, Valic N. Effects of Trichoderma spp. and Gliocladium roseum culture filtrates onseed germination of vegetables and maize[J]. Zeitschrift fur Pflanzenkrankheiten undPflanzenschutz, 2005, 112(4): 343-350.
    [42]褚长彬,吴淑杭,周德平,等.木霉T68对植物病原菌的拮抗作用及对绿豆插条不定根发生的影响[J].农业环境科学学报, 2008, 27(003): 1084-1089.
    [43]魏林,梁志怀,曾粮斌,等.木霉T2-16发酵产物对杂交水稻种子活力和秧苗素质的影响[J].杂交水稻, 2005, 20(005): 61-65.
    [44] Yedidia I, Benhamou N, Chet I. Induction of defense responses in cucumber plants (Cucumissativus L.) by the biocontrol agent Trichoderma harzianum[J]. Applied and EnvironmentalMicrobiology, 1999, 65(3): 1061-1070.
    [45] Bae H, Sicher R C, Kim M S, et al. The beneficial endophyte Trichoderma hamatum isolateDIS 219b promotes growth and delays the onset of the drought response in Theobromacacao[J]. Journal of experimental botany, 2009, 60(11): 3279-3295.
    [46] Mastouri F, Bj rkman T, Harman G E. Seed treatment with Trichoderma harzianumalleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings[J].Phytopathology, 2010, 100(11): 1213-1221.
    [47] Contreras-Cornejo H A, Macías-Rodríguez L, Cortés-Penagos C, et al. Trichoderma virens, aplant beneficial fungus, enhances biomass production and promotes lateral root growththrough an auxin-dependent mechanism in Arabidopsis[J]. Plant physiology, 2009, 149(3):1579-1592.
    [48] Vinale F, Sivasithamparam K, Ghisalberti E L, et al. A novel role for Trichoderma secondarymetabolites in the interactions with plants[J]. Physiological and Molecular Plant Pathology,2008, 72(1-3): 80-86.
    [49] Gravel V, Antoun H, Tweddell R J. Growth stimulation and fruit yield improvement ofgreenhouse tomato plants by inoculation with pseudomonas putida or Trichoderma atroviride:Possible role of indole acetic acid (IAA)[J]. Soil biology and biochemistry, 2007, 39(8):1968-1977.
    [50] Bertagnolli B L, Daly S, Sinclair J B. Antimycotic compounds from the plant pathogenRhizoctonia solani and its antagonist Trichoderma harzianum[J]. Journal of Phytopathology,1998, 146(2‐3): 131-135.
    [51] Ezzi M I, Lynch J M. Cyanide catabolizing enzymes in Trichoderma spp.[J]. Enzyme andmicrobial technology, 2002, 31(7): 1042-1047.
    [52] Adams P, De-Leij F A A M, Lynch J M. Trichoderma harzianum Rifai 1295-22 mediatesgrowth promotion of crack willow (Salix fragilis) saplings in both clean andmetal-contaminated soil[J]. Microbial ecology, 2007, 54(2): 306-313.
    [53] Altomare C, Norvell W A, Bj rkman T, et al. Solubilization of phosphates andmicronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianumRifai 1295-22[J]. Applied and Environmental Microbiology, 1999, 65(7): 2926-2933.
    [54] Van Wees S, Van der Ent S, Pieterse C M J. Plant immune responses triggered by beneficialmicrobes[J]. Current opinion in plant biology, 2008, 11(4): 443-448.
    [55] Chen K F, Lai Y Y, Sun H S, et al. Transcriptional repression of human cad gene by hypoxiainducible factor-1α[J]. Nucleic acids research, 2005, 33(16): 5190-5198.
    [56] Lindsay W L, Schwab A P. The chemistry of iron in soils and its availability to plants[J].Journal of Plant Nutrition, 1982, 5(4-7): 821-840.
    [57] Renshaw J C, Robson G D, Trinci A P J, et al. Fungal siderophores: structures, functions andapplications[J]. Mycological Research, 2002, 106(10): 1123-1142.
    [58] Neilands J B. Siderophores: structure and function of microbial iron transport compounds[J].Journal of Biological Chemistry, 1995, 270(45): 26723-26726.
    [59] Boukhalfa H, Crumbliss A L. Chemical aspects of siderophore mediated iron transport[J].Biometals, 2002, 15(4): 325-339.
    [60] Crowley D E, Wang Y C, Reid C, et al. Mechanisms of iron acquisition from siderophores bymicroorganisms and plants[J]. Plant and Soil, 1991, 130(1): 179-198.
    [61] Winkelmann G, Drechsel H. Microbial siderophores[J]. Biotechnology, 1997: 199-246.
    [62]赵翔,陈绍兴,谢志雄,等.高产铁载体荧光假单胞菌Pseudomonas fluorescens sp-f的筛选鉴定及其铁载体特性研究[J].微生物学报, 2006, 46(5): 691-695.
    [63] Holinsworth B, Martin J D. Siderophore production by marine-derived fungi[J]. BioMetals,2009, 22(4): 625-632.
    [64] Duijff B J, Meijer J W, Bakker P A H M, et al. Siderophore-mediated competition for ironand induced resistance in the suppression of Fusarium wilt of carnation by fluorescentPseudomonas spp[J]. European Journal of Plant Pathology, 1993, 99(5): 277-289.
    [65] Duijff B J, De Kogel W J, Bakker P A H M, et al. Influence of pseudobactin 358 on the ironnutrition of barley[J]. Soil Biology and Biochemistry, 1994, 26(12): 1681–1688.
    [66]许煜泉,高虹,童耕雷,等.假单胞菌株JKD-2分泌铁载体抑制稻瘟病菌[J].微生物学通报, 1999, 26(3): 180-183.
    [67] Arora N K, Kang S C, Maheshwari D K. Isolation of siderophore-producing strains ofRhizobium meliloti and their biocontrol potential against Macrophomina phaseolina thatcauses charcoal rot of groundnut[J]. Curr. Sci, 2001, 81(6): 673-676.
    [68] Longxian R, Miaolian X, Bin Z, et al. Siderophores are the main determinants of fluorescentPseudomonas strains in suppression of grey mould in Eucalyptus urophylla[J]. Actaphytopathologica sinica, 2005, 3(1): 6-12.
    [69]金崇伟,俞雪辉,郑绍建.微生物在植物铁营养中的潜在作用[J].植物营养与肥料学报,2005, 11(5): 688-695.
    [70] Kloepper J W, Leong J, Teintze M, et al. Enhanced plant growth by siderophores producedby plant growth-promoting rhizobacteria[J]. Nature, 1980, 286(5776): 885-886.
    [71] R mheld V, Marschner H. Evidence for a specific uptake system for iron phytosiderophoresin roots of grasses[J]. Plant Physiology, 1986, 80(1): 175-180.
    [72] Crichton R R, Charloteaux Wauters M. Iron transport and storage[J]. European Journal ofBiochemistry, 1987, 164(3): 485-506.
    [73] Chen L, Dick W A, Streeter J G. Production of aerobactin by microorganisms from a compostenrichment culture and soybean utilization[J]. Journal of Plant Nutrition, 2000, 23(11-12):2047-2060.
    [74] Yehuda Z, Shenker M, Hadar Y, et al. Remedy of chlorosis induced by iron deficiency inplants with the fungal siderophore rhizoferrin[J]. Journal of Plant Nutrition, 2000, 23(11-12):1991-2006.
    [75] Katiyar V, Goel R. Siderophore mediated plant growth promotion at low temperature bymutant of fluorescent pseudomonad[J]. Plant growth regulation, 2004, 42(3): 239-244.
    [76] Masalha J, Kosegarten H, Elmaci , et al. The central role of microbial activity for ironacquisition in maize and sunflower[J]. Biology and fertility of soils, 2000, 30(5): 433-439.
    [77] Shenker M, Oliver I, Helmann M, et al. Utilization by tomatoes of iron mediated by asiderophore produced by Rhizopus arrhizus[J]. Journal of plant nutrition, 1992, 15(10):2173-2182.
    [78] Yehuda Z, Shenker M, Romheld V, et al. The role of ligand exchange in the uptake of ironfrom microbial siderophores by gramineous plants[J]. Plant physiology, 1996, 112(3):1273-1280.
    [79]康贻军,胡健,单君,等.两株解磷真菌的解磷能力及其解磷机理的初步研究[J].微生物学通报, 2006, 33(5): 22-27.
    [80] Schwyn B, Neilands J B. Universal chemical assay for the detection and determination ofsiderophores[J]. Analytical biochemistry, 1987, 160(1): 47-56.
    [81] Milagres A M F, Machuca A, Napole o D. Detection of siderophore production from severalfungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay[J]. Journal ofmicrobiological methods, 1999, 37(1): 1-6.
    [82] Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagentfor indolic compounds produced by phytopathogenic bacteria.[J]. Applied and environmentalmicrobiology, 1995, 61(2): 793-796.
    [83] Payne S M. Detection, isolation, and characterization of siderophores[J]. Methods inenzymology, 1994, 235: 329-344.
    [84]张茹,李金花,柴兆祥,等.甘肃河西马铃薯根际生防木霉菌对接骨木镰刀菌的拮抗筛选及鉴定[J].草业学报, 2009, 18(2): 138-145.
    [85] Machuca A, Milagres A. Use of CAS‐agar plate modified to study the effect of differentvariables on the siderophore production by Aspergillus[J]. Letters in applied microbiology,2003, 36(3): 177-181.
    [86] Viterbo A, Landau U, Kim S, et al. Characterization of ACC deaminase from the biocontroland plant growth‐promoting agent Trichoderma asperellum T203[J]. FEMS microbiologyletters, 2010, 305(1): 42-48.
    [87] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding[J]. Analytical biochemistry, 1976,72(1-2): 248-254.
    [88] Vyas P, Rahi P, Chauhan A, et al. Phosphate solubilization potential and stress tolerance ofEupenicillium parvum from tea soil[J]. Mycological research, 2007, 111(8): 931-938.
    [89] Samuels G J, Lieckfeldt E, Nirenberg H I. Trichoderma asperellum, a new species withwarted conidia, and redescription of T. viride.[J]. Sydowia, 1999, 51(1): 71-88.
    [90] White T J, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomalRNA genes for phylogenetics[J]. PCR protocols A guide to methods and applications, 1990:315-322.
    [91]章初龙,徐同.我国河北,浙江,云南及西藏木霉种记述[J].菌物学报, 2005, 24(2):184-192.
    [92] Sun Y, Cheng Z, Glick B R. The presence of a 1‐aminocyclopropane‐1‐carboxylate(ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth‐promoting bacterium Burkholderia phytofirmans PsJN[J]. FEMS microbiology letters, 2009,296(1): 131-136.
    [93] Jia Y J, Ito H, Matsui H, et al. 1-Aminocyclopropane-1-carboxylate (ACC) deaminaseinduced by ACC synthesized and accumulated in Penicillium citrinum intracellular spaces[J].Bioscience, biotechnology, and biochemistry, 2000, 64(2): 299-305.
    [94] Rawat R, Tewari L. Effect of abiotic stress on phosphate solubilization by biocontrol fungusTrichoderma sp.[J]. Current microbiology, 2011, 62(5): 1521-1526.
    [95] Segarra G, Casanova E, Avilés M, et al. Trichoderma asperellum strain T34 controlsFusarium wilt disease in tomato plants in soilless culture through competition for iron[J].Microbial ecology, 2010, 59(1): 141-149.
    [96]高俊凤.植物生理学实验指导[M].高等教育出版社, 2006.
    [97] Demiral T, Türkan I. Comparative lipid peroxidation, antioxidant defense systems and prolinecontent in roots of two rice cultivars differing in salt tolerance[J]. Environmental andExperimental Botany, 2005, 53(3): 247-257.
    [98]王学奎.植物生理生化实验原理和技术[M].高等教育出版社, 2006.
    [99] Guo J, Yang Y, Wang G, et al. Ecophysiological responses of Abies fabri seedlings todrought stress and nitrogen supply[J]. Physiologia plantarum, 2010, 139(4): 335-347.
    [100] Nickel K S, Cunningham B A. Improved peroxidase assay method using leuco 2, 3′,6-trichloroindophenol and application to comparative measurements of peroxidaticcatalysis[J]. Analytical Biochemistry, 1969, 27(2): 292-299.
    [101] Hoekstra F A, Golovina E A, Buitink J. Mechanisms of plant desiccation tolerance[J].Trends in Plant Science, 2001, 6(9): 431-438.
    [102] de Azevedo Neto A D, Prisco J T, Enéas-Filho J, et al. Effect of salt stress on antioxidativeenzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maizegenotypes[J]. Environmental and Experimental Botany, 2006, 56(1): 87-94.
    [103] Rout N P, Shaw B P. Salt tolerance in aquatic macrophytes: possible involvement of theantioxidative enzymes[J]. Plant Science, 2001, 160(3): 415-423.
    [104] Naseby D C, Pascual J A, Lynch J M. Effect of biocontrol strains of Trichoderma on plantgrowth, Pythium ultimum populations, soil microbial communities and soil enzymeactivities[J]. Journal of Applied Microbiology, 2000, 88(1): 161-169.
    [105] Mastouri F, Bj rkman T, Harman G E. Seed treatment with Trichoderma harzianumalleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings[J].Phytopathology, 2010, 100(11): 1213-1221.
    [106] Porras-Soriano A, Soriano-Martín M L, Porras-Piedra A, et al. Arbuscular mycorrhizalfungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nurseryconditions[J]. Journal of Plant Physiology, 2009, 166(13): 1350-1359.
    [107] Sharifi M, Ghorbanli M, Ebrahimzadeh H. Improved growth of salinity-stressed soybeanafter inoculation with salt pre-treated mycorrhizal fungi[J]. Journal of plant physiology, 2007,164(9): 1144-1151.
    [108] Guerinot M L. Microbial iron transport[J]. Annual Reviews in Microbiology, 1994, 48(1):743-772.
    [109] Loper J E, Buyer J S. Siderophores in microbial interactions on plant surfaces[J]. Mol.Plant-Microbe Interact, 1991, 4(1): 5-13.
    [110] Sharma A, Johri B N. Growth promoting influence of siderophore-producing Pseudomonasstrains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions[J].Microbiological research, 2003, 158(3): 243-248.
    [111] Dimkpa C, Svatos A, Merten D, et al. Hydroxamate siderophores produced by Streptomycesacidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) undernickel stress[J]. Canadian journal of microbiology, 2008, 54(3): 163-172.
    [112]田方,丁延芹,朱辉,等.烟草根际铁载体产生菌G-229-21T的筛选,鉴定及拮抗机理[J].微生物学报, 2008, 48(5): 631-637.
    [113] Shenker M, Oliver I, Helmann M, et al. Utilization by tomatoes of iron mediated by asiderophore produced by Rhizopus arrhizus[J]. Journal of plant nutrition, 1992, 15(10):2173-2182.
    [114] Braich N, Codd R. Immobilised metal affinity chromatography for the capture ofhydroxamate-containing siderophores and other Fe (III)-binding metabolites directly frombacterial culture supernatants[J]. Analyst, 2008, 133(7): 877-880.
    [115] Rane M R, Naphade B S, Sayyed R Z, et al. Methods for microbial iron chelator(siderophore) analysis[J]. Basic Research and Applications of Mycorrhizae, MicrobiologySeries (Eds: Podila G K, Varma A), IK International Pvt. Ltd, New Delhi, 2005: 475-492.
    [116] Wilhite S E, Lumsden R D, Straney D C. Peptide synthetase gene in Trichoderma virens[J].Applied and environmental microbiology, 2001, 67(11): 5055-5062.
    [117] Anke H, Kinn J, Bergquist K E, et al. Production of siderophores by strains of the genusTrichoderma[J]. Biometals, 1991, 4(3): 176-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700