2μm相干激光测风雷达光学天线特性分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光相干测风雷达是目前大气风场测量的主要手段之一,以其高信噪比和接收带宽短等优点受到各国科学家的重视,激光测风雷达对于数值天气预报、大气动力学研究、航空安全预警和国防应用都有重要的意义和良好的应用前景。本文针对评价相干激光雷达系统重要参数之一的天线效率进行了分析,给出了相干激光雷达光学天线的设计依据,并对设计好的天线系统的天线效率做出了评估。主要内容如下:
     (1)给出了相干激光雷达系统的天线效率与外差效率的关系,讨论了外差效率的最佳匹配条件,并针对不同的收发结构形式给出了外差效率的简化表达式。
     (2)讨论了发射和接收光束的截断比对接收外差信号的影响,针对在接收面处混频和探测面处混频的两种接收方式,在不同的光场模型下分别做出了讨论,通过仿真计算得出不同的截断比对外差接收信号的影响,得到收发合置系统下的最佳截断,为相干激光雷达系统的光学天线设计提供了可靠的依据。
     (3)设计一套收发合置的相干激光雷达光学天线系统,主天线采用离轴卡塞格伦的双发射式结构。预扩束系统采用的是无实焦点的伽利略式的透射式望远镜系统。要求按照外差接收系统的相干接收条件来设计光学天线系统,要求设计达到的波前差小于λ/20的衍射极限系统。
     (4)利用天线设计结果及相应的系统结构参数,针对不同的工作距离,不同的大气条件仿真出收发合置结构下系统的天线效率。
Coherent wind lidar is one of the major means which measures the atmospheric wind fields, with a high signal-to-noise ratio and receive short bandwidth by the advantages, many scientists from various countries attention it. Lidar has important significance and a good prospect in many fields, such as numerical weather prediction, atmospheric dynamics, aviation safety warning and defense applications. Based on the need of coherent wind lidar system weak signal detection, coherent wind lidar systems acoustic frequency shifter technical problems were studied,Antenna efficiency, which is one of most important parameter of the coherent wind lidar system, is analyzed. The design process is presented and the evaluation about antenna efficiency of an antenna system is investigated. It includes:
     (1) Relationship between antenna efficiency and heterodyne efficiency is proposed. Optimum match condition is given out, and mathematical expression of heterodyne efficiency is showed for different transceiver systems.
     (2) A discussion about different truncation ratio of transmitter to receiver diameter is presented in different optical signal model for the two different mixing configurations on the received plane. It is calculated that different truncation ratios affect the heterodyne signal by numerical simulation, especially the optimum truncation ratio in mono-static system, which is helpful for design of optical antenna of coherent lidar, and heterodyne efficiency is enhanced by choosing reasonable truncation ratio.
     (3) A mono-static optical antenna has been designed for the coherent lidar system, and primary antenna is an unfocused-Cassegrain bi-transmitted configuration. The beam pre-expand system is an afocal Galileo-transmission telescope system. According to coherent condition for the heterodyne system, wave-front aberration need be less thanλ/20 for a diffraction-limited system.
     (4) For different operation ranges and atmospheric condition, antenna efficiency is investigated and presented for mono-static configuration by using the simulation result for design and system configuration parameters.
引文
1周小林,孙东松.多普勒测风激光雷达研究进展.大气与环境光学学报. 2007,2(3):161~169
    2 Yeh Y, Cummins H. Localized Fluid Flow Measurements with a He-Ne Laser Spectrometer. Appl Phys Lett. 1964,4:176~178
    3 Huffaker R M. Laser. Doppler Detection Systems for Gas Velocity Measurements. Appl Opt.1970,21(9):1026~1039
    4 Huffaker R M, Jelalian A V. Laser-Doppler System for Detection of Aircrafttrailing Vortices. IEEE. 1970,58(6):322~326
    5 Brashears M R, Hallock J N. The Measurement of Wind Shear and Wake Vortices by Laser Doppler Velocimetry. American Meteoroingical Society. 1976:175~184
    6 Menzies R T,Hardesty R M.Coherent Doppler Lidar for Measurements of Wind Fields. IEEE. 1989,77(3):449~462
    7 Post M J, Richter R A, Hardesty R M, et aI. NOAA's Pulsed Coherent IR Doppler Lidar Characteristic Sand Data. SPIE. 1981,30(10):60~65
    8 Bilbro I W , Fichtl G, Fitzjirrald D. Airborne Doppler Lidar Wind Field Measurements. Bull American Meteorol. 1984,65:348~359
    9 Rothermel Jeffry, Olivier L D. Remote Sensing of Multi-level Wind Fields with High-Energy Airborne Scanning Coherent Doppler Lidar. Optics Express. 1998,2(2):40~50
    10 Werner C H, Flamant P H, Wind Infrared Doppler Lidar Instrument. Opt Eng. 2001,40(1):115~125
    11 M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker. Remote wind profiling with a solid-state Nd:YAG Coherent Lidar System. Opt Lett.1989, 14(6):776~778
    12 J. M. Vaughan . Coherent Laser Spectroscopy and Doppler Lidar Sensing in the Atmosphere.Physica Scripta. 1998, 78(16):136~140
    13 S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker. Eyesafecoheret Laser Radar System at 2.1μm using Tm,Ho:YAG Lasers. Opt.Lett. 1991, 16(21):773~775
    14 Kin P. Chan, Dennis K. Killinger. Short-pules Coherent Doppler Nd:YAG Lidar. Optical Engineerring. 1991, 14(15):776~785
    15 Sammy W. Henderson, Paul J.M. Suni, Charley P. Hale. Coherent Laser Radar at 2μm Using Solid-state Lasers. IEEE. 1993, 31(1): 103~164
    16 Kin P. Chan, Dennis K. Killinger. Short-pules Coherent Doppler Nd:YAG Lidar. Optical Engineerring. 1991,14(15):776~785
    17 Huffaker R M , Reveley P A. Solid-State Coherent Laser Radar Wind Field Measurement Systems. AppI Opt. 1998,35(16):863~873
    18 Rothermel Jeffry, Olivier L D. Remote Sensing of Multilevel Wind Fields with Airborne Scanning Coherent Doppler lidar. Optics Express. 1998,2(2):40~50.
    19 Stephen M Hannon. Lidar Measurement of Windshear and Turbulence and Comparison with a Predictive Fine-Mesh Mesoscale Model. SPIE. 1992,2737:151~161
    20 Walter Rütten, Thomas Gellekum, Katrin Jessen. Investigation of Laser Doppler Techniques using the Monte Carlo Metho. SPIE. 1996,2326:277~288
    21 R. Milton Huffaker, Paul A. Reveley. Solid-State Coherent Laser Radar Wind Field Measurement Systems. SPIE. 1994,3104:179~189
    22赵延仲,宋丰华. 1.06μm脉冲激光高倍率变焦的扩束发射光学系统设计.红外与激光工程. 2007,36(6):891~896
    23张亮,安源.大视场、长焦距离轴三反射光学系统的设计.红外与激光工程. 2007,36(2):278~280
    24赵延仲,宋丰华.高斯光束的激光变焦扩束光学系统设计.装备指挥技术学院学报. 2007,18(5):85~90
    25张玉侠.基于空间光通信卡塞格伦天线弊端的讨论.红外与激光工程. 2005,34(5):560~563
    26李正值.红外光学系统.电子工业出版社. 1986:104~135
    27候再红,吴仪.湍流廓线激光雷达研究.强激光与粒子束. 2006,Vol.18:1602~1603
    28赵茗,黄德修.离轴抛物面反射式平行光管的结构设计.华中科技大学学报. 2005,33(4):67~70
    29伍何云,王培纲.离轴反射式光学系统设计.光电工程. 2006,33(1):34~38
    30何丽,范国滨.卡赛格林望远系统与激光束参数匹配.强激光与粒子数. 2008,20(1):49~53
    31丁红星,孙东松.测风激光雷达光束发散对测量精度的影响.激光与红外. 2004,34(1):18~20
    32戴阳,林兆祥.激光雷达大气湍流测量方法研究.强激光与离子束. 2006,18(11):1769~1774
    33 Rod G Frehlich,Michael J Kavaya. Coherent Laser Radar Performance for General Atmospheric Reftactive Turbulence. Appliec optics. 1991,30(36):5325~5352
    34 Russell Targ. Coherent Lidar Airborne Windshear Sensor:Performance Evaluation Applied optics. 1991,30(15):2013~2027
    35李成,毛红敏.大气湍流对激光外差探测的影响.大气与环境光学学报. 2007,2(4):247~251
    36徐静,毛红敏.大气湍流引起激光外差探测空间相干性退化研究.激光与红外. 2007,37(12):1245~1250
    37何毅.外差探测系统的相位匹配研究.中国激光. 1997,24(10):930~935
    38 J L Meyzonnette, G Saccomani.Imaging. CO2 Laser Radar With Heterodyne Detection:LFM Pulse Compression. SPIE. 1988:91~99
    39 Rod G Frehlich,Michael J Kavaya. Coherent Laser Radar Performance for General Atmospheric Reftactive Turbulence. Appliec optics.1991,30(36):5325~5352
    40 R G Frehlich. Intensity Covariance of a Point Source in a Random Medium with a Kolmogorov Spectrum and an Inner Scale of Turbulence. Appliec Optics. 1987,34(7):360~ 366
    41李晓彤.几何光学和光学设计.浙江大学出版社. 1999:185~192
    42 Aniceto Belmonte. Analyzing the Efficiency of a Practical Heterondyne Lidar in the Turbulent Atmosphere:Telescope Parameters. Optics Express. 2003,11(17):2041~2047
    43 B J Rye. Primary Aberration Contribution to Incoherent Backscatter Hererodyne Lidar Returns. Appliec optics. 1982,21(5):839~845
    44 J Y Wang. Detection Efficiency of Coherent Optical Radar. Appled Optics.1984,23(19):3421 ~3428
    45 J W顾德门.傅里叶光学导论.科学出版社. 1979:88~90
    46 A E SIEGMAN. The Antenna Properties of Optical Heterodyne Receivers. IEEE. 1966,54(10):1350~1357
    47左保军,张爱红.激光外差探测光学系统参量的确定.哈尔滨工业大学学报. 2001,33(5)655~658
    48丹蒂JC编.激光斑纹及有关现象.科学出版社. 1981:128~135
    49郭冠军,邵芸.激光散斑效应对激光雷达探测性能的影响.物理学报. 2004,53(7):2089~2094
    50王春晖,王骐. CO2激光脉冲外差探测一阶统计特性分析.中国激光. 2003,30(5):476~481

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700