大功率两电极气体火花开关的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在脉冲功率系统中开关是关键元件之一,其性能优劣直接影响到输出脉冲的技术参数。石墨型两电极气体开关作为大电流闭合开关的一种,具有转移电荷高、通流能力强、使用寿命长、价格低廉、工作性能稳定等优点。本文针对在大电流、高库仑量工作条件下的石墨型两电极气体开关中的石墨电极烧蚀、电接触烧蚀、静态工作特性以及动态触发特性等问题进行研究。
     首先,分析了气体开关石墨电极本体由于放电电弧而产生的烧蚀。以热力学理论的热传导模型为出发点,结合实验中对烧蚀量的测量验证,得到了石墨在高能脉冲放电情况下烧蚀的理论解释。并基于该理论解释,结合了热力学中的热传导公式,给出了石墨电极本体烧蚀的几点结论,其一,在放电中,石墨电极表面各阴极斑点由初始状态升温至升华温度所耗时间在亚纳秒级甚至10-4ns的范围,对于微秒级或是更长放电持续时间的放电电流,可以认为整个放电时间进行的都是电极去除过程。其二,在石墨电极的材料去除过程的分析中得出石墨电极烧蚀量与库仑转移量之间的关系。根据该关系式计算得到单位库仑转移量下的石墨电极烧蚀质量与实验中的实测值基本吻合。因此,该关系可以在石墨电极的设计中作为石墨电极寿命的依据。
     其次,研究了石墨电极与电极座之间的电接触烧蚀问题。建立了电接触面温升模型,并运用该温升模型分析计算了各参数变化对温升的影响。在原理上解释了电接触面温升与材料物理属性以及开关机械参数之间的关系,并认为在一定的工作电流作用下,静态电接触温升与接触材料的物理属性,以及工程实现中的加工精度有关。选择高热导率、高比热容、高密度、低电阻率、低弹性模量、低泊松比的材料并提高电极座接触面加工精度有助于降低电接触面的温升,减轻熔焊。
     然后,分析了气体开关的结构及其静态工作特性。采用了锥形与柱形结合的结构形态以减小在安装电极时所产生的应力;以压接式安装结构作为电极安装方式,并在安装螺栓处辅以绝缘措施以减少金属套筒与金属电极座之间的烧蚀;通过对开关直流击穿电压的分析可以得到开关工作电压介于自击穿电压的40%-60%之间,气体开关工作气压的初始值为130kPa,该气压值是在一个较长的工作时间内使得误动作概率与拒动作概率都位于一个优化的取值。在实验平台上对研制的气体开关进行了实验研究。该气体开关通过了峰值达到570kA的冲击电流测试。在电流峰值316kA,单次电荷转移量可达103.4C的工况下,通过了1500次以上的寿命试验。
     最后,分析了气体开关的触发特性。对气体开关的开通过程以及开通气体开关所需要的条件进行了仿真,Marx发生器的输出端需要串联安装一个阻值不大于50Ω的电阻,以利于气体开关的击穿。在上述研究的基础上对气体开关触发装置的工作特性作出了分析,Marx发生器的工作点应该选择靠近自击穿曲线。并且无触发信号球隙开关间的铜盘上连接有接地电阻将会使得Marx发生器触发成功概率得到提高,同时其工作气压范围将会被拓宽。
Switch is one of the key components in the pulsed power system. The performances of the switch directly influence the output characteristics of the system. As one kind of high current closed switches, the spark gap switch with two graphite electrodes has the advantages such as large charge transfer, high current capability, long lifetime span, stability and low cost. The paper mainly studies the graphite electrode erosion, electrical contact erosion, static characteristics and triggering characteristics in the high current application of spark gap switch with two graphite electrodes.
     Firstly, the erosion mechanism of graphite electrode under the arc was analyzed. The erosion mechanism of the graphite electrode is investigated based on the theory of thermodynamics and validated by experimental result. An erosion mechanism was developed to explain the erosion of graphite electrode under pulsed discharge condition. Based on the analysis of the erosion mechanism and thermodynamics theory, the erosion of the graphite electrode has the characteristics as follows:(1) for the graphite electrode, the duration of heating process is less than a nanosecond. Thus the duration of heating process can be ignored for a microsecond or longer discharge process. (2) the relationship between the graphite electrode erosion and charge transfer can be considered linear. This relationship can be used to predict the life of graphite electrode.
     The electrical contact between the graphite electrodes and electrode erosion was studied in this paper. Computing model of contact temperature rise is proposed based on contact surface model and heat-conduction equation. The model can theoretically illustrate the relation between the electrical contact surface temperature rise and material physical properties as well as switch mechanical parameters. The model analyzing conclusion indicated that the static contact temperature rise was influenced by material physical properties and engineering manufacturing accuracy. Appropriate contact area, contact pressure and low surface roughness contributed to reducing temperature rise and preventing static welding.
     The structure and static operating characteristics of the spark gap switch were then studied in the paper. A structure with combined conical and cylindrical shape is proposed in order to reduce the electrode installation stress. Crimp style installation and insulation structure at the bolt area can avoid the erosion between the metal sleeve and the metal electrode holder. Based on above construction, switch operating voltage is in the range of the 40% to 60% of the self-breakdown voltage. Initial value of working air pressure of the gap is 130kPa in the spark gap, which is an optimal value to reduce the self-fire probability and refuse act rate.A spark gap switch has been developed. The experimental results show that the switch can bear the impulse of the large current with the peak of 570kA. In the lifetime test with the peak current of 316kA of and charge transfer of 103.4C each shot, the switch remained well after 1500 shots.
     At last, the trigger characteristics of spark gap switch was studied. The switch on process of the spark gap was simulated. The simulation results showed that a 50 ohm resistor should be installed at the output of the Marx generator to facilitate the breakdown of a spark gap. Based on above result, operation characteristics of trigger device were analyzed. The results indicated that the operating point of the Marx generator should be close to its breakdown curve. For the sphere gap without trigger signal, a grounding resistance connecting to the copper coil can improve the breakdown probability, and broaden the working pressure range of the Marx generator.
引文
[1]Lin Fuchang, Han Yongxia, Dai Ling, Zou Lin. Setup of a 500kJ Compact Pulsed Forming Network Used for EMG Investigation[C].14th Symposium on Electromagnetic Launch Technology, EML, Proceedings. June 2008:527~530.
    [2]韩永霞,林福昌,戴玲,钟和清,何正浩.紧凑型脉冲电流源的研究[J].高电压技术,2008,34(2):389-392.
    [3]周丕璋,郭良福,陈德怀等.激光聚变主放大器能源系统述评[J].强激光与粒子束,2003,15(4):346-351.
    [4]Jae-Won Jung, Seong-Ho Kim, Kyung-Seung Yang. Overview of ETC research in Korea[J]. IEEE Trans. On Magnetics,2003,39(1):22~23
    [5]Mexmain J M, Rubin de Cevens D, Marret J P, Roos V. Pulsed power conditioning system for the megajoule laser[C].14th IEEE international Pulsed Power Conference, Dallas, Texas, USA,2003,1:89~92
    [6]Sitzman A, Surls D, Mallick J. Design, construction and testing of an inductive pulsed-power supply for a small railgun[J]. IEEE Trans, on Magnetics,2007,43(1): 270~274.
    [7]Bhasavanich D, Strachan DF, Ford R.4.5MJ modular pulse power supply for ET gun applications [C].9th IEEE international Pulsed Power Conference, Albuquerque, New Mexico, USA,1993,2:772~775.
    [8]何孟兵.脉冲大电流长寿命开关的研究[D].华中科技大学,2003.
    [9]Kihara R, Cummings D B, Leighton K S, et al. Commercial high current ignitron development[C].7th IEEE international Pulsed Power Conference, Monterey, CA, 1989,1:18~21.
    [10]Fair H D. Electromagnetic launch science and technology in the United States enters a new area[J]. IEEE Trans, on Magnetics,2005,41(1):158~164.
    [11]Warren T, Dickens J, Neuber A, et al. Development of improved triggered vacuum switches[C].12th IEEE international Pulsed Power Conference, California, USA, 1999,2:1264~1267
    [12]Jin Yun-sik. Noble crowbar circuit for compact 50 kJ capacitor bank[J]. IEEE Trans. on Plasma Sci.,2004,32(2):525~530
    [13]Jin Yun-sik. Design and performance of a 300 kJ pulsed power module for ETC application[J]. IEEE Trans, on Magnetics,2001,31(1):165~168
    [14]He Jun-jia, Zou Ji-yan. A High-capacity Triggered Vacuum Switch with Single Axial Magnetic Field Electrode[J]. IEEE Trans, on Magnetics,1999,35(1):352~355.
    [15]Zou J, Chen J, Lin Q. Theory and application of triggered vacuum switches [C].19th IEEE International Symposium on Discharge and Electrical Insulation, Xi'an, China, 2000:363~366.
    [16]Thurmond L, Howard T, Pfenning T. Evaluation of a triggered vacuum switch for ETC applications [C].10th IEEE International Pulsed Power Conference, Albuquerque, US,1995:769~77.
    [17]Singh H, Eccleshall D, McNab I, et al. Alternator power conditioning for launchers[C].23th International Power Modulator Symposium. Rancho Mirage, US, 1998:38-41.
    [18]Hiroshi A, Kouji S, Yukio K. Switching characteristics of the triggered vacuum gap for a high-repetition-rate pulse-power source[J]. IEEE Trans, on Plasma Sci.,1992, 20(2):76~79.
    [19]Osmokrovic P, Arsic N. Application of vacuum three electrode spark gaps for synthetic circuits[C].15th International Symposium on Discharges and Electrical Insulation in Vacuum, Darmstadt, Germany,1992:624~627.
    [20]Shi J, Zou J, He J, et al. Preliminary research on triggered vacuum switch based fault current limiter[C].19th International Symposium on Discharges and Electrical Insulation in Vacuum, Xi'an, China,2000:507~510.
    [21]Alferov D F, Ivanov V P, Sidorov V A. High-current vacuum triggered switching devices[J]. IEEE Trans, on Magnetics,2003,39(1):406~409.
    [22]Alferov D F, Nevrovsky V A, Sidorov V A. Anode erosion of a high-current multi gap vacuum triggered switch. Proc[C].19th Intern. Symp. ISDEIV, Xi'an, China, 2000:515~518.
    [23]邹积岩,段雄英.真空触发开关通断特性实验研究[J].大连理工大学学报,2000,40(S1):20-23.
    [24]尚文凯.真空触发间隙与马蹄型触头真空灭弧室特性的研究[D].西安交通大学,1997.
    [25]Seo Kil-soo, Lee Tae-Ho. A High Power Vacuum Rotary arc Gap Closing Switch for Pulsed Power Application[C]. Proc.10th International Symposium on Discharges and Electrical Insulation in Vacuum, France,2002:366~369.
    [26]McNab, Ian R. Developments in pulsed power techno logy [J]. IEEE Trans, on Magnetics,2001,37(1):375~378.
    [27]Rutberg P G, Shvetsov G A, Savvateev A F. Results of recent research on electromagnetic launch technology in Russia[J]. IEEE Trans, on Magnetics,2003, 39(1):29~34.
    [28]Augsburger B, Smith B, McNab I R. A 500 kJ multi-module capacitor bank[J]. IEEE Trans, on Magnetics,1995,31(1):10~15.
    [29]Alferov D F, Ivanov V P, Sidorov V A. High-current vacuum triggered switching devices[J]. IEEE Trans, on Magnetics,2003,39(1):406~409.
    [30]卜大鹏.真空触发开关控制器及特性研究[D].大连理工大学,2008.
    [31]周正阳.场击穿型真空触发开关的相关理论与实验研究[D].大连理工大学,2010.
    [32]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2005.
    [33]沈耀忠,任志纯.半导体开关元件原理及应用[M].北京:电子工业出版社,1996.
    [34]莫正康.电力电子应用技术[M].北京:机械工业出版社,2000.
    [35]张立,赵永健编.现代电力电子技术器件.电路及应用[M].北京:机械工业出版社,1992.
    [36]蓝元良,汤广福,印永华,周孝信.串联晶闸管反向恢复暂态过程的研究[J].电网技术,2006,30(16):15-19.
    [37]Spahn E, Zorngiebel V, Sterzelmeier K, et al.50 kJ Ultra-compact pulsed power supply unit for various applications [C]. European Conference on Power Electronics and Applications, Germany,2005:1~7.
    [38]罗敏,赵殿林,龚胜刚,常安碧,甘延青.MV级重复频率三电极气体开关系 统的研制[J].高电压技术,2005,31(3):61-64.
    [39]Cheng Xin-Bing, Liu Jin-Liang, Qian Bao-Liang, Chen Zhen, Feng Jia-Huai, Research of a high-current repetitive triggered spark-Gap switch and its application [J], IEEE Trans. on Plasma Sci.,2010,38(3):516~523.
    [40]Bhasavanich D, Trachan D F, Creely P. Compact high current, high energy closing switches for electric gun applications [C].9th IEEE International Pulsed Power Conference. Neuo, Mexico,1993:356~359.
    [41]Savage M E, Simpson W W, Sharpe R A, et al. Switch evaluation test system for the National Ignition Facility[C].11th IEEE international Pulsed Power Conference, Maryland, USA,1997,2:948~953.
    [42]Warren T, Dickens J, Neuber A, et al. Development of improved triggered vacuum switches[C].12th IEEE international Pulsed Power Conference, California, USA, 1999,2:1264~1267.
    [43]Bower S, Cook K, Houltby M, et al. Development and testing of a mercury free switch for high current high coulomb applications [C].11th IEEE international Pulsed Power Conference, Maryland, USA,1997,2:917~922
    [44]Bhasavanich D, Strachan D F, Creely P M, et al. Compact high current,high energy closing switch for electric gun applications[C].9th IEEE International Pulsed Power conference, New Mexico, USA,1993,1:356~359
    [45]Miguel Del Guercio. A 4.5MJ pulsed power supply for railgun experiments [J]. IEEE Trans. on Magnetics,2003,39(1):280~284.
    [46]M. E. Savage. Final results from the high-current, high-action closing switch testprogram at Sandia National Laboratories[C].12th IEEE international Pulsed Power Conference, California, USA,1999,2:1238-1241.
    [47]Bezuglov V G, Galakhov I V, Gudov S N, et al. On the possible use of semiconductor RSD-based switch for flash lamps drive circuits in a Nd-glass laser amplifier of LMJ facility[C].12th IEEE international Pulsed Power Conference, Monterey, CA, USA,1999,2:914~918.
    [48]Galaklov I V, Gudov S N, Kirillov G A, et al. Switching of high-power current pulses up to 250kA and submillisecond duration using new silicon devices-Reverse Switched Dynistors[J]. Proc.10th IEEE international Pulsed Power Conference, New Mexico, USA,1995:1103~1108.
    [49]Benin P, Mathieu P, Sierra S, et al. Pulsed power conditioning system for the megajoule laser[J]. IEEE Trans.on Pulsed Power Plasma Sci.,2001,1:401~404
    [50]Bhasavanich D, Strachan D F, Creely P M, et al. Compact high current, high energy closing switch for electric gun applications [C].9th IEEE International Pulsed Power conference, New Mexico, USA,1993,1:356~359.
    [51]何孟兵,贺臣,李劲.气体火花开关电极的烧蚀研究[J].高电压技术,2004,30(10):54-55.
    [52]聂剑红,孙力,刘英.脉冲压缩磁开关串联系统的优化设计[J].哈尔滨工业大学学报,2004,36(5):660-663.
    [53]郭良福.高库仑量大电流气体火花开关的研制[D].武汉:华中科技大学,2006.
    [54]赖贵友,郭良福,力一峥,陈德怀,陈清海,周丕璋.大电流两电极气体开关研究[J].强激光与粒子束,2006,18(06):1037-1040.
    [55]郭良福,何孟兵,周圣,李志鹏,王清玲,李劲,周丕璋,赖贵友,陈德怀,力一峥.强激光能源系统用气体开关的研究[J].高电压技术,2007,33(02):66-70.
    [56]Winands G J J, Liu Z, Pemen A J M, et al. Spark-gap switch for repetitive pulsed power applications [J]. Review of Scientific Instruments.2005,76:85~107
    [57]程新兵,刘金亮,陈蒸,殷毅,冯加怀.高电压长寿命型气体火花开关的设计及初步研究[J].强激光与粒子束,2008,20(10):1753-1756.
    [58]Pedro Elez-Martinez, Robert C. Soliva-Fortuny, Olga Martin-Belloso. Comparative study on shelf life of orange juice processed by high intensity pulsed electric fields or heat treatment[J]. European Food Research and Technology,2006,222:3-4.
    [59]吕志忠,吕治辉,高娅娜,钟功祥,蒋发光.粗糙阴极气体火花开关性能的理论研究[J].强激光与粒子束,2010,22(06):1359-1363.
    [60]Gerasimov A I. Multichannel Spark Gaps with Control Bar Electrodes:Their Development and Application (A Review)[J]. Instruments and Experimental Techniques,2004,47(1).
    [61]王虎,常家森,陶风波,张乔根,邱爱慈.脉冲气体开关用SF6混合气体放电 特性的研究[J].高压电器,2011,47(01):49-57.
    [62]石磊,樊亚军,朱四桃,宋听海,王新新.高压氮气亚纳秒开关放电特性实验研究[J].强激光与粒子束,2005,17(07):1079-1082.
    [63]Bhasavanich D, Hitchcock S S, Creely P M, et al. Development of a compact, high-energy spark gap switch and trigger generator system[C].8th IEEE International Pulsed Power Conference.1991,1:343~345.
    [64]Istenic M, Smith I R, Novae B M. The resistance of nanosecond spark gaps[C]. IEE Pulsed Power Symposium.2005.
    [65]赖贵友,杨兰均,郭良福,力一峥,李冬梅,周丕璋,栾永平,陈德怀,陈清海.大库仑两电极气体开关静态特性[J].强激光与粒子束,2009,21(01):43-46.
    [66]Verson L, Brion J C. Experimental study of repetitive Marx generator[C]. Proceeding of 14th IEEE International Pulsed Power Conference.2003,12: 1054~1057.
    [67]Andrew R Dick, Scott J. Macgregor etc. Breakdown Phenomena in Ultra-Fast Plasma Closing Switches.IEEE Trans, on Plasma Sci.,2000,28(5):1456~1462.
    [68]殷毅,刘金亮,钟辉煌,高景明,杨建华,罗玲.不同气压和电极间距对开关绝缘恢复的影响[J].高电压技术,2009,35(02):304-308.
    [69]高景明,刘永贵,殷毅,杨建华.气体火花开关放电的数值模拟[J].强激光与粒子束,2007,19(06):1039-1043.
    [70]Mulyukov R R, Litvinov E A, Zubairov L R, et al. Characteristics of field emission from nanocrystalline metals [J]. Physica B,2002,324~329.
    [71]Korovin S D, Litvinov E A, Mesyats G A, Murzakaev A M, Rostov V V, Shpak V G, Shunailov S A, Yalandin M I. Experimental investigation of graphite explosive emission cathodes operating in a periodic pulse regime[J]. Technical Physics Letters, 2004,30(10).
    [72]张永辉,宋法伦,向飞,康强,罗敏,龚胜刚.复合阴极材料发射特性分析[J].强激光与粒子束,2008,20(05):863-866.
    [73]陈维青,曾正中,邹丽丽,任书庆,黄建军,来定国,张永民.100kA微秒级气体火花开关电极喷射现象研究[J].强激光与粒子束,2004,16(01):98-100.
    [74]Murphy A B. Thermal Plasma in Gas Mixture[J]. J Phys D:Appl Phys.2001,34(20): 151-173.
    [75]Horinouchik K, Nakayama Y, Hidaka M, et al. A Method of Simulating Magnetically Driven Arcs[J]. IEEE Trans, on Power Delivery.1997,12(1): 213~218.
    [76]Gilligan J G, Mohanti R B. Time-dependent Numerial Simulation of Ablation controlled Arcs[J]. IEEE Trans, on Plasma Sci.,1990,18(2):190~197.
    [77]Ruchti C B, Nieneyer L. Albation Controlled Arc[J]. IEEE Trans, on Plasma Sci., 1986,14(4):423~434.
    [78]Schlitz L Z, Garimella S V, Chan S H. Gas Dynamics and Electromagnetic Processed in High-current Arc Plasmas[J]. Journal of Applied Physics.1999,85(5): 2540~2555.
    [79]Marakhtanov M K, Marakhtanov A M. Formation of a cathode crater in a low-voltage cold-cathode vacuum arc[J]. Technical Physics Letters,1998,24(7).
    [80]张程煜,乔生儒,杨志懋,王亚平.纯石墨和铜-石墨的阴极斑点与截流值研究[J].稀有金属材料与工程,2009,38(03):488-491.
    [81]童歆,李晓昂,赵军平,张乔根.气体火花开关放电通道半径及电阻测量[J].强激光与粒子束,2012,24(03):647-650.
    [82]何孟兵,王清玲,贺臣,李劲,姚宗干.旋转电弧对火花间隙开关电极烧蚀的影响[J].强激光与粒子束,2004,16(11):1468-1471.
    [83]陈维青,曾正中,邹丽丽,任书庆,黄建军,彭建昌.100kA微秒级气体火花开关电极材料熔蚀研究[J].强激光与粒子束,2004,16(02):239-242.
    [84]Juttner B. Cathode spots of electric arcs [J]. J Phys D:Appl Phys,2001, (34): 103~123.
    [85]Batrakov A, Vogel N, Popov S, Nikitine D. Interferograms of a cathode spot plasma obtained with a picoscend laser[J]. IEEE Trans, on Plasma Sci.,2002,30(1): 106~107.
    [86]Anders A, Yushkov G Yu. Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field[J]. Journal of Applied Physics,2002,91(8): 4824~4832.
    [87]Anders A, Yotsombat B, Binder R. Correlation between cathode properties, burning voltage and plasma parameters of vacuum arcs[J]. Journal of Applied Physics,2001, 89(12):7764~7771.
    [88]Lehr F M, Kristiansen M. Electrode erosion from high currentmoving arcs[J]. IEEE Trans, on Plasma Sci.,1989,17(5):811~817.
    [89]苏亚凤,陈文革,张孝林,丁秉钧.W-Cu材料的显微结构对电弧阴极斑点的影响[J].稀有金属,2005,29(04):458-460.
    [90]王清玲,郭良福,湛锋,何孟兵.环形开关电极的自动优化设计方法[J].强激光与粒子束,2006,18(2):333-337.
    [91]Arnold P A, Hulsey S D, Ullery G T, et al. An update on the status of the NIF power-conditioning system[J]. IEEE Trans, on Plasma Sci.,2008,36(2):383~388.
    [92]李黎,刘刚,林福昌,赖贵友,郭良福,曾晗.石墨型高能气体开关的电极使用寿命分析[J].中国电机工程学报,2011,31(06):109-115.
    [93]何孟兵,李劲,姚宗干.旋转电弧间隙开关的电极烧蚀[J].高电压技术,2002,28(12):30-34.
    [94]姚学玲,曾正中,陈景亮.脉冲电弧对钨铜电极表面侵蚀形态的研究[J].高电压技术,2006,32(7):21-24.
    [95]庄全超,魏国祯,董全峰,孙世刚.温度对石墨电极性能的影响[J].物理化学学报,2009,25(03):406-410.
    [96]Donaldson A L, Kristiansen M, The Erosion Performance Of Graphite Electrodes In High Current, High Coulomb, Spark Gaps [C].8th Pulsed Power Conference,1991.
    [97]Carslaw H S, Jaeger J C. Conduction of heat in solids[M].2nd ed. New York:Oxford University Press,1959:52~55.
    [98]白峰,邱毓昌,姜惟.气体火花开关电极材料的冲击电流侵蚀特性[J].电工技术学报,2001,16(04):76-79.
    [99]何孟兵,周圣,李志鹏.放电电弧电磁力计算与气体开关电极机械性能的选择[J].电工材料,2007(01):24-26.
    [100]Nemchinsky V. Cathode Erosion Rate in High-pressure Arcs:Influence of Swirling Gas Flow[J]. IEEE Trans. on Plasma Sci.,2002,30(6):2113~2116.
    [101]林福昌,蔡礼,李黎,余丰,郭良福,赖贵友,陈德怀.石墨型气体开关电接触面的温升分析[J].中国电机工程学报,2010,30(33):96-102.
    [102]Zhang D, Hill M, McBride J W. Evaluation of the volumetric erosion of spherical electrical contacts using the defect removal method[J]. IEEE Trans, on Components and Packaging Technologies,2006,29(4):711~717.
    [103]Marakhtanov M K, Marakhtanov A M. Thermionic valve effect and cathode crater rhythm in a low-voltage cold-cathode vacuum arc[J]. Technical Physics Letters, 1998,24(7):570~572.
    [104]Daalder J E. Diameter and current density of singe and multiple cathode discharges in vacuum[J]. IEEE Trans, on Power Appar. Syst.1974,93:1747~1757.
    [105]Burden R A, James T E. Statistical performance data for a high current 60 kV spark gap switch [C]. Proc.7th Symp. Fusion Technology. Oct.1972,24~27.
    [106]Petr R A, Burkes T R. Erosion of spark gap electrodes [J]. IEEE Trans, on Plasma Sci.,Proc.1980,8(3):149~153.
    [107]Kimblin C W. Cathode spot erosion and ionization phenomena in the transition from vacuum to atmospheric pressure arcs [J]. Journal of Applied Physics.1974,45(12): 5235~5244.
    [108]Marchesi G, Maschio A. Influence of electrode materials on arc voltage waveforms in pressurized field distortion spark gaps[C]. Proc.5th Int. Conf. on Gas Discharges. Sept.1978,145~148.
    [109]Fulkerson E S, Newton M A, Hulsey S D. NIF power conditioning system testing at LLNL[C].13th IEEE International Pulsed Power Conference. Las Vegas, Nevada, June,2001,1524~1527.
    [110]Smith D L, Wilson J M, Harjec H C, et al. Fantm:The first article NIF test module for the laser conditioning system[C].12th IEEE international Pulsed Power Conference, California, USA,1999,2:921~924.
    [111]Donaldson A L, Hagler M O, Kristiansen M, et al. Electrode Erosion Phenomena in a High-Energy Pulsed Discharge[J]. IEEE Trans, on Plasma Science.1984,12(3):28-38.
    [112]Moses E I. The National Ignition Facility:the world's largest laser[C].20th IEEE/NPSS Symposium on Fusion Engineering, San Diego, USA,2003:413~418.
    [113]Watson A, Donaldson A L, Ikuta K, et al. Mechanism of electrode surface damage and material removal in high current discharges[J]. IEEE Trans, on Magnetics,1986, 22(6):1448-1453.
    [114]林福昌.高电压工程[M].北京:中国电力出版社,2005.
    [115]Llewellyn F J. The physics of electrical contacts[M]. Oxford:the Clarendon Press, 1957.
    [116]Holm R. Electric contacts electric contacts:theory and application[M]. Berlin: Springer-Verlag Press,1958.
    [117]Tamai T, Tsuchiya K. Direct observation for the effect of electric current on contact interface[J]. IEEE Trans, on Components Hybrids and Manufacturing Technology, 1979,2(1):76~80.
    [118]Swing J, McBride J W. Modelling of energy transport in acring electrical contacts to determine mass transfer [J]. IEEE Transactions on Components and Packagings Technologies,1998(1):54~60.
    [119]Johnson J L, German R M. Phase equilibria effects on the enhanced liquid phase sintering of tungsten-copper[J]. Metallurgical Transactions A,1993,24(11).
    [120]Maul C, McBride J W, Swingler J. Influences on the length and severity of intermittences in electrical contacts[C].46th IEEE Holm Conference on Electrical Contacts, Chicago, USA,2000.
    [121]McBride J W. The volumetric erosion of electrical contacts[J]. IEEE Transactions on Components and Packaging Technologies,2000,23(2):211~221.
    [122]Davies T S, Nouri H, Fairhurst M. Experimental and theoretical study of heat transfer in swiches[C].42th IEEE Holm Conference on Electrical Contacts, Chicago, USA,1996.
    [123]荣命哲,王其平.电触头电弧侵蚀热传播过程的显热容法[J].电工技术学报,1993(1):54-58.
    [124]孔详谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998.
    [125]翟国富,孙韬,任万滨.继电器触点分断过程瞬态热场仿真方法[J].中国电机工程学报,2009,29(9):118-123.
    [126]Angadi S V, Wilson W E, Jackson R L, et al. A multi-physics finite element model of an electrical connector considering rough surface contact[C].54th IEEE Holm Conference on Electrical Contacts, Orlando, USA,2008.
    [127]Wilson W E, Angadi S V, Jackson R L. Electrical contact resistance considering multi-scale roughness[C].54th IEEE Holm Conference on Electrical Contacts, Orlando, USA,2008.
    [128]Kogut L, Etsion I. Electrical conductivity and friction fore estimation in compliant electrical connectors[J]. STLE Tribology Transactions,2000,43(4):816~822.
    [129]Kaplan M, Tslaf A. Critera for the weldability of contact materials in adiabatic transient conditions [C]. IEEE Trans, on Component Hybrids and Manufacturing Technology,1984,7(1):33-38.
    [130]Doublet L, Jemaa B, Hauner F, et al. Make arc erosion and welding tendency under 42V DC in automotive area[C].49th IEEE Holm Conference on Electrical Contacts, Washington DC, USA,2003.
    [131]程礼椿.电接触理论及应用[M].北京:机械工业出版社,1988.
    [132]曾清.低电感强流气体火花开关的特性研究[D].中国工程物理研究院,2006.
    [133]Pokryvailo A, Kanter M, Kaplan Z, et al. Design and testing of a 5 MW battery-based inductive power supply[J]. IEEE Trans, on Plasma Sci.,1998,26(5): 1444~1453.
    [134]Sosa E D. The electron Emission Characteristics of Alu-minum, Molybdenum and Carbon Nanotubes Studied by Field Emission and Photoemission[D]. Dissertation for the Ph. Degree, USA:University of North Texas,2002.
    [135]Gerasimov A I. Multichannel Spark Gaps with Control Bar Electrodes:Their Development and Application (A Review)[J]. Instruments and Experimental Techniques,2004,47(1).
    [136]Lechien K R, Gahl J M. Investigation of a multi-channeling multigap marx bank switch[J]. Review of Scientific Instruments,2004,75 (1):174~178.
    [137]Hunsuke Tsukamoto, Takao Namihira, Douyan Wang, et al. Effects of flash on NOX removal by pulsed streamers[J]. IEEE Trans, on Plasma Sci.,2001,29:29~26.
    [138]Eltchaninov A A, Korovin S D, Mesvats G A, et al. Review of studies of superradiative microwave generation in X band and Ka band relativistic BWOs[J]. IEEE Trans, on Plasma Sci.,2004,32 (3):1093~1099.
    [139]Fletcher R C. Impulse Breakdown in the 10-9 Sec. Range of Air at Atmospheric Pressure [J]. Phs. Rev.,1949,76(10):1501~1511.
    [140]Nesterikhin Y E, Meilikhov E Z. Pulsed Breakdown of Small Gaps in the Nanosecond Range [J]. Sov. Phys. Tech. Phys.,1964,9(1):29~39.
    [141]Felsenthal P, Proud J M. Nanosecond-pulse Breakdown in Gases [J]. Phys. Rev., 1965,139(6A):1796~1804.
    [142]Martin J C. Nanosecond pulse techniques[C]. Proc. IEEE,1992(80):934~945.
    [143]Kunhardt E E, Byszewski W W. Development of Overvoltage Breakdown at High Gas Pressure [J]. Phys. Rev. A.,1980,21(06):2069~2076.
    [144]Kromholz H, Hatfield L L, Kristiansen M, et al. Gas Breakdown in the subnanosecond Regime with Voltage below 15kV [J]. IEEE Trans, on Plasma Sci., 2002,30(5):1916~1920.
    [145]Martin T H, Guenther A H, Kristiansen M. J.C Martin on Pulsed Power[M]. New York and London:Plenum Press,1996.
    [146]Mankowski J. High Voltage Subnanosecond Dielectric Breakdown[D]. Dissertation for the Ph. Degree, USA:Texas Tech University,1997.
    [147]Tao H, Guangsheng S, Ping Y. An experimental investigation of repetitive nanosecond-pulse breakdown in air [J]. J. Phys. D:Appl. Phys.,2006,39(10): 2192~2197.
    [148]Macheret S O, Shneider M N, Miles R B. Modeling of air plasma generation by repetitive high-voltage nanosecond pulses [J]. IEEE Trans, on Plasma Sci.,2002, 30(3):1301~1314.
    [149]Meyats G A. Production of high power nanosecond pulse[M]. Beijing:Atomic Energy Press,1982.
    [150]Mesyats G A, Bychkoy Y I, Kremney V V. Pulsed nanosecond electric discharges in gases [J]. Sov. Phys. Usp., 1972,15(3):282~296.
    [151]Babich L P, Stankevich Y L. Transition from streamers to continuous electron acceleration[J]. Sov. Phys. Tech. Phys.,1973,17(8):1333~1336.
    [152]Basov G F, Kremnev V V. Electron beam generation by redischarge in a spark gap [C].10th IEEE Intel Pulsed Power Conf.,1995(2):1200~1205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700