Caveolin-1调节内皮祖细胞介导的血管新生在糖尿病和伤口愈合中的作用与机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     糖尿病血管病变包括大血管病变及微血管病变,是糖尿病的慢性并发症之一,导致心脑血管病变、视网膜病变、糖尿病肾病、糖尿病足等并发症,是影响糖尿病患者生活质量及预后的重要因素。糖尿病血管病变一个重要特点是血管新生受损,组织损伤局部血液供应不足,导致组织难以得到有效修复,如局部组织持续缺血、坏死、感染,可能导致坏疽的严重后果,目前仍有大量糖尿病患者为此需要施行截肢手术。所以,探索糖尿病血管新生受损的机制并寻找改善糖尿病血管新生的方法是治疗糖尿病足、糖尿病伤口不愈等糖尿病血管并发症的重要手段。
     内皮祖细胞(endothelial progenitor cells, EPCs)被证实在出生后血管新生中发挥重要作用。EPCs参与血管新生的方式主要有两种:一是EPCs直接整合到血管新生网络,通过分化成内皮细胞,参与新生血管内皮层的形成,二是在血管新生局部通过旁分泌方式分泌一些促血管生成的细胞因子和生长因子,如VEGF、HGF、IGF-1等,促进血管新生。EPCs数量已被作为心血管疾病诊断及预后评价的重要指标,EPCs介导的细胞和基因治疗心血管疾病中有着广阔的应用前景。然而研究表明糖尿病时内皮祖细胞数量减少、功能受损,不能有效地发挥促血管新生的作用,限制了其在糖尿病血管病变中的应用。到目前为止,糖尿
     病EPCs功能受损的机制仍未完全明了。因此探索糖尿病状态下内皮祖细胞功能损伤的机制,寻求改善EPCs功能的方法,这对于改善血管新生、治疗糖尿病血管病变具有重要意义。
     研究表明,一氧化氮合成酶(eNOS)及eNOS催化生成的NO在心血管系统中有重要作用,可促进EPCs介导的血管新生。然而,糖尿病状态下,内皮NO生成减少,导致血管功能失调,这可能与小凹蛋白1(caveolin-1, Cav-1)表达增加,抑制eNOS的激活有关。Cav-1通过蛋白与蛋白相互作用,抑制内皮eNOS的活性,使细胞处于较低的NO水平,当受到外界刺激时,eNOS与Cav-1脱离并被激活,催化产生NO,从而发挥调节血管张力、抑制血小板聚集、减少氧化应激损伤、抗炎、抗动脉粥样硬化和促进血管新生等作用。EPCs同内皮细胞一样表达Cav-1和eNOS,糖尿病是否增加EPCs (?)的Cav-1表达并抑制eNOS/NO信号通路,导致EPCs(?)功能受损尚不明了。
     基于以上背景,我们提出如下假说:糖尿病EPCs的Cav-1表达增加,抑制eNOS/NO信号通路,使EPCs血管新生功能受损,而降低糖尿病EPCs的Cav-1表达可改善血管新生。为验证我们的假设,我们将首先检测2型糖尿病db/db小鼠EPCs的Cav-1表达变化,并找其变化的原因;检测糖尿病eNOS/NO通路及EPCs功能的改变;通过慢病毒转染降低糖尿病EPCs Cav-1表达,增加leNOS(?)的磷酸化及NO的生成,以期改善EPCs的血管新生功能。
     研究目的
     1.研究Cav-1在2型糖尿病小鼠EPCs (?)的表达变化,并探索变化的原因。
     2.探讨Cav-1对2型糖尿病小鼠EPCs功能的调节作用及机制。
     研究方法
     1.动物模型
     12周龄的2型雄性糖尿病小鼠db/db (BKS.Cg-m+/+Leprdb/J)及其非糖尿病对照小鼠db/+(Leprdb m/++)用于实验。实验前检测db/db小鼠血糖,300mg/dl以上者作为糖尿病模型。
     2. EPCs的分离、培养与鉴定
     分离小鼠股骨、胫骨、髋骨,提取骨髓单个核细胞,接种在已包被玻璃粘连蛋白(vitronectin)的六孔板中,在37℃,5%CO2环境中培养。72小时后第一次完全换液,去除未贴壁的细胞,第五天时半量换液,继续培养到第七天,即可用于实验。为鉴定培养细胞为EPCs,细胞培养7天后,用Hoechst33258、Dil-acLDL和isolectin染色并在荧光显微镜下观察。为进一步鉴定EPCs,对培养7天的细胞采用流式细胞术分析其表面干细胞表面标记物CD34和Sca-1、内皮细胞表面标记物CD144和VEGFR2(Flk-1)及单核细胞表面标记物CDllb的表达。
     3. EPCs功能的检测
     采用小管形成试验(tube formation assay)和细胞迁移实验(migration assay)来检测EPCs的小管形成能力及迁移能力。
     4.分子生物学检测
     (1) Real-time PCR
     提取EPCs的总RNA,进行逆转录反应,获得cDNA,最后用试剂盒进行定量PCR反应检测EPCs的Cav-1表达,GAPDH作为内参。
     (2) Western blot
     用特异性抗体检测EPCs中Cav-1、p-eNOS1177、eNOS和β-actin的蛋白表达,在ImageQuant4000凝胶成像系统上扫描,用Quantity-One图像软件分析条带的光密度值。
     5.慢病毒转染EPCs
     用40MOI的Lenti-Cav-1siRNA转染EPCs,等量的Lenti-scrambled作为对照,转染24小时后换液,继续培养48小时后进行后续实验。
     6.NO的测定
     用Griess法检测培养基中硝酸盐的含量,间接反应NO的生成量。
     7.统计学分析
     计量资料以平均值±标准误(mean±SEM)表示。两样本间比较采用Studentt-检验,多样本比较采用单因素方差分析(one way ANOVA),并用Student-Newman-Keuls方法进行组间两两比较分析检验。所有结果采用GraphpadPrism5.0软件包进行分析并作图。P<0.05认为有显著性统计学差异。
     研究结果
     1.瘦素上调正常EPCs的Cav-1表达
     db/db小鼠血清瘦素(leptin)水平为正常对照组的4.4倍。Real-time PCR和Western blot(?)结果表明,用生理浓度(20ng/ml)的leptin刺激db/+小鼠EPCs即可使Cav-1表达表达增加。随着leptin (?)浓度的增加,Cav-1的表达也持续增长,在100ng/ml浓度(接近db/db血清leptin浓度)时,Cav-1的mRNA和蛋白水平比0浓度分别增加94.65%和144.63%。
     2. db/db小鼠EPCs的Cav-1表达增加且不依赖于高瘦素
     Western blot结果显示,db/db小鼠EPCs比db/+组EPCs表达更高的Cav-1,约增加55.30%(P<0.05)。然而用100ng/ml leptin刺激db/db小鼠EPCs后,Cav-1的表达并没有明显变化,可能由于db/db小鼠EPCs瘦素受体缺失所致。
     3.高糖上调EPCs的Cav-1表达
     体外给予db/+和db/db小鼠的EPCs(?)高糖刺激,并给予甘露醇做等渗对照。结果显示,高糖刺激72小时后db/+小鼠EPCs的Cav-1农达增加了94.77%,db/db小鼠增加了39.36%(P<0.05),渗透压并不影响Cav-1的表达。
     4.下调db/db小鼠EPCs的Cav-1表达改善细胞的血管新生功能
     用携载Cav-1siRNA的慢病毒转染db/db小鼠EPCs后,Cav-1蛋白表达下降了53.63%。小管形成实验和干细胞迁移实验的结果表明,下调Cav-1表达能使db/db EPCs的小竹形成能力和细胞迁移能力明显提高。
     5.下调db/db小鼠EPCs的Cav-1表达促进eNOS磷酸化和NO生成
     EPCs给予50ng/ml VEGF-A刺激30分钟后,收集培养基检测NO的生成,并收集细胞检测eNOS磷酸化水平Western blot结果显示,db/db EPCs中磷酸化的eNOS比例比db/+EPCs明显降低,而慢病毒下调Cav-1标达后,eNOS磷酸化增加了88.72%(P<0.05),同时NO的生成也增加了1.78倍。
     结论
     1.在2型糖尿病情况下,高糖可以上调EPCs的Cav-1表达,这种效应独立于高瘦素的作用:
     2.下调2型糖尿病db/db小鼠EPCs的Cav-1表达能提高改善EPCs的小管形成和迁移能力;
     3.下调Cav-1改善糖尿病EPCs的功能的机制可能与促进eNOS磷酸化和增加NO生成有关。
     研究背景
     上世纪50年代,由于电子显微镜技术的发展,细胞的许多超微结构为人所知,在细胞膜上发现有许多50-100nm的烧瓶样凹陷,被称为小凹(caveolae)。尽管小凹的发现已有半个多世纪,但人们对小凹本质及功能的认识主要集中在近20年,这得益于小凹上最重要的蛋白成分—小凹蛋白(caveolin)的发现。这一发现使人们了解了小凹的许多生理功能,如胆固醇转运、信号转导、细胞内吞、肿瘤抑制等。小凹蛋白有三种亚型,分别是小凹蛋白1(caveolin-1, Cav-1)、小凹蛋白2(caveolin-2, Cav-2)、小凹蛋白3(caveolin-3, Cav-3)。
     Cav-1与内皮细胞功能的关系已有较广泛的研究,已知Cav-1可影响内皮的通透性、胆固醇的内吞、内皮依赖的血管新生、细胞增殖等等,但Cav-1与内皮祖细胞(endothelial progenitor cells, EPCs)关系的研究较少,Cav-1对于EPCs及EPCs参与的病理生理作用有待进一步研究。随着EPCs研究的深入,EPCs在缺血性疾病及血管新生领域的作用日益受到重视,已成为诊断和预测某些疾病的重要指标,EPCs介导的细胞和基因治疗有着广阔的应用前景。
     研究表明,在小鼠皮肤造成伤口模型后,血中的EPCs数量开始增加,到第三天时达到峰值,表明EPCs从骨髓中动员出来参与伤口的修复。我们以往的研究表明,糖尿病小鼠的EPCs功能受损,不能有效地促进血管新生,是糖尿病小鼠伤口愈合延迟的重要原因,因此EPCs功能对于维持正常伤口J愈合至关重要。本研究以伤口愈合的小鼠作为模型,研究Cav-1尤其是EPCs上Cav-1的表达对伤口愈合的影响,并试图发现其内在的联系机制。为了达到研究目的,我们使用了两种基因技术的小鼠:Cav-1(?)基因敲除小鼠(Cav-1KO mice)和内皮特异爪组Cav-1小鼠(Cav-1RC mice),前者体内的Cav-1完全缺失,后者是在前者的基础上的改良,在Cav-1敲除的背景下将内皮又重组Cav-1,因此这种小鼠在内皮以外的其他细胞类型都不表达Cav-1。由于EPCs是内皮的始祖细胞,因此Cav-1RC小鼠的EPCs也应该表达Cav-1,我们在研究中也将证实。Sbaa等人研究表明Cav-1KO小鼠的血清SDF-1α水平异常。SDF-1α是一种趋化因子,参与干细胞和祖细胞在骨髓的驻留及从骨髓的动员和归巢,SDF-1α已用于多种缺血性疾病的治疗。SDF-1α可趋化EPCs到缺血部位参与血管新生,这也是在病理情况比如糖尿病时SDF-1α促进伤口愈合机制之一。鉴于SDF-1α对EPCs介导血管新生的重要性,我们在本实验中探讨Cav-1α的表达对SDF-1α水平的影响,并且用腺相关病毒转染的方法增加伤口局部SDF-1α的表达,观察不同基因背景小鼠对SDF-1α治疗的反应,从而阐明Cav-I在EPCs介导的血管新生和伤口愈合中的作用。
     研究目的
     1.研究Cav-I缺失对内皮祖细胞功能的影响。
     2.研究Cav-I表达对小鼠皮肤伤口愈合的作用。
     3.探讨内皮祖细胞的Cav-I表达在SDF-1α促进的血管新生及伤口愈合中的作用。
     研究方法
     1.动物模型
     本实验所用动物为8-12周龄的雄性小鼠,其中Cav-I基因敲除(Cav-I KO)小鼠和内皮特异性表达Cav-I(Cav-I RC)小鼠由Dr.Michael Bauer实验室提供,B6129SF2/J小鼠为对照,购自The Jackson Laboratory,实验动物饲养于美国匹兹堡大学医学院血管外科动物中心,自由饮食饮水,每日12小时光照。所有动物操作均符合美国匹兹堡大学实验动物保护与利用委员会的规定。
     2.EPCs的分离、培养与鉴定
     分离小鼠股骨、胫骨、髋骨,提取骨髓单个核细胞,接种在已包被玻璃粘连蛋白(vitronectin)的六孔板中,在37℃,5%CO2中环境中培养。72小时后第一次完全换液,去除未贴壁的细胞,第五天时半量换液,继续培养到第七天,可用于实验。
     3. EPCs功能的检测
     采用小管形成试验(tube formation assay)和细胞划痕实验(in vitro wound healing assay)来检测EPCs的小管形成能力及迁移能力。
     4.伤口模型
     将小鼠麻醉,用剃毛器将小鼠背部正中至尾巴根部的毛发剔除,用退毛膏将残余细微毛发去除干净。消毒后,盖上无菌洞巾,将6mm直径的打孔器定位至小鼠两大腿上缘与背中线的交点处,向下按压并旋转打孔器,切除一圆形皮肤,包括表皮和真皮层。每隔一日采集伤口照片并测量伤口大小。
     5.腺相关病毒转染伤口组织
     伤口模型建立后,沿伤口切缘滴加100μl含有1012病毒颗粒的SDF-1α/AAV或者GFP/AAV液,孵育30分钟后,拭去多余的病毒液。伤口愈合过程中仅在第0天孵育病毒一次。
     6.统计学分析
     计量资料以平均值±标准误(mean±SEM)表示。两样本间比较采Student t-检验,多样本比较采用单因素方差分析(one way ANOVA),并用Student-Newman-Keuls方法进行组间两两比较分析检验,对于多组间不同时期伤口愈合情况的比较用双囚素方差分析(two way ANOVA)。所有结果采用Graphpad Prism5.0软件包进行分析并作图。P<0.05认为有显著性统计学差异。
     研究结果
     1.内皮重组Cav-1使Cav-1敲除小鼠EPCs的小管形成能力恢复
     敲除Cav-1后,EPCs形成的小管数量明显减少,约为WT组的51.88%,然而重组Cav-1后EPCs形成的小管数量明显增加,达到了WT组的95.97%,说明Cav-1的表达对EPCs的小管形成功能十分重要。我们又用划痕实验来评价细胞的迁移功能,WT, Cav-1KO和Cav-1RC三种小鼠的EPCs在12小时、24小时两个时间点迁移的数量并没有明显差异,说明Cav-1(?)的表达与否并不明显影响EPCs的迁移能力。
     2.内皮重组Cav-1后不能加快Cav-1敲除小鼠的伤口愈合
     从第6天开始,Cav-1KO小鼠的伤口愈合开始明显落后于WT组,一直持续到第16天,此时WT组的皮肤伤口基本愈合,但Cav-1KO小鼠的皮肤只愈合到89.02%,全程愈合率与WT组比较有统计学差异(P<0.05)。尽管重组Cav-1使EPCs(?)的血管新生功能得到恢复,但是伤口愈合并没有得到改善,在第16天时仅愈合了90.25%,与Cav-1KO组并无明显差别,全程愈合率也明显低于WT组(P<0.05)。
     3.内皮重组Cav-1未明显增加Cav-1KO小鼠伤口的血管新生数目
     免疫组化结果显示,Cav-1KO小鼠皮肤的毛细血管密度明显低于WT组,Cav-1RC的新生血管数量与KO组相当,没有明显改善。以上结果提示,Cav-1KO小鼠皮肤伤口愈合延迟可能与血管新生受损有关,尽管重组Cav-1能够使EPCs的功能得到恢复,但并不足以明显改善皮肤伤口局部的血管新生。
     4.局部SDF-1αAAV转染改善Cav-1RC/J、鼠皮肤的伤口愈合
     我们将Cav-1KO和Cav-1RC小鼠实施6mm的全层皮肤切除后,分别给予SDF-1α/AAV在伤口局部,GFP/AAV作为对照,20分钟的转染后将剩余病毒液体拭去,贴好敷料,检测伤口愈合情况。结果显示,给予AAV-SDF-1α)后,Cav-1KO组的伤口愈合速度与对照组比较并无明显改变,仍然慢于WT组,而Cav-1RC小鼠伤口在AAV-SDF-1α治疗后愈合明显改善,在第16天达到了WT愈合水平。以上结果提示,内皮Cav-1的表达在SDF-1α促进伤口愈合的过程中有重要作用。
     5. SDF-1α AAV治疗使Cav-1RC皮肤血管新生数目增加,但Cav-1KO组无明显改善
     WT和Cav-1KO经过SDF-1α AAV转染后的新生血管数目与其对照组并没有明显改变,而Cav-1RC组比其对照组有更多的新生毛细血管数量,与伤口愈合的结果一致。以上结果提示,SDF-1α AAV改善Cav-1RC伤口愈合可能与招募更多功能正常的EPCs促进血管新生有关。
     结论
     1.Cav-1的表达对EPCs功能十分重要,Cav-1缺失导致EPCs的小管形成能力明显下降;
     2.Cav-1缺失使伤口愈合延迟,仅仅内皮和内皮祖细胞上Cav-1恢复表达不能改善受损的伤口愈合;
     3.SDF-l1α增加伤口局部EPCs的数量,从而促进血管新生和伤口愈合,这个过程需要EPCs上Cav-1的适量表达。
Background
     Diabetic vascular diseases, among chronic complications in diabetes mellitus, are related with atherosclerosis, diabetic retinopathy, nephropathy and diabetic foot. Ineffective vascular repair is likely to be an important contributor to the diabetic vascular disease, and this effect is linked with impaired neovascularization in diabetes. Efforts to investigate the mechanisms of impaired neovascularization in diabetes and find new ways to improve it are significant to therapies of diabetic vascular complications.
     Neovascularization is composed of angiogenesis and vasculogenesis, which involves distinct mechanisms. Vasculogenesis occurs in embryogenesis, and has been found to contribute to postnatal neovascularization due to the discovery of endothelial progenitor cells (EPCs). Asahara et al. reported for the first time the existence of EPCs in1997. Subsequent studies supported that EPCs played an crucial role in postnatal vasculogenesis. In the last decade, the important role played by EPCs in cardiovascular health is becoming increasing appreciated, especially for their crucial role in maintenance of endothelial integrity and function, as well as postnatal neovascularization.
     There is accumulating evidence showing reduced number and impaired EPC function in the presence of diabetes mellitus, and dissatisfactory effects of diabetic EPC therapy. which limits the use of EPCs in practice. However, the mechanisms of EPC dysfunction in diabetes are incompletely understood. Nitric oxide (NO) was reported to play an important role in EPC mediated vasculogenesis. However, eNOS-derived NO decreases in the setting of diabetes, which contributes to impaired EPC function. Evidence has showed that eNOS resides in caveolae and Cav-1could inhibit the activity of eNOS via direct interaction with eNOS. Though the expression of Cav-1was upregulated in several tissues in diabetes, the change of Cav-1in diabetic EPCs is not clear. In current study, we hypothesize that Cav-1may be also upregulated in diabetic EPCs and involves in dysregulated eNOS/NO pathway. We determined the expression of Cav-1in EPCs from type2diabetic db/db mice, and tried to reveal the relationship between Cav-1and metabolic abnormalities, like hyperglycemia and hyperleptinemia. Specifically, we generated lentivirus carrying Cav-1siRNA to elucidate the role of Cav-1in EPC function and the underlying mechanisms in the setting of diabetes.
     Objectives
     1. To measure the changes of expression of Cav-1in type2diabetic EPCs, and to investgate the underlying mechanisms.
     2. To investigate the role and mechanisms of Cav-1in regulating EPC functions in type2diabetes.
     Methods
     1. Animal model
     Male db/db (BKS.Cg-m+/+Leprdbh/J) mice and their control mice(db/+), aged12weeks, were purchased from Model Animal Research Center of Nanjing University. In the current study, db/db mice with a blood glucose level>300mg/dl were considered diabetic and were used for EPC isolation.
     2. EPC isolation, culture and characterization
     Bone-marrow mononuclear cells were isolated from the femurs, tibias and pelvis of mice and then cultured with endothelial cell growth medium2in37℃5%CO2. After72hours, nonadherent cells were removed by changing medium and adherent cells were cultured continuously till day7for experimental use. The EPCs after7-day culture were characterized by Hoechst33258, DiI-acLDL and FITC-conjugated isolectin staining. To further characterize the phenotype of EPCs, the expressions of CD34, Sca-1, CD144, Flk-1and CD11b were analyzed by flow cytometry.
     3. EPC function assays
     The tube formation and migration assays were performed to determine the angiogenic function of EPCs. For tube formation assay,5×104EPCs were plated in a well of48-well plate pre-coated with growth factor-reduced Matrigel. After24-hour incubation at37℃5%CO2with EGM-2plus5%FBS, images were taken by an inverted microscope and tube lengths were measured. EPC migration was measured using Boyden chambers. Briefly,5×104EPCs were plated in the upper chamber of Transwell and allowed to migrate in a37℃5%CO2incubator. The upper cells were removed and the cells in the lower side were fixed and counted with a microscope.
     4. Lentivirus constructs
     We constructed a siRNA for mouse caveolin-1and a control (scrambled) that does not affect any protein expression using oligo pairs. Lentiviruses encoding scrambled and caveolin-1siRNA were produced by transfection of HEK293T which is performed commercially by GENECHEM.
     5. Western Blot Analysis
     20-50μg protein was subjected to SDS-polyacrylamide gel electrophoresis. The PVDF membranes were probed with primary antibodies against Cav-1, p-eNOS1177, eNOS and Actin. The blots were scanned with an ImageQuant4000system and band intensity was quantified with Quantity One System.
     6. Real-time PCR
     For each sample,1μg RNA was reverse transcribed using a reagent kit. Real-time PCR was performed using SYBR Green PCR Master Mix on a iCycler iQ Real-time PCR System. Variation in transcription levels was calculated using2△CT.
     7. Measurement of NO release
     After being serum-starved for24hours, EPCs were treated with VEGF (50ng/ml) for30minutes. Nitrite concentration in the culture medium was measured using the Griess reaction, and sodium nitrite served as a standard. The optical density of samples was measured in a reader system.
     8. Statistical Analysis
     Data were presented as means±SEM. Differences between two groups were compared by Student's t-test, and one-way ANOVA with Newman-Keuls multiple comparison tests was used for multiple groups. In all the tests, a value of P<0.05was taken as statistically significant.
     Results
     1. Leptin regulated Cav-1mRNA and protein expression
     It was reported that leptin could upregulate the expression of Cav-1in HCAEC and HUVEC. To test whether leptin could regulate expression of Cav-1in EPCs, db/+EPCs were incubated with increasing concentration of leptin (0.20,50,100ng/ml) for24h, then cells were harvested for mRNA and protein analysis. Our data showed the mRNA and protein of Cav-1was upregulated by leptin at the concentration of20ng/ml. When the concentration of leptin was increased, Cav-1expression rose accordingly.
     2. Cav-1protein expression was upregulated in db/db EPCs independent of high leptin level
     Compared with db/+EPCs, db/db EPCs showed higher expression of Cav-1. We treated db/db EPCs with100ng/ml leptin to measure the Cav-1expression. The result showed a high level of leptin could not upregulate the expression of Cav-1in db/db EPCs.
     3. High glucose upregulated Cav-1protein expression in db/db and db/+EPCs
     As compared with that in control medium (5mmol/l glucose), the expression of Cav-I in db/+EPCs assessed by Western blot was significantly increased, by94.77%in high-glucose medium. High glucose also upregulated Cav-1expression in db/db EPCs by39.36%, though db/db EPCs had a higher expression of Cav-1originally. By contrast, the osmotic control with mannitol did not change the expression of Cav-1.
     4. Cav-1knockdown improved functions of db/db EPCs
     Our result showed db/db EPCs formed significantly fewer networks than db/+EPCs. In contrast, when Cav-1expression was knocked down by lentivirus-mediated siRNA, Matrigel tube formation was increased by69.32%in db/db EPCs. Cav-1knockdown also significantly increased migration of db/db EPCs.
     5. Cav-1knockdown increased phosphorylation of eNOS and NO production
     EPCs were incubated in EGM-2supplemented with VEGF (50ng/ml) for30minutes, then the medium was collected for NO detection and cells were harvested for protein analysis. The eNOS phosphorylation at Ser1177shown by immunoblotting was significantly decreased in db/db EPCs compared with that in db/+EPCs. This reduction in eNOS phosphorylation was associated with a decrease in EPC-derived NO production. Nevertheless, Cav-1knockdown significantly increased eNOS phosphorylation by88.72%in db/db EPCs coupled with significantly augmented NO production.
     Conclusions
     1. High glucose upregulated Cav-1protein expression independent of high leptin level.
     2. Cav-1knockdown in db/db EPCs improved the angiogenic function.
     3. Cav-1knockdown increased phosphorylation of eNOS and NO production in db/db EPCs
     Background
     Caveolae are50-100nm flask-shaped invaginations of the plasma membrane which are implicated in cholesterol transport, signal transduction. endocytosis. Caveolin, an important protein component of caveolae membrane coats, is known to have three isoforms which are caveolin-1(Cav-1), Cav-2and Cav-3. Cav-1has been widely and intensively studied, especially after the generation of Cav-1knockout mice. The putative importance of Cav-1in cardiovascular system have been validated in several physiological and pathological models, in which Cav-1influences vascular permeability, angiogenesis and progress of atherosclerosis. Notably, endothelial expression of Cav-1is closely involved in these conditions, and both lower and higher levels of Cav-1expression may impair vascular functions.
     Mature endothelial cells possess limited regenerative capacity, therefore, there is growing interest into circulating endothelial progenitor cells (EPCs). Not only have EPCs been used to diagnose and predict cardiovascular diseases, EPCs have also served as a useful tool for cell and gene therapy in ischemic diseases. Though Cav-1has been well investigated in endothelial cells, there is few reports concerning its role in EPCs. Sbaa et al. reported that Cav-1knockout mice presented impaired EPC mobilization from bone marrow, which resulted in defective neovascularization in a hindlimb ischemia model. This study suggested that Cav-1might play an important role in EPC functions. In current study, we would investigate the impact of Cav-1expression on EPC functions. Our previous study showed EPCs isolated form type2diabetic db/db mice presented impaired angiogenic functions, which caused deficient new vessel formation in skin repair, and subsequently delayed wound healing. This suggests EPC is an essential opponent participating in wound healing. Herein, we mainly examined the effects of Cav-1expression in EPCs on neovascularization and cutaneous wound healing. To address this question, Cav-1KO mice and Cav-1KO mice reconstituted with a transgene expressing Cav-1specifically in endothelial cells (Cav-1RC mice) were used. We assessed neovascularization and wound healing in WT, Cav-1KO and RC mice, and examined whether reconstitution of Cav-1regulates wound healing via EPC mediated vasculogenesis.
     It is well known that stromal cell-derived factor-1alpha (SDF-1α) is a predominant chemokine which is upregulated in response to ischemic stimuli and acts as a homing signal for EPCs. SDF-1α gene transfer has become a novel chemokine therapy for ischemic disease and tissue repair via recruiting EPCs to ischemic sites. It was proved that SDF-1α treatment accelerated wound closure in diabetes, while inhibition of SDF-1α further impaired diabetic wound healing, and the main mechanism was closely related with EPC mediated vasculogenesis. It was found in Cav-1KO mice plasma level of SDF-1α was2-fold higher than WT mice, which suggested Cav-1might regulate SDF-1α. Based on the evidence that SDF-la therapy effectively improves the injury repair in several models, our study also determined whether SDF-la therapy achieved by SDF-1α/AAV treatment enhances wound healing in Cav-1KO and RC mice, and whether the effects of SDF-la is Cav-1dependent.
     Objectives
     1. To determine the role of Cav-1in EPC function;
     2. To investigate the role of Cav-1in cutaneous would healing
     3. To investigate the role and mechanisms of EPCs' Cav-1in SDF-1α enhanced neovascularization and would healing;
     Methods
     1. Animals
     All animal studies were performed with approval of the University of Pittsburgh Institutional Animal Care and Use Committee. The generation of Cav-1KO mice and Cav-1RC mice was previously described. All KO and RC mice were supplied by Dr. Michael Bauer. The WT mice (B6129SF2/J) were purchased from The Jackson Laboratory. Male mice with8-12weeks old were used in this study.
     2. Full-thickness excisional wounds
     Mice were anesthetized using isoflurane and then depilated with an electric shaver and depilatory creamin dorsum. Mouse skin was cleaned by Betadine and70%alcohol. Then full-thickness skins, containing epidermis and dermis, were removed by a6-mm punch. Wounds were covered with a bioclusive transparent oxygen permeable wound dressing. Wound closure rate was measured every other day till day16on which WT mice were almost cured completely.
     4. EPC function assays
     The tube formation assay and in vitro wound healing assay were performed to determine the angiogenic function of EPCs. For tube formation assay,5×104EPCs were plated in a well of48-well plate pre-coated with growth factor-reduced Matrigel. After24-hour incubation, images were taken by an inverted microscope and tube lengths were measured. For in vitro wound healing assay, EPCs ware seeded at1.5×105cells/well into a24-well plate. After24-hour incubation, EPCs were almost confluent, and scratched using a10μl pipette tip. After being washed3times using PBS, EPCs were kept on culturing. Images were taken at the time of wounding0h,12h and24h. Migration was estimated by counting cell numbers within wounded region.
     5. Enzyme-linked immunosorbent assay (ELISA) SDF-1α protein levels in serum and bone marrow were determined by using the mouse SDF-1α Quantikine ELISA Kit based on the manufacturer's instructions. Peripheral blood was obtained by cardiac aspiration and then centrifuged to collect serum. BM was obtained from femurs, tibias and pelvis. The bones were flushed in500μl PBS. After centrifugation, the supernatant was collected for SDF-la ELISA and total protein quantification.
     6. SDF-la AAV topical treatment
     AAV vectors carrying SDF-1α gene has been used to treat wounds in mice. In this study, human SDF-la/AAV and control vector, green fluorescent protein (GFP)/AAV, which were gifts from Dr. Yanfang Chen (Wright State University, Ohio), were constructed by inserting the human SDF-la or GFP gene into AAV2/9vector. After wounds were created,100μl AAV at1012particle/ml in PBS was injected into the wound beds. Mice were maintained under anesthesia for30minutes, and then a bioclusive dressing was placed over the wound. Wounds were measured every other day till day16.
     7. Statistical Analysis
     Data were presented as means±SEM. Differences between two groups were compared by Student's t-test, and one-way ANOVA with Newman-Keuls multiple comparison tests was used for multiple groups. The rate of wound healing among groups was analyzed by2-way ANOVA, followed by Bonferroni's correction to control type I error. In all the tests, a value of P<0.05was taken as statistically significant.
     Results
     1. Reconstitution of Cav-1restores tube formation of Cav-1KO EPCs
     Cav-1KO EPCs formed significantly fewer networks than WT EPCs, and relative tube length decreased by nearly50%. And this impairment was completely restored in Cav-1RC group by reconstitution of Cav-1in EPCs. In vitro wound healing assay showed these three groups presented similar migrating pattern which was analyzed at the time point of12hours and24hours after creating wound.
     2. Reconstitution of Cav-1in endothelium is insufficient to restore impaired wound healing in global Cav-1knockout mice
     These three strains of mice underwent a single6-mm dorsal punch biopsy to create a full-thickness excisional wound, and then the rate of wound closure was measured every other day till day16. Cav-1KO mice exhibited slower healing rate than WT mice, which was significant from day6to day16. Nevertheless, reexprcssion of Cav-1in endothelium failed to rescue the impaired wound healing in global Cav-1knockout background, and exhibited similar recovery pattern with Cav-1KO mice. At day16, wounds in WT mice were almost entirely closed, whereas unhealed in Cav-1KO and Cav-1RC mice (89.02%and90.25%respectively).
     3. Wounded skins in Cav-1KO and RC mice showed decreased new vessel formation
     We wondered whether deficient neovascularization led to impaired wound healing in Cav-1KO and RC mice, so we measured the vessel number in skins16days after wound creation. As showed by immunofluorescence staining, the percentage of vessel density in Cav-1KO and RC mice wounded skin were32.64%and38.03%respectively compared with that of WT skin. The impaired neovascularization in wounded skin might lead to the delayed wound healing in Cav-1KO and RC mice.
     4. Topical treatment of SDF-1α AAV accelerated wound healing in Cav-1RC mice coupled with increased neovascularization in skin
     Following wounding,1011viral particles of SDF-1α/AAV in100μl PBS was injected onto wound base for30minutes in WT, Cav-1KO, and Cav-1RC mice, while same amount of GFP/AAV was administered to control groups. During16-day observation, Cav-1RC mice showed enhanced wound healing rate and were restored to the WT level, however. Cav-1KO mice didn't respond to the treatment. We next measured the neovascularization of wounded skins treated with SDF-1α/AAV or GFP/AAV. Results showed Cav-1RC mice treated with SDF-1α/AAV had more new vessel formation than those treated with GFP/AAV, while Cav-1KO mice showed no response to SDF-la treatment.
     Conclusions
     1. Expression of Cav-1is essential to the angiogenic function of FPCs.
     2. Cav-1is required for cutaneous wound healing, and reconstitution only in endothelium is insufficient to restore the impaired wound healing in Cav-1KO mice.
     3. SDF-1α improved neovascularization and wound healing, in which expression of Cav-1in EPCs played an essential role.
引文
1. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA:the journal of the American Medical Association.2002;287:2570-2581
    2. He Z, King GL. Microvascular complications of diabetes. Endocrinology and metabolism clinics of North America.2004;33:215-238, xi-xii
    3. Natarajan R, Nadler JL. Lipid inflammatory mediators in diabetic vascular disease. Arteriosclerosis, thrombosis, and vascular biology. 2004;24:1542-1548
    4. King GL. The role of inflammatory cytokines in diabetes and its complications. Journal of periodontology.2008;79:1527-1534
    5. Brownlee M. The pathobiology of diabetic complications:a unifying mechanism. Diabetes.2005;54:1615-1625
    6. Yan SF, Ramasamy R, Schmidt AM. Mechanisms of disease:advanced glycation end-products and their receptor in inflammation and diabetes complications. Nature clinical practice. Endocrinology & metabolism. 2008;4:285-293
    7. Rask-Madsen C, King GL. Vascular complications of diabetes:mechanisms of injury and protective factors. Cell metabolism.2013; 17:20-33
    8. Apelqvist J. Diagnostics and treatment of the diabetic foot. Endocrine. 2012;41:384-397
    9. Reinke JM, Sorg H. Wound repair and regeneration. European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes.2012;49:35-43
    10. Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. The Journal of clinical investigation.2007; 117:1219-1222
    11. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature medicine. 2000;6:389-395
    12. Umemura T, Higashi Y. Endothelial Progenitor Cells:Therapeutic Target for Cardiovascular Diseases. Journal of Pharmacological Sciences.2008; 108:1-6
    13. Semenza GL. Vasculogenesis. angiogenesis. and arteriogenesis:mechanisms of blood vessel formation and remodeling. Journal of cellular biochemistry. 2007; 102:840-847
    14. Asahara T. Isolation of Putative Progenitor Endothelial Cells for Angiogenesis. Science.1997:275:964-966
    15. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation research.1999;85:221-228
    16. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America. 2000:97:3422-3427
    17. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. The EMBO journal.1999; 18:3964-3972
    18. Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. The Journal of clinical investigation.2000; 106:571-578
    19. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M. Magner M, Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature medicine.1999;5:434-438
    20. Edelberg JM, Tang L, Hattori K, Lyden D, Rafii S. Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circulation research.2002;90:E89-93
    21. Aicher A, Rentsch M, Sasaki K, Ellwart JW, Fandrich F, Siebert R, Cooke JP, Dimmeler S, Heeschen C. Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circulation research.2007; 100:581-589
    22. Sengenes C, Miranville A, Maumus M, de Barros S, Busse R, Bouloumie A. Chemotaxis and differentiation of human adipose tissue CD34+/CD31-progenitor cells:role of stromal derived factor-1 released by adipose tissue capillary endothelial cells. Stem cells.2007;25:2269-2276
    23. Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation.2004; 110:349-355
    24. Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. The Journal of clinical investigation. 2004;113:1258-1265
    25. Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 2005; 105:2783-2786
    26. Zampetaki A, Kirton JP, Xu Q. Vascular repair by endothelial progenitor cells. Cardiovascular research.2008;78:413-421
    27. Urbich C, Dimmeler S. Endothelial progenitor cells:characterization and role in vascular biology. Circulation research.2004;95:343-353
    28. Asahara T. Cell therapy and gene therapy using endothelial progenitor cells for vascular regeneration. Handbook of experimental pharmacology. 2007:181-194
    29. Yamahara K, Itoh H. Potential use of endothelial progenitor cells for regeneration of the vasculature. Therapeutic advances in cardiovascular disease.2009;3:17-27
    30. Mund JA, Ingram DA, Yoder MC, Case J. Endothelial progenitor cells and cardiovascular cell-based therapies. Cytotherapy.2009; 11:103-113
    31. Kunz GA, Liang G, Cuculi F. Gregg D. Vata KC, Shaw LK, Goldschmidt-Clermont PJ, Dong C, Taylor DA, Peterson ED. Circulating endothelial progenitor cells predict coronary artery disease severity. American heart journal.2006; 152:190-195
    32. Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, Dimmeler S, Zeiher AM. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events:proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005;111:2981-2987
    33. Bakogiannis C, Tousoulis D, Androulakis E. Briasoulis A. Papageorgiou N. Vogiatzi G Kampoli AM, Charakida M, Siasos G Latsios G, Antoniades C Stefanadis C. Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes. Current medicinal chemistry. 2012; 19:2597-2604
    34. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G. Circulating endothelial progenitor cells and cardiovascular outcomes. The New England journal of medicine.2005;353:999-1007
    35. Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, Menegolo M, Grego F, Vigili de Kreutzenberg S, Tiengo A, Agostini C, Avogaro A. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arteriosclerosis, thrombosis, and vascular biology. 2006;26:2140-2146
    36. Lara-Hernandez R, Lozano-Vilardell P. Blanes P, Torreguitart-Mirada N, Galmes A, Besalduch J. Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Annals of vascular surgery.2010;24:287-294
    37. Sieveking DP, Ng MK. Cell therapies for therapeutic angiogenesis:back to the bench. Vascular medicine.2009; 14:153-166
    38. Fiorina P. Pietramaggiori G, Scherer SS, Jurewicz M, Mathews JC, Vergani A, Thomas G, Orsenigo E, Staudacher C, La Rosa S. Capella C, Carothers A, Zerwes HG, Luzi L, Abdi R, Orgill DP. The mobilization and effect of endogenous bone marrow progenitor cells in diabetic wound healing. Cell transplantation.2010;19:1369-1381
    39. Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ. Endothelial progenitor cell dysfunction:a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes.2004;53:195-199
    40. Fadini GP, Sartore S, Schiavon M, Albiero M, Baesso 1, Cabrelle A, Agostini C, Avogaro A. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia.2006;49:3075-3084
    41. Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. Journal of the American College of Cardiology. 2005;45:1449-1457
    42. Jimenez-Quevedo P, Silva GV, Sanz-Ruiz R, Oliveira EM, Fernandes MR, Angeli F, Willerson.IT, Dohmann HF, Perin EC. [Diabetic and nondiabetic patients respond differently to transendocardial injection of bone marrow mononuclear cells:findings from prospective clinical trials in "no-option" patients]. Revista espanola de cardiologia.2008;61:635-639
    43. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature.2001;414:813-820
    44. Son SM, Whalin MK, Harrison DG, Taylor WR, Griendling KK. Oxidative stress and diabetic vascular complications. Current diabetes reports. 2004;4:247-252
    45. Marrotte EJ, Chen DD, Hakim JS, Chen AF. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. The Journal of clinical investigation.2010; 120:4207-4219
    46. Wang XR, Zhang MW, Chen DD, Zhang Y, Chen AF. AMP-activated protein kinase rescues the angiogenic functions of endothelial progenitor cells via manganese superoxide dismutase induction in type 1 diabetes. American journal of physiology. Endocrinology and metabolism.2011;300:E1135-1145
    47. Ozuyaman B, Ebner P, Niesler U. Ziemann J, Kleinbongard P,Jax T. Godecke A, Kelm M, Kalka C. Nitric oxide differentially regulates proliferation and mobilization of endothelial progenitor cells but not of hematopoietic stem cells. Thrombosis and haemoslasis.2005:94:770-772
    48. Guthrie SM. Curtis LM, Mames RN, Simon GG Grant MB. Scott EW. The nitric oxide pathway modulates hemangioblast activity of adult hematopoietic stem cells. Blood.2005:105:1916-1922
    49. Yoder MC. NO role in EPC function. Blood.2005; 105:1846-1847
    50. Duda DG, Fukumura D. Jain RK. Role of eNOS in neovascularization:NO for endothelial progenitor cells. Trends in molecular medicine.2004; 10:143-145
    51. Gkaliagkousi E, Ferro A. Nitric oxide signalling in the regulation of cardiovascular and platelet function. Frontiers in bioscience:a journal and virtual library.2011; 16:1873-1897
    52. Ziche M, Morbidelli L. Nitric oxide and angiogenesis. Journal of newo-oficology.2000;50:139-148
    53. Sessa WC. Molecular control of blood flow and angiogenesis:role of nitric oxide. Journal of thrombosis and haemoslasis:JTH.2009;7 Suppl 1:35-37
    54. Luque Contreras D, Vargas Robles H. Romo E, Rios A, Escalante B. The role of nitric oxide in the post-ischemic revasculari/ation process. Pharmacology & therapeutics.2006; 112:553-563
    55. Morbidelli L, Donnini S, Ziche M. Role of nitric oxide in the modulation of angiogenesis. Current pharmaceutical design.2003;9:521-530
    56. Stuehr DJ. Mammalian nitric oxide synthases. Biochimica et biophysica acla. 1999; 1411:217-230
    57. Huang PL. eNOS, metabolic syndrome and cardiovascular disease. Trends in endocrinology and metabolism:TEM.2009:20:295-302
    58. Triggle CR, Ding H. A review of endothelial dysfunction in diabetes:a focus on the contribution of a dysfunctional eNOS. Journal of the American Society of Hypertension:JASH.2010;4:102-115
    59. Masha A, Dinatale S, Allasia S, Martina V. Role of the decreased nitric oxide bioavailability in the vascular complications of diabetes mellitus. Current pharmaceutical biotechnology.2011;12:1354-1363
    60. Roe ND, Ren J. Nitric oxide synthase uncoupling:a therapeutic target in cardiovascular diseases. Vascular pharmacology.2012;57:168-172
    61. Thum T, Fraccarollo D, Schultheiss M, Froese S, Galuppo P, Widder JD, Tsikas D, Ertl G, Bauersachs J. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes.2007;56:666-674
    62. Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. The Journal of clinical investigation.2007; 117:1249-1259
    63. Elcioglu KH, Kabasakal L, Cetinel S, Conturk G, Sezen SF, Ayanoglu-Dulger G. Changes in caveolin-1 expression and vasoreactivity in the aorta and corpus cavernosum of fructose and streptozotocin-induced diabetic rats. European journal of pharmacology.2010;642:113-120
    64. Pascariu M, Bendayan M, Ghitescu L. Correlated endothelial caveolin overexpression and increased transcytosis in experimental diabetes. The journal of histochemistry and cytochemistry:official journal of the Histochemistry Society.2004;52:65-76
    65. Lam TY, Seto SW, Lau YM, Au LS, Kwan YW, Ngai SM, Tsui KW. Impairment of the vascular relaxation and differential expression of caveolin-1 of the aorta of diabetic +db/+db mice. European journal of pharmacology. 2006;546:134-141
    66. Frank PG, Pavlides S, Cheung MW, Daumer K, Lisanti MP. Role of caveolin-1 in the regulation of lipoprotein metabolism. American journal of physiology. Cell physiology.2008;295:C242-248
    67. Razani B, Woodman SE, Lisanti MP. Caveolae:from cell biology to animal physiology. Pharmacological reviews. 2002;54:431 -467
    68.RazaniB, Schlegel A, Liu J. Lisanti MR Caveolin-1, a putative tumour suppressor gene. Biochemical Society transactions. 2001 ;29:494-499
    69.Rath G, Dessy C, Feron O. Caveolae, caveolin and control of vascular tone: nitric oxide (NO) and endothelium derived hyperpolarizing factor (EDHF) regulation. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2009;60 Suppl 4:105-109
    70.Hansen CG Nichols B.I. Exploring the caves: cavins. caveolins and caveolae. Trends in cell biology. 2010;20:177-186
    71.Garcia-Cardena G Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. 77k? Journal of biological chemistry. 1997;272:25437-25440
    72.Garcia-Cardena G Fan R, Stern DF, Liu J. Sessa WC. Endothclial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. The Journal of biological chemistry. 1996;271:27237-27240
    73.Lin MI, Yu J, Murata T, Sessa WC. Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer research. 2007;67:2849-2856
    74.Schubert W, Frank PG Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MP. Microvascular hyperpermeability in caveolin-l(-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. The Journal of biological chemistry. 2002;277:40091-40098
    75.Drab M, Verkade P, Elger M, Kasper M. Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-l gene-disrupted mice. Science. 2001:293:2449-2452
    76.Bucci M, Gratton JP, Rudic RD, Acevedo L. Roviezzo F, Cirino G Sessa WC. In vivo delivery of the caveolin-lscaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature medicine.2000;6:1362-1367
    77. Bauer PM, Yu J, Chen Y, Hickey R, Bernatchez PN, Looft-Wilson R, Huang Y, Giordano F, Stan RV, Sessa WC. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102:204-209
    78. Feng Y, van Eck M, Van Craeyveld E, Jacobs F, Carlier V, Van Linthout S, Erdel M, Tjwa M, De Geest B. Critical role of scavenger receptor-BI-expressing bone marrow-derived endothelial progenitor cells in the attenuation of allograft vasculopathy after human apo A-I transfer. Blood. 2009; 113:755-764
    79. Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. American journal of physiology. Endocrinology and metabolism. 2010;299:E110-116
    80. Xie HH, Zhou S, Chen DD, Channon KM, Su DF, Chen AF. GTP cyclohydrolase I/BH4 pathway protects EPCs via suppressing oxidative stress and thrombospondin-1 in salt-sensitive hypertension. Hypertension. 2010;56:1137-1144
    81. Schroder K, Kohnen A, Aicher A, Liehn EA, Buchse T, Stein S, Weber C, Dimmeler S, Brandes RP. NADPH oxidase Nox2 is required for hypoxia-induced mobilization of endothelial progenitor cells. Circulation research.2009; 105:537-544
    82. Hamada H, Kim MK, Iwakura A, Ii M, Thorne T, Qin G, Asai J, Tsutsumi Y, Sekiguchi H, Silver M, Wecker A, Bord E, Zhu Y, Kishore R, Losordo DW. Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation.2006;114:2261-2270
    83. Smadja DM, Bieche I, Uzan G, Bompais H, Muller L, Boisson-Vidal C, Vidaud M, Aiach M, Gaussem P. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arteriosclerosis, thrombosis, and vascular biology. 2005;25:2321-2327
    84. Galbiati F, Volonte D, Engelman JA, Watanabe G, Burk R, Pestell RG, Lisanti MP. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. The EMBO journal.1998; 17:6633-6648
    85. Singh P, Peterson TE, Sert-Kuniyoshi FH, Jensen MD, Somers VK. Leptin upregulates caveolin-1 expression:implications for development of atherosclerosis. Atherosclerosis.2011;217:499-502
    86. Uyy E, Antohe F, Ivan L, Haraba R, Radu DL, Simionescu M. Upregulation of caveolin-1 expression is associated with structural modifications of endothelial cells in diabetic lung. Microvascular research.2010;79:154-159
    87. Catalan V, Gomez-Ambrosi J, Rodriguez A, Silva C, Rotellar F, Gil MJ, Cienfuegos JA, Salvador J, Fruhbeck G. Expression of caveolin-1 in human adipose tissue is upregulated in obesity and obesity-associated type 2 diabetes mellitus and related to inflammation. Clinical endocrinology. 2008;68:213-219
    88. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP. Evidence for circulating bone marrow-derived endothelial cells. Blood.1998;92:362-367
    89. Timmermans F, Plum J, Yoder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells:identity defined? Journal of cellular and molecular medicine.2009; 13:87-102
    90. Prater DN, Case J, Ingram DA, Yoder MC. Working hypothesis to redefine endothelial progenitor cells. Leukemia:official journal of the Leukemia Society of America, Leukemia Research Fund, U.K.2007;21:1141-1149
    91. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, thrombosis, and vascular biology.2004;24:288-293
    92. Jeong JO, Kim MO, Kim H. Lee MY, Kim SW, li M. Lee JU, Lee J, Choi YJ, Cho H.I, Lee N, Silver M, Wecker A, Kim DW, Yoon YS. Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation.2009; 119:699-708
    93. Scharner D, Rossig L, Carmona G, Chavakis E, Urbich C, Fischer A, Kang TB, Wallach D, Chiang YJ, Deribe YL, Dikic I, Zeiher AM, Dimmeler S. Caspase-8 is involved in neovascularization-promoting progenitor cell functions. Arteriosclerosis, thrombosis, and vascular biology. 2009;29:571-578
    94. Hristov M, Weber C. Endothelial progenitor cells in vascular repair and remodeling. Pharmacological research:the official journal of the Italian Pharmacological Society.2008;58:148-151
    95. Pearson JD. Endothelial progenitor cells--an evolving story. Microvascular research.2010;79:162-168
    96. Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A. Technical notes on endothelial progenitor cells:ways to escape from the knowledge plateau. Atherosclerosis.2008; 197:496-503
    97. Wu CC, Wang SH, Kuan, Ⅱ, Tseng WK, Chen MF, Wu JC, Chen YL. OxLDL upregulates caveolin-1 expression in macrophages:Role for caveolin-1 in the adhesion of oxLDL-treated macrophages to endothelium. Journal of cellular biochemistry.2009; 107:460-472
    98. Loomans CJ, De Koning EJ, Staal FJ, Rabelink TJ, Zonneveld AJ. Endothelial progenitor cell dysfunction in type 1 diabetes:another consequence of oxidative stress? Antioxidants & redox signaling.2005;7:1468-1475
    99. Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C. Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization:therapeutic implications for cardiovascular diseases. Atherosclerosis.2008;201:236-247
    100. Sorrentino SA, Bahlmann FH, Besler C, Muller M, Schulz S, Kirchhoff N, Doerries C, Horvath T, Limbourg A, Limbourg F, Fliser D, Haller H, Drexler H, Landmesser U. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation.2007:116:163-173
    101. Callaghan MJ, Ceradini DJ, Gurtner GC. Hyperglycemia-induced reactive oxygen species and impaired endothelial progenitor cell function. Antioxidants & redox signaling.2005;7:1476-1482
    102. He T, Peterson TE, Holmuhamedov EL, Terzic A, Caplice NM, Oberley LW, Katusic ZS. Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arteriosclerosis, thrombosis, and vascular biology.2004:24:2021-2027
    103. Groleau J, Dussault S, Haddad P, Turgeon J, Mcnard C, Chan JS, Rivard A. Essential role of copper-zinc superoxide dismutase for ischemia-induced neovascularization via modulation of bone marrow-derived endothelial progenitor cells. Arteriosclerosis, thrombosis, and vascular biology. 2010;30:2173-2181
    104. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C. Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S. Essential role of endothelial nitric oxide synthasc for mobilization of stem and progenitor cells. Nature medicine. 2003;9:1370-1376
    105. Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH, Liu PL, Chen YL Chen JW. High glucose impairs early and late endolhelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes.2007:56:1559-1568
    1.Razani B, Woodman SE, Lisanti MR Caveolae: From cell biology to animal physiology. Pharmacological reviews. 2002;54:431 -467
    2.Frank PG Pavlides S, Cheung MW, Daumer K, Lisanti MP, Role of caveolin-I in the regulation of lipoprotein metabolism. American journal of physiology. Cell physiology. 2008;295:C242-248
    3.RazaniB, SchlegelA,Liu J,LisantiMP. Caveolin-1, a putative tumour suppressor gene. Biochemical Society transactions. 2001 ;29:494-499
    4.Parton RG Cell biology. Life without caveolae. Science. 2001 ;293:2404-2405
    5.BoscherC, Nabi 1R. Caveolin-1: Role in cell signaling.Advances in experimental medicine and biology. 2012;729:29-50
    6.RazaniB, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB. Macaluso F, Russell RG, Li M, Pestell RG Di Vizio D, Hou H, Jr., Kncitz B. Lagaud G Christ GJ, Edelmann W, Lisanti MP. Caveolin-1null mice are viable but show evidence of hyperproliferative and vascular abnormalities. The Journal of biological chemistry. 2001:276:38121-38138
    7.Stralfors P. Caveolins and caveolae. roles in insulin signalling and diabetes. Advances in experimental medicine and biology. 2012;729:111 -126
    8.Pavlides S, Gutierrez-Pajares JL, Danilo C, Lisanti MP,Frank PG Atherosclerosis, caveolae and caveolin-1. Advances in experimental medicine and biology. 2012:729:127-144
    9.Maniatis NA, Chernaya O, ShininV.MinshallRD.Caveolins andlung function. Advances in experimental medicine and biology. 2012;729:157-179
    10. Frank PG Lee H. Park DS, Tandon NN, Scherer PE, Lisanti MP. Genetic ablation ofcaveolin-1 confers protection against atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2004;24:98-l 05
    11.Fernandez-Hernando C, Yu J, Suarez Y. Rahner C, Davalos A, Lasuncion MA. Sessa WC. Genetic evidence supporting a critical role ofendothelial caveolin-1 during the progression ofatherosclerosis. Cell metabolism. 2009;10:48-54
    12. Bauer PM, Yu J, Chen Y, Hickey R, Bernatchez PN, Looft-Wilson R, Huang Y, Giordano F, Stan RV, Sessa WC. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:204-209
    13. Frank PG, Woodman SE, Park DS, Lisanti MP. Caveolin, caveolae, and endothelial cell function. Arteriosclerosis, thrombosis, and vascular biology. 2003:23:1161-1168
    14. Frank PG. Endothelial caveolae and caveolin-1 as key regulators of atherosclerosis. The American journal of pathology.2010; 177:544-546
    15. Asahara T. Isolation of putative progenitor endothelial cells for angiogenesis. Science.1997;275:964-966
    16. Carmeliet P. Angiogenesis in health and disease. Nature medicine. 2003;9:653-660
    17. Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. American journal of physiology. Cell physiology. 2004;287:C572-579
    18. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation research.1999;85:221-228
    19. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM. Vegf contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. The EMBO journal.1999; 18:3964-3972
    20. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature medicine.1999;5:434-438
    21. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M. Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:3422-3427
    22. Schatteman GC, Hanlon HD,Jiao C, Dodds SG, Christy BA. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. The Journal of clinical investigation.2000; 106:571-578
    23. Edelberg JM. Tang L. Hattori K, Lyden D. Rafii S. Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circulation research.2002;90:E89-93
    24. Urbich C, Dimmeler S. Endothelial progenitor cells:Characterization and role in vascular biology. Circulation research.2004;95:343-353
    25. Shantsila E, Watson T, Lip GY. Endothelial progenitor cells in cardiovascular disorders. Journal of the American College of Cardiology.2007;49:741-752
    26. Umemura T, Higashi Y. Endothelial progenitor cells:Therapeutic target for cardiovascular diseases. Journal of Pharmacological Sciences.2008; 108:1-6
    27. Fadini GP, Agostini C, Avogaro A. Endothelial progenitor cells in coronary artery disease. Journal of the American College of Cardiology.2007:49:1585; author reply 1585-1586
    28. Xu QB. Endothelial progenitor cells in angiogenesis. Sheng li xue bao:[Acta physiologica Sinica].2005:57:1-6
    29. Schmidt-Lucke C. Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, Dimmeler S, Zeiher AM. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events:Proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005;] 11:2981-2987
    30. Kunz GA, Liang G, Cuculi F, Gregg D, Vata KC, Shaw LK, Goldschmidt-Clermont PJ, Dong C, Taylor DA, Peterson ED, Circulating endothelial progenitor cells predict coronary artery disease severity. American heart journal.2006; 152:190-195
    31. Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, Menegolo M, Grego F, Vigili de Kreutzenberg S, Tiengo A, Agostini C, Avogaro A. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arteriosclerosis, thrombosis, and vascular biology. 2006;26:2140-2146
    32. Bakogiannis C, Tousoulis D, Androulakis E, Briasoulis A, Papageorgiou N, Vogiatzi G, Kampoli AM, Charakida M, Siasos G, Latsios G Antoniades C, Stefanadis C. Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes. Current medicinal chemistry. 2012;19:2597-2604
    33. Sieveking DP, Ng MK. Cell therapies for therapeutic angiogenesis:Back to the bench. Vascular medicine.2009; 14:153-166
    34. Asahara T. Cell therapy and gene therapy using endothelial progenitor cells for vascular regeneration. Handbook of experimental pharmacology. 2007:181-194
    35. Lara-Hernandez R, Lozano-Vilardell P, Blanes P, Torreguitart-Mirada N, Galmes A, Besalduch J. Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Annals of vascular surgery.2010;24:287-294
    36. Marrotte EJ, Chen DD, Hakim JS, Chen AF. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. The Journal of clinical investigation.2010; 120:4207-4219
    37. Sbaa E, Dewever J, Martinive P, Bouzin C, Frerart F, Balligand JL, Dessy C, Feron O. Caveolin plays a central role in endothelial progenitor cell mobilization and homing in sdf-1-driven postischemic vasculogenesis. Circulation research.2006;98:1219-1227
    38. Moll NM, Ransohoff RM. Cxcll2 and cxcr4 in bone marrow physiology. Expert review of hematology.2010;3:315-322
    39. Lau TT, Wang DA. Stromal cell-derived factor-1 (sdf-1):Homing factor for engineered regenerative medicine. Expert opinion on biological therapy. 2011;11:1 89-197
    40.Sharma M, Afrin F, Satija N, Tripathi RP, Gangenahalli GU. Stromal-derived factor-l/cxcr4 signaling: Indispensable role in homing and engraftment of hematopoieticstemcells in bonemarrow.Stemcellsand development. 2011;20:933-946
    41.Tang J, Wang J, Song H, Huang Y, Yang J, Kong X. Guo L. Zheng F, Zhang L. Adenovirus-mediated stromal cell-derived factor-1 alpha gene transfer improves cardiac structure and function after experimental myocardial infarction through angiogenic and antifibrotic actions. Molecular biology1 reports. 2010:37:1957-1969
    42.Tang J. Wang J. Yang J. Kong X. Adenovirus-mediated stromal cell-derived-factor-lalpha gene transfer induces cardiac preservation after infarction via angiogenesisofcd133+stemcellsandanti-apoptosis.Interactive cardiovascular and thoracic surgery. 2008;7:767-770
    43.Askari AT, Unzek S, Popovic ZB. Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. The Lancet. 2003;362:697-703
    44.Hiasa K, Ishibashi M, Ohtani K, Inouc S, Zhao Q, Kitamoto S, Sata M, Ichiki T, Takeshita A, Egashira K. Gene transfer of stromal cell-derived factor-lalpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growthfactor/endothelialnitricoxidesynthase-relatedpathway. Next-generationchemokine therapyfor therapeuticneovascularization. Circulation. 2004; 109:2454-2461
    45.Yu .IX, Huang XF, Lv WM, Ye CS, Peng XZ. Zhang H. Xiao LB, Wang SM, Combination of stromal-derived factor-lalpha and vascular endothelial growth factor gene-modified endothelial progenitorcells is more effective for ischemic neovascularization. Journal of vascular surgery. 2009;50:608-616
    46.Youn SW, Lee SW, Lee J, Jeong HK, Suh JW, Yoon CH, Kang HJ, Kim HZ, Koh GY, Oh BH, Park YB, Kim HS. Comp-angl stimulates hif-lalpha-mediated sdf-1 overexpression and recovers ischemic injury through bm-derived progenitor cell recruitment. Blood.2011;117:4376-4386
    47. Moore MA, Hattori K, Heissig B, Shieh JH, Dias S, Crystal RG, Rafii S. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of sdf-1, vegf, and angiopoietin-1. Annals of the New York Academy of Sciences.2001;938:36-45; discussion 45-37
    48. De Falco E, Porcelli D, Torella AR, Straino S, Iachininoto MG, Orlandi A, Truffa S, Biglioli P, Napolitano M, Capogrossi MC, Pesce M. Sdf-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood.2004;104:3472-3482
    49. Kuliszewski MA, Kobulnik J, Lindner JR, Stewart DJ, Leong-Poi H. Vascular gene transfer of sdf-1 promotes endothelial progenitor cell engraftment and enhances angiogenesis in ischemic muscle. Molecular therapy:the journal of the American Society of Gene Therapy.2011;19:895-902
    50. Toksoy A, Muller V, Gillitzer R, Goebeler M. Biphasic expression of stromal cell-derived factor-1 during human wound healing.The British journal of dermatology.2007; 157:1148-1154
    51. Bermudez DM, Xu J, Herdrich BJ, Radu A, Mitchell ME, Liechty KW. Inhibition of stromal cell-derived factor-1 alpha further impairs diabetic wound healing. Journal of vascular surgery.2011;53:774-784
    52. Avniel S, Arik Z, Maly A, Sagie A, Basst HB, Yahana MD, Weiss ID, Pal B, Wald O, Ad-El D, Fujii N, Arenzana-Seisdedos F, Jung S, Galun E, Gur E, Peled A. Involvement of the cxc112/cxcr4 pathway in the recovery of skin following burns. The Journal of investigative dermatology.2006; 126:468-476
    53. Xu X, Zhu F, Zhang M, Zeng D, Luo D, Liu G, Cui W, Wang S, Guo W, Xing W, Liang H, Li L, Fu X, Jiang J, Huang H. Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization. Cells, tissues, organs.2013; 197:103-113
    54. Wang XR. Zhang MW. Chen DD. Zhang Y, Chen AF. Amp-activated protein kinase rescues the angiogenic functions of endothelial progenitor cells via manganese superoxide dismutase induction in type 1 diabetes. American journal of physiology. Endocrinology and metabolism.2011;300:E 1135-1145
    55. Zhao T, Li J, Chen AF. Microrna-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. American journal of physiology. Endocrinology and metabolism. 2010;299:E110-116
    56. Xie HH, Zhou S, Chen DD, Channon KM, Su DF, Chen AF. Gtp cyclohydrolase i/bh4 pathway protects epcs via suppressing oxidative stress and thrombospondin-1 in salt-sensitive hypertension. Hypertension. 2010;56:1137-1144
    57. Chen DD, Dong YG, Yuan H, Chen AF. Endothelin l activation of endothelin a receptor/nadph oxidase pathway and diminished antioxidants critically contribute to endothelial progenitor cell reduction and dysfunction in salt-sensitive hypertension. Hypertension.2012:59:1037-1043
    58. Izuta H. Chikaraishi Y, Shimazawa M, Mishima S, Hara H. 10-hydroxy-2-decenoic acid. a major fatty acid from royal jelly. inhibits vegf-induced angiogenesis in human umbilical vein endothelial cells. Evidence-based complementary and alternative medicine:eCAM. 2009;6:489-494
    59. Izuta H, Shimazawa M, Tsuruma K, Araki Y, Mishima S. Hara H, Bee products prevent vegf-induced angiogenesis in human umbilical vein endothelial cells. BMC complementary and alternative medicine.2009;9:45
    60. Lam HW, Lin HC, Lao SC, Gao JL, Hong SJ, Leong CW. Yue PY, Kwan YW. Leung AY, Wang YT, Lee SM. The angiogenic effects of angelica sincnsis extract on huvec in vitro and zebrafish in vivo. Journal of cellular biochemistry.2008; 103:195-211
    61. Donelan J, Boucher W, Papadopoulou N, Lytinas M, Papaliodis D. Dobner P, Theoharides TC. Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:7759-7764
    62. Spyridopoulos I, Luedemann C, Chen D, Kearney M, Chen D, Murohara T, Principe N, Isner JM, Losordo DW. Divergence of angiogenic and vascular permeability signaling by vegf:Inhibition of protein kinase c suppresses vegf-induced angiogenesis, but promotes vegf-induced, no-dependent vascular permeability. Arteriosclerosis, thrombosis, and vascular biology. 2002;22:901-906
    63. Zebrowski BK, Yano S, Liu W, Shaheen RM, Hicklin DJ, Putnam JB, Jr., Ellis LM. Vascular endothelial growth factor levels and induction of permeability in malignant pleural effusions. Clinical cancer research:an official journal of the American Association for Cancer Research.1999;5:3364-3368
    64. Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC, Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. The Journal of clinical investigation.2006; 116:1284-1291
    65. Murata T, Lin MI, Stan RV, Bauer PM, Yu J, Sessa WC. Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. The Journal of biological chemistry.2007;282:16631-16643
    66. Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC. Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. The Journal of experimental medicine.2007;204:2373-2382
    67. Woodman SE, Ashton AW, Schubert W, Lee H, Williams TM, Medina FA, Wyckoff JB, Combs TP, Lisanti MP. Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. The American journal of pathology.2003; 162:2059-2068
    68. Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MR Microvascular hyperpermeability in caveolin-l(-/-) knock-out mice. Treatmentwith a specific nitric-oxide synthase inhibitor, 1-name, restores normal microvascular permeability in cav-1 null mice. The Journal of biological chemistry. 2002;277:40091-40098
    69.Chang SH, Feng D, Nagy JA. Sciuto TE, Dvorak AM, Dvorak HF. Vascular permeabilityand pathological angiogenesis incaveolin-1-null mice. The American journal of pathology. 2009; 175:1768-1776
    70.Greenhalgh DGModels of wound healing.The Journal of burn care & rehabilitation. 2005;26:293-305
    71.Singer AJ. Clark RA. Cutaneous wound healing. The New England journal of medicine. 1999;341:738-746
    72.Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature medicine. 2000;6:389-395
    73.Yamahara K, Itoh H. Potential use of endothelia! progenitorcells for regeneration of thevasculature. Therapeuticadvancesincardiovascular disease. 2009;3:17-27
    74.Morris LM, Klanke CA, Lang SA, Pokall S, Maldonado AR, Vuletin JF, Alaee D, Keswani SG, Lim FY, Crombleholme TM. Characterization of endothelial progenitor cells mobilization following cutaneous wounding. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2010; 18:383-390
    75.Bauer SM, Goldstein L.I, Bauer RJ, Chen H, Putt M, Velazquez OC. The bone marrow-derived endothelial progenitor cell response is impaired in delayed wound healing from ischemia. Journal of vascular surgery. 2006;43:134-141
    76.Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG Nedeau A, Thorn SR, Velazquez OC. Diabetic impairments in no-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and sdf-l alpha. The Journal of clinical investigation. 2007; 117:1249-1259
    77. Albiero M, Menegazzo L. Boscaro E, Agostini C. Avogaro A, Fadini GP. Defective recruitment,survivaland proliferationof bonemarrow-derived progenitor cells at sites of delayed diabetic wound healing in mice. Diabetologia.2011;54:945-953
    78. Park SJ, Moon SH, Lee HJ, Lim JJ, Kim JM, Seo J, Yoo JW, Kim OJ, Kang SW, Chung HM. A comparison of human cord blood- and embryonic stem cell-derived endothelial progenitor cells in the treatment of chronic wounds. Biomaterials.2013;34:995-1003
    79. Tanaka R, Masuda H, Kato S, Imagawa K, Kanabuichi K, Nakashioya C, Yoshiba F, Fukui T, Ito R, Kobori M, Wada M, Asahara T, Miyasaka M. Autologous g-csf mobilized peripheral blood cd34(+) cell therapy for diabetic patients with chronic non-healing ulcer. Cell transplantation.2012
    80. Chidlow JH, Jr., Sessa WC. Caveolae, caveolins, and cavins:Complex control of cellular signalling and inflammation. Cardiovascular research. 2010;86:219-225
    81. Rath G, Dessy C, Feron O. Caveolae, caveolin and control of vascular tone: Nitric oxide (no) and endothelium derived hyperpolarizing factor (edhf) regulation. Journal of physiology and pharmacology:an official journal of the Polish Physiological Society.2009;60 Suppl 4:105-109
    82. Tan Z, Zhou LJ, Li Y, Cui YH, Xiang QL, Lin GP, Wang TH. E(2)-bsa activates caveolin-1 via pi(3)k/erkl/2 and lysosomal degradation pathway and contributes to epc proliferation. International journal of cardiology. 2012;158:46-53
    83. Elcioglu KH, Kabasakal L, Cetinel S, Conturk G, Sezen SF, Ayanoglu-Dulger G. Changes in caveolin-1 expression and vasoreactivity in the aorta and corpus cavernosum of fructose and streptozotocin-induced diabetic rats. European journal of pharmacology.2010;642:113-120
    84. Pascariu M, Bendayan M, Ghitescu L. Correlated endothelial caveolin overexpression and increased transcytosis in experimental diabetes. The journal of histochemistry and cytochemistry:official journal of the Histochemistry Society.2004;52:65-76
    85. Lam TY, Seto SW, Lau YM, Au LS, Kwan YW, Ngai SM, Tsui KW. Impairment of the vascular relaxation and differential expression of caveolin-I of the aorta of diabetic +db/+db mice. European journal of pharmacology. 2006;546:134-141
    86. Grande-Garcia A, Echarri A, de Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM, del Pozo MA. Caveolin-1 regulates cell polarization and directional migration through src kinase and rho gtpases. The Journal of cell biology.2007:177:683-694
    87. Badillo AT, Chung S, Zhang L, Zoltick P, Liechty KW. Lentiviral gene transfer of sdf-lalpha to wounds improves diabetic wound healing. The Journal of surgical research.2007; 143:35-42
    88. Restivo TE, Mace KA, Harken AH, Young DM. Application of the chemokine cxc112 expression plasmid restores wound healing to near normal in a diabetic mouse model. The Journal of trauma.2010;69:392-398
    89. Di Rocco G, Gentile A. Antonini A, Ceradini F, Wu JC, Capogrossi MC, Toietta G. Enhanced healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: Biodistribution and engraftment analysis by bioluminescent imaging. Stem cells international.2010:2011:304562
    1. He Z, King GL. Microvascular complications of diabetes. Endocrinology and metabolism clinics of North America.2004;33:215-238, xi-xii
    2. Rask-Madsen C, King GL. Vascular complications of diabetes:mechanisms of injury and protective factors. Cell metabolism.2013; 17:20-33
    3. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA:the journal of the American Medical Association.2002;287:2570-2581
    4. Brownlee M. The pathobiology of diabetic complications:a unifying mechanism. Diabetes.2005:54:1615-1625
    5. Maahs DM, West NA. Lawrence JM. Mayer-Davis EJ. Epidemiology of type 1 diabetes. Endocrinology and metabolism clinics of North America. 2010;39:481-497
    6. Wild S, Roglic G, Green A. Sicree R. King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes care. 2004:27:1047-1053
    7. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nature reviews. Endocrinology.2012:8:228-236
    8. Cubbon RM, Ali N, Sengupta A, Kearney MT. Insulin-and growth factor-resistance impairs vascular regeneration in diabetes mellitus. Current vascular pharmacology,2012; 10:271-284
    9. Kuller LH, Velentgas P. Barzilay J. Beauchamp NJ, O'Leary DH, Savage PJ. Diabetes mellitus:subclinical cardiovascular disease and risk of incident cardiovascular disease and all-cause mortality. Arteriosclerosis, thrombosis, and vascular biology.2000:20:823-829
    10. Howard BV, Rodriguez BL. Bennett PH. Harris MI. Hamman R, Kuller LH, Pearson TA, Wylie-Rosett J. Prevention Conference VI:Diabetes and Cardiovascular disease:Writing Group I:epidemiology. Circulation. 2002; 105:e 132-137
    11. Abaci A, Oguzhan A, Kahraman S, Eryol NK. Unal S, Arinc H, Ergin A. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation.1999;99:2239-2242
    12. McDonagh PF, Hokama JY. Microvascular perfusion and transport in the diabetic heart. Microcirculation.2000:7:163-181
    13. Galiano RD, Tepper OM, Pelo CR, Bhatt KA. Callaghan M. Bastidas N. Bunting S. Steinmetz HG, Gurtner GC. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. The American journal of pathology.2004; 164:1935-1947
    14. Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus:differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circulation research. 2007; 101:948-956
    15. da Costa Pinto FA, Malucelli BE. Inflammatory infiltrate, VEGF and FGF-2 contents during corneal angiogenesis in STZ-diabetic rats. Angiogenesis. 2002;5:67-74
    16. Semenza GL. Vasculogenesis, angiogenesis, and arteriogenesis:mechanisms of blood vessel formation and remodeling. Journal of cellular biochemistry. 2007;102:840-847
    17. Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. Journal of neuro-oncology.2000;50:1-15
    18. Vailhe B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis. Laboratory investigation; a journal of technical methods and pathology.2001;81:439-452
    19. Asahara T. Isolation of Putative Progenitor Endothelial Cells for Angiogenesis. Science.1997;275:964-966
    20. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation research.1999;85:221-228
    21. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United Slates of America. 2000;97:3422-3427
    22.Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y. Silver M, Isner JM. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells.The EMBO journal. 1999; 18:3964-3972
    23.Schatteman GC. Hanlon HD, Jiao C, Dodds SG Christy BA. Blood-derived angioblasts accelerate blood-How restoration in diabetic mice. The Journal of clinical investigation. 2000; 106:571-578
    24.Takahashi T, Kalka C, Masuda H, Chen D. Silver M. Kearney M, Magner M. Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature medicine. 1999;5:434-438
    25.Edelberg JM.TangL, HattoriK,LydenD.RafiiS. Young adult bone marrow-derived endothelialprecursor cells restore aging-impaired cardiac angiogenic function. Circulation research. 2002;90:E89-93
    26.Yamahara K, Itoh H. Potential use of endothelial progenitorcells for regenerationof thevasculature. Therapeutic advancesin cardiovascular disease. 2009;3:17-27
    27.Mund JA, Ingram DA, Yoder MC, Case J. Endothelial progenitor cells and cardiovascular cell-based therapies. Cytotherapy. 2009; 11:103-113
    28.Werner N, Kosiol S, Schiegl T, Ahlers P, Walcnta K, Link A, Bohm M. Nickenig G Circulating endothelial progenitorcells and cardiovascular outcomes. The New England journal of medicine. 2005:353:999-1007
    29.Schmidt-Lucke C, Rossig L. Fichtlscherer S, Vasa M. Britten M, Kamper U. Dimmeler S. Zeiher AM. Reduced number ofcirculating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005;l 11:2981-2987
    30. KunzGA,LiangG,CuculiF,GreggD,VataKC,ShawLK, Goldschmidt-Clermont PJ, Dong C, Taylor DA, Peterson ED. Circulating endothelial progenitor cells predict coronary artery disease severity. American heart journal.2006; 152:190-195
    31. Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, Menegolo M, Grego F, Vigili de Kreutzenberg S, Tiengo A, Agostini C, Avogaro A. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arteriosclerosis, thrombosis, and vascular biology. 2006;26:2140-2146
    32. Bakogiannis C, Tousoulis D, Androulakis E, Briasoulis A, Papageorgiou N, Vogiatzi G, Kampoli AM, Charakida M, Siasos G, Latsios G, Antoniades C, Stefanadis C. Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes. Current medicinal chemistry. 2012; 19:2597-2604
    33. Lara-Hernandez R, Lozano-Vilardell P, Blanes P, Torreguitart-Mirada N, Galmes A, Besalduch J. Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Annals of vascular surgery.2010;24:287-294
    34. Asahara T. Cell therapy and gene therapy using endothelial progenitor cells for vascular regeneration. Handbook of experimental pharmacology. 2007:181-194
    35. Sieveking DP, Ng MK. Cell therapies for therapeutic angiogenesis:back to the bench. Vascular medicine.2009;14:153-166
    36. Fiorina P, Pietramaggiori G, Scherer SS, Jurewicz M, Mathews JC, Vergani A, Thomas G, Orsenigo E, Staudacher C, La Rosa S, Capella C, Carothers A, Zerwes HG, Luzi L, Abdi R, Orgill DP. The mobilization and effect of endogenous bone marrow progenitor cells in diabetic wound healing. Cell transplantation.2010; 19:1369-1381
    37. Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ. Endothelial progenitor cell dysfunction:a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes.2004;53:195-199
    38. Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV. Tiengo A, Agostini C, Avogaro A. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. Journal of the American College of Cardiology. 2005;45:1449-1457
    39. Fadini GP, Sartore S, Schiavon M, Albiero M, Baesso I, Cabrelle A, Agostini C, Avogaro A. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabelologia.2006;49:3075-3084
    40. Jimenez-Quevedo P, Silva GV, Sanz-Ruiz R, Oliveira EM, Fernandes MR, Angeli F, Willerson JT, Dohmann HF, Perin EC. [Diabetic and nondiabetic patients respond differently to transendocardial injection of bone marrow mononuclear cells:findings from prospective clinical trials in "no-option" patients]. Revista espanola de cardiologia.2008:61:635-639
    41. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature.2001:414:813-820
    42. Son SM, Whalin MK, Harrison DG, Taylor WR, Griendling KK. Oxidative stress and diabetic vascular complications. Current diabetes reports. 2004;4:247-252
    43. Marrotte EJ, Chen DD, Hakim JS, Chen AF. Manganese superoxide dismutasc expression in endothelial progenitor cells accelerates wound healing in diabetic mice. The Journal of clinical investigation.2010; 120:4207-4219
    44. Wang XR, Zhang MW, Chen DD, Zhang Y. Chen AF. AMP-activated protein kinase rescues the angiogenic functions of endothelial progenitor cells via manganese superoxide dismutase induction in type 1 diabetes. American journal of physiology. Endocrinology and metabolism.2011;300:E 1135-1145
    45. Ozuyaman B, Ebner P, Niesler U, Ziemann J, Kleinbongard P,Jax T, Godecke A, Kelm M, Kalka C. Nitric oxide differentially regulates proliferation and mobilization of endothelial progenitor cells but not of hematopoietic stem cells. Thrombosis and haemostasis.2005;94:770-772
    46. Duda DG, Fukumura D, Jain RK. Role of eNOS in neovascularization:NO for endothelial progenitor cells. Trends in molecular medicine.2004; 10:143-145
    47. Yoder MC. NO role in EPC function. Blood.2005; 105:1846-1847
    48. Guthrie SM, Curtis LM. Mames RN, Simon GG, Grant MB, Scott EW. The nitric oxide pathway modulates hemangioblast activity of adult hematopoietic stem cells. Blood.2005;105:1916-1922
    49. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases:structure, function and inhibition. The Biochemical journal.2001;357:593-615
    50. Dudzinski DM, Igarashi J, Greif D, Michel T. The regulation and pharmacology of endothelial nitric oxide synthase. Annual review of pharmacology and toxicology.2006;46:235-276
    51. Gkaliagkousi E, Ferro A. Nitric oxide signalling in the regulation of cardiovascular and platelet function. Frontiers in bioscience:a journal and virtual library.2011; 16:1873-1897
    52. Sessa WC. Molecular control of blood flow and angiogenesis:role of nitric oxide. Journal of thrombosis and haemo stasis:JTH.2009; 7 Suppl 1:35-37
    53. Masha A, Dinatale S, Allasia S, Martina V. Role of the decreased nitric oxide bioavailability in the vascular complications of diabetes mellitus. Current pharmaceutical biotechnology.2011; 12:1354-1363
    54. Roe ND, Ren J. Nitric oxide synthase uncoupling:a therapeutic target in cardiovascular diseases. Vascular pharmacology.2012;57:168-172
    55. Thum T, Fraccarollo D, Schultheiss M, Froese S, Galuppo P, Widder JD, Tsikas D, Ertl G, Bauersachs J. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes.2007;56:666-674
    56. Gallagher KA, Liu ZJ, Xiao M, Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thom SR, Velazquez OC. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. The Journal of clinical investigation.2007; 117:1249-1259
    57. Elcioglu KH, Kabasakal L, Cetinel S, Conturk G, Sezen SF, Ayanoglu-Dulger G. Changes in caveolin-1 expression and vasoreactivity in the aorta and corpus cavernosum of fructose and streptozotocin-induced diabetic rats. European journal of pharmacology.2010;642:113-120
    58. Pascariu M, Bendayan M, Ghitescu L. Correlated endothelial caveolin overexpression and increased transcytosis in experimental diabetes. The journal of histochemistry and cytochemistry:official journal of the Histochemistry Society.2004;52:65-76
    59. Lam TY, Seto SW, Lau YM, Au LS, Kwan YW, Ngai SM, Tsui KW. Impairment of the vascular relaxation and differential expression of caveolin-1 of the aorta of diabetic +db/+db mice. European journal of pharmacology. 2006;546:134-141
    60. Frank PG, Pavlides S, Cheung MW, Daumer K, Lisanti MP. Role of caveolin-1 in the regulation of lipoprotein metabolism. American journal of physiology. Cell physiology.2008;295:C242-248
    61. Razani B, Schlegel A, Liu J, Lisanti MP. Caveolin-1, a putative tumour suppressor gene. Biochemical Society transactions.2001;29:494-499
    62. Razani B, Woodman SE, Lisanti MP. Caveolae:from cell biology to animal physiology. Pharmacological reviews.2002;54:431-467
    63. Hansen CG, Nichols BJ. Exploring the caves:cavins. caveolins and caveolae. Trends in cell biology.2010;20:177-186
    64. Garcia-Cardena G, Fan R, Stern DF, Liu J, Sessa WC. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. The Journal of biological chemistry.1996;271:27237-27240
    65. Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP. Sessa WC. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. The Journal of biological chemistry.1997;272:25437-25440
    66. Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G, Sessa WC. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature medicine.2000;6:1362-1367
    67. Bauer PM, Yu J, Chen Y, Hickey R, Bernatchez PN, Looft-Wilson R, Huang Y, Giordano F, Stan RV, Sessa WC. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:204-209
    68. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC. Human endothelial progenitor cells from type Ⅱ diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation.2002; 106:2781-2786
    69. Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. American journal of physiology. Endocrinology and metabolism. 2010;299:E110-116
    70. Galbiati F, Volonte D, Engelman JA, Watanabe G, Burk R, Pestell RG, Lisanti MP. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. The EMBO journal.1998; 17:6633-6648
    71. Harris RB, Mitchell TD, Yan X, Simpson JS, Redmann SM, Jr. Metabolic responses to leptin in obese db/db mice are strain dependent. American journal of physiology. Regulatory integrative and comparative physiology. 2001;281:R115-132
    72. Kowalski TJ, Liu SM, Leibel RL, Chua SC, Jr. Transgenic complementation of leptin-receptor deficiency. I. Rescue of the obesity/diabetes phenotype of LEPR-null mice expressing a LEPR-B transgene. Diabetes.2001;50:425-435
    73. Singh P, Peterson TE, Sert-Kuniyoshi FH, Jensen MD, Somers VK. Leptin upregulates caveolin-1 expression:implications for development of atherosclerosis. Atherosclerosis.2011;217:499-502
    74. Catalan V, Gomez-Ambrosi J, Rodriguez A, Silva C, Rotellar F, Gil MJ, Cienfuegos JA, Salvador J, Fruhbeck G. Expression of caveolin-1 in human adipose tissue is upregulated in obesity and obesity-associated type 2 diabetes mellitus and related to inflammation. Clinical endocrinology. 2008;68:213-219
    75. Uyy E, Antohe F, Ivan L, Haraba R, Radu DL, Simionescu M. Upregulation of caveolin-1 expression is associated with structural modifications of endothelial cells in diabetic lung. Microvascular research.2010;79:154-159
    76. Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH. Liu PL, Chen YL, Chen JW. High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes.2007;56:1559-1568
    77. Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A. Technical notes on endothelial progenitor cells:ways to escape from the knowledge plateau. Atherosclerosis.2008; 197:496-503
    78. Urbich C, Dimmeler S. Endothelial progenitor cells:characterization and role in vascular biology. Circulation research.2004;95:343-353
    79. Beltrami A P, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell.2003;114:763-776
    80. Prater DN, Case J, Ingram DA, Yoder MC. Working hypothesis to redefine endothelial progenitor cells. Leukemia:official journal of the Leukemia Society of America, Leukemia Research Fund. U. K.2007:21:1141-1149
    81. Hur J, Yoon CH, Kim US, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, thrombosis, and vascular biology.2004;24:288-293
    82. Feng Y, van Eck M, Van Craeyveld E, Jacobs F, Carlier V, Van Linthout S, Erdel M, Tjwa M, De Geest B. Critical role of scavenger receptor-BI-expressing bone marrow-derived endothelial progenitor cells in the attenuation of allograft vasculopathy after human apo A-I transfer. Blood. 2009; 113:755-764
    83. Jeong JO, Kim MO. Kim H, Lee MY, Kim SW, li M. Lee JU, Lee J, Choi YJ. Cho HJ, Lee N, Silver M, Wecker A. Kim DW, Yoon YS. Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation.2009;] 19:699-708
    84. Scharner D, Rossig L, Carmona G, Chavakis E, Urbich C, Fischer A, Kang TB, Wallach D, Chiang YJ, Deribe YL, Dikic I, Zeiher AM, Dimmeler S. Caspase-8 is involved in neovascularization-promoting progenitor cell functions. Arteriosclerosis, thrombosis, and vascular biology. 2009;29:571-578
    85. Wu CC, Wang SH, Kuan, II, Tseng WK, Chen MF, Wu JC, Chen YL. OxLDL upregulates caveolin-1 expression in macrophages:Role for caveolin-1 in the adhesion of oxLDL-treated macrophages to endothelium. Journal of cellular biochemistry.2009; 107:460-472
    86. Loomans CJ, De Koning EJ, Staal FJ, Rabelink TJ, Zonneveld AJ. Endothelial progenitor cell dysfunction in type 1 diabetes:another consequence of oxidative stress? Antioxidanis & redox signaling.2005;7:1468-1475
    87. Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C. Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization:therapeutic implications for cardiovascular diseases. Atherosclerosis.2008;201:236-247
    88. Sorrentino SA, Bahlmann FH, Besler C, Muller M, Schulz S, Kirchhoff N, Doerries C, Horvath T, Limbourg A, Limbourg F, Fliser D, Haller H, Drexler H, Landmesser U. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation.2007;116:163-173
    89. Callaghan MJ, Ceradini DJ, Gurtner GC. Hyperglycemia-induced reactive oxygen species and impaired endothelial progenitor cell function. Antioxidants & redox signaling.2005;7:1476-1482
    90. He T, Peterson TE, Holmuhamedov EL, Terzic A, Caplice NM, Oberley LW, Katusic ZS. Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arteriosclerosis, thrombosis, and vascular biology.2004;24:2021-2027
    91. Groleau J, Dussault S, Haddad P, Turgeon J, Menard C, Chan JS, Rivard A. Essential role of copper-zinc superoxide dismutase for ischemia-induced neovascularization via modulation of bone marrow-derived endothelial progenitor cells. Arteriosclerosis, thrombosis, and vascular biology. 2010;30:2173-2181
    92. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C. Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nature medicine. 2003;9:1370-1376
    1. Frank PG, Pavlides S, Cheung MW, Daumer K, Lisanti MP. Role of caveolin-l in the regulation of lipoprotein metabolism. American journal of physiology. Cell physiology.2008:295:C242-248
    2. Razani B, Woodman SE. Lisanti MP. Caveolae:From cell biology to animal physiology. Pharmacological reviews.2002;54:431-467
    3. Razani B, Schlegel A. Liu J, Lisanti MP. Caveolin-I, a putative tumour suppressor gene. Biochemical Society transactions.2001;29:494-499
    4. Rath G, Dessy C, Feron O. Caveolae, caveolin and control of vascular tone: Nitric oxide (no) and endothclium derived hyperpolarizing factor (edhf) regulation. Journal of physiology and pharmacology:an official journal of the Polish Physiological Society.2009;60 Suppl 4:105-109
    5. Hansen CG, Nichols BJ. Exploring the caves:Cavins. caveolins and caveolae. Trends in cell biology.2010:20:177-186
    6. Boscher C, Nabi IR. Caveolin-1:Role in cell signaling. Advances in experimental medicine and biology.2012:729:29-50
    7. Krajewska WM, Maslowska I. Caveolins:Structure and function in signal transduction. Cellular & molecular biology letters.2004;9:195-220
    8. Williams TM, Lisanti MP. The caveolin genes:From cell biology to medicine. Annals of medicine.2004;36:584-595
    9. Chidlow JH, Jr., Sessa WC. Caveolae, caveolins, and cavins:Complex control of cellular signalling and inflammation. Cardiovascular research. 2010;86:219-225
    10. Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H, Jr., Kneitz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. The Journal of biological chemistry.2001;276:38121-38138
    11. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science.2001;293:2449-2452
    12. Cohen AW, Razani B, Wang XB, Combs TP, Williams TM, Scherer PE, Lisanti MP. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. American journal of physiology. Cell physiology.2003;285:C222-235
    13. Razani B, Lisanti MP. Caveolin-deficient mice:Insights into caveolar function human disease. The Journal of clinical investigation.2001;108:1553-1561
    14. Zhao YY, Zhao YD, Mirza MK, Huang JH, Potula HH, Vogel SM, Brovkovych V, Yuan JX, Wharton J, Malik AB. Persistent enos activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through pkg nitration. The Journal of clinical investigation. 2009; 119:2009-2018
    15. Le Lay S, Kurzchalia TV. Getting rid of caveolins:Phenotypes of caveolin-deficient animals. Biochimica et biophysica acta.2005;1746:322-333
    16. Chang SH, Feng D, Nagy JA, Sciuto TE, Dvorak AM, Dvorak HF. Vascular permeability and pathological angiogenesis in caveolin-1-null mice. The American journal of pathology.2009; 175:1768-1776
    17. Woodman SE. Ashton AW, Schubert W, Lee H, Williams TM, Medina FA, Wyckoff JB, Combs TP, Lisanti MP. Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. The American journal of pathology.2003; 162:2059-2068
    18. Barresi V, Tuccari G. Correlative evidence that tumor cell-derived caveolin 1 mediates angiogenesis. Human pathology.2008:39:471-472; author reply 472
    19. Bauer PM, Yu J, Chen Y, Hickey R, Bernatchez PN, Loo ft-Wilson R, Huang Y, Giordano F. Stan RV, Sessa WC. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:204-209
    20. Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MP. Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor,1-name, restores normal microvascular permeability in cav-1 null mice. The Journal of biological chemistry.2002:277:40091-40098
    21. Frank PG, Lee H, Park DS, Tandon NN, Scherer PE, Lisanti MP. Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology.2004:24:98-105
    22. Fernandez-Hernando C, Yu J, Suarez Y, Rahner C, Davalos A. Lasuncion MA, Sessa WC. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell metabolism. 2009:10:48-54
    23. Dimmeler S, Zeiher AM. Vascular repair by circulating endothelial progenitor cells:The missing link in atherosclerosis? Journal of molecular medicine. 2004:82:671-677
    24. Asahara T. Isolation of putative progenitor endothelial cells for angiogenesis. Science.1997;275:964-966
    25. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M. Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation research.1999;85:221-228
    26. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:3422-3427
    27. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM. Vegf contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. The EMBO journal.1999; 18:3964-3972
    28. Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. The Journal of clinical investigation.2000;106:571-578
    29. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature medicine.1999;5:434-438
    30. Edelberg JM, Tang L, Hattori K, Lyden D, Rafii S. Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circulation research.2002;90:E89-93
    31. Yamahara K, Itoh H. Potential use of endothelial progenitor cells for regeneration of the vasculature. Therapeutic advances in cardiovascular disease.2009;3:17-27
    32. Mund JA, Ingram DA, Yoder MC, Case J. Endothelial progenitor cells and cardiovascular cell-based therapies. Cytotherapy.2009; 11:103-113
    33. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G. Circulating endothelial progenitor cells and cardiovascular outcomes. The New England journal of medicine.2005;353:999-1007
    34. Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, Dimmeler S, Zeiher AM. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events:Proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005;111:2981-2987
    35. Kunz GA, Liang G, Cuculi F, Gregg D, Vata KC, Shaw LK, Goldschmidt-Clermont PJ, Dong C, Taylor DA, Peterson ED. Circulating endothelial progenitor cells predict coronary artery disease severity. American heart journal.2006; 152:190-195
    36. Fadini GP, Sartore S, Albiero M, Baesso I, Murphy E, Menegolo M, Grego F, Vigili de Kreutzenberg S, Tiengo A, Agostini C, Avogaro A. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arteriosclerosis, thrombosis, and vascular biology. 2006;26:2140-2146
    37. Bakogiannis C, Tousoulis D, Androulakis E. Briasoulis A, Papageorgiou N. Vogiatzi G, Kampoli AM. Charakida M, Siasos G, Latsios G, Antoniades C, Stefanadis C. Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes. Current medicinal chemistry. 2012; 19:2597-2604
    38. Lara-Hernandez R, Lozano-Vilardell P, Blanes P, Torreguitart-Mirada N, Galmes A, Besalduch J. Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Annals of vascular surgery.2010:24:287-294
    39. Asahara T. Cell therapy and gene therapy using endothelial progenitor cells for vascular regeneration. Handbook of experimental pharmacology. 2007:181-194
    40. Sieveking DP, Ng MK, Cell therapies for therapeutic angiogenesis:Back to the bench. Vascular medicine.2009; 14:153-166
    41. Sbaa E, Dewever J, Martinive P, Bouzin C, Frerart F, Balligand JL, Dessy C, Feron O. Caveolin plays a central role in endothelial progenitor cell mobilization and homing in sdf-I-driven postischemic vasculogenesis. Circulation research.2006;98:1219-1227
    42. Marrotte EJ, Chen DD, Hakim JS, Chen AF. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. The Journal of clinical investigation.2010; 120:4207-4219
    43. Grande-Garcia A, Echarri A, de Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM, del Pozo MA. Caveolin-1 regulates cell polarization and directional migration through src kinase and rho gtpases. The Journal of cell biology.2007; 177:683-694
    44. Hattori K, Heissig B, Tashiro K, Honjo T, Tateno M, Shieh JH, Hackett NR, Quitoriano MS, Crystal RG, Rafii S, Moore MA. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood.2001;97:3354-3360
    45. Teicher BA, Fricker SP. Cxc112 (sdf-1)/cxcr4 pathway in cancer. Clinical cancer research:an official journal of the American Association for Cancer Research.2010; 16:2927-2931
    46. Petit I, Jin D, Rafii S. The sdf-l-cxcr4 signaling pathway:A molecular hub modulating neo-angiogenesis. Trends in immunology.2007;28:299-307
    47. Hiasa K, Ishibashi M, Ohtani K, Inoue S, Zhao Q, Kitamoto S, Sata M, Ichiki T, Takeshita A, Egashira K. Gene transfer of stromal cell-derived factor-1 alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: Next-generation chemokine therapy for therapeutic neovascularization. Circulation.2004; 109:2454-2461
    48. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, lsner JM, Asahara T. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation.2003; 107:1322-1328
    49. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. The Lancet.2003;362:697-703
    50. Badillo AT, Chung S, Zhang L, Zoltick P, Liechty K W. Lentiviral gene transfer of sdf-lalpha to wounds improves diabetic wound healing. The Journal of surgical research.2007; 143:35-42
    51. Gallagher KA, Liu ZJ, Xiao M. Chen H, Goldstein LJ, Buerk DG, Nedeau A, Thorn SR, Velazquez OC. Diabetic impairments in no-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and sdf-l alpha. The Journal of clinical investigation.2007; 117:1249-1259
    52. Restivo TE, Mace KA, Harken AH, Young DM. Application of the chemokine cxc112 expression plasmid restores wound healing to near normal in a diabetic mouse model. The Journal of trauma.2010;69:392-398
    53. Liu ZJ, Tian R, An W, Zhuge Y, Li Y, Shao H, Habib B. Livingstone AS. Velazquez OC. Identification of e-selectin as a novel target for the regulation of postnatal neovascularization:Implications for diabetic wound healing. Annals of surgery.2010;252:625-634
    54. Bermudez DM, Xu J, Herdrich BJ, Radu A, Mitchell ME, Liechty KW. Inhibition of stromal cell-derived factor-lalpha further impairs diabetic wound healing. Journal of vascular surgery.2011;53:774-784
    55. Di Rocco G, Gentile A. Antonini A. Ceradini F, Wu JC, Capogrossi MC, Toietta G. Enhanced healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: Biodistribution and engraftment analysis by bioluminescent imaging. Stem cells international.2010;2011:304562
    56. Wang XR, Zhang MW, Chen DD, Zhang Y. Chen AF. Amp-activated protein kinase rescues the angiogenic functions of endothelial progenitor cells via manganese superoxide dismutase induction in type 1 diabetes. American journal of physiology. Endocrinology and metabolism.2011;300:E1135-1145
    57. Zhao T, Li J, Chen AF. Microrna-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. American journal of physiology. Endocrinology and metabolism. 2010;299:E110-116
    58. Chen DD. Dong YG, Yuan H, Chen AF. Endolhelin 1 activation of endothelin a receptor/nadph oxidase pathway and diminished antioxidants critically contribute to endothelial progenitor cell reduction and dysfunction in salt-sensitive hypertension. Hypertension,2012;59:1037-]043
    59. Xie HH, Zhou S, Chen DD, Channon KM, Su DF, Chen AF. Gtp cyclohydrolase i/bh4 pathway protects epcs via suppressing oxidative stress and thrombospondin-1 in salt-sensitive hypertension. Hypertension. 2010;56:1137-1144
    60. Izuta H, Chikaraishi Y, Shimazawa M, Mishima S, Hara H. 10-hydroxy-2-decenoic acid, a major fatty acid from royal jelly, inhibits vegf-induced angiogenesis in human umbilical vein endothelial cells. Evidence-based complementary and alternative medicine:eCAM. 2009;6:489-494
    61. Izuta H, Shimazawa M, Tsuruma K, Araki Y, Mishima S, Hara H. Bee products prevent vegf-induced angiogenesis in human umbilical vein endothelial cells. BMC complementary and alternative medicine.2009;9:45
    62. Lam HW, Lin HC, Lao SC, Gao JL, Hong SJ, Leong CW, Yue PY, Kwan YW, Leung AY, Wang YT, Lee SM. The angiogenic effects of angelica sinensis extract on huvec in vitro and zebrafish in vivo. Journal of cellular biochemistry.2008; 103:195-211
    63. Donelan J, Boucher W, Papadopoulou N, Lytinas M, Papaliodis D, Dobner P, Theoharides TC. Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103:7759-7764
    64. Spyridopoulos l, Luedemann C, Chen D, Kearney M, Chen D, Murohara T, Principe N, Isner JM, Losordo DW. Divergence of angiogenic and vascular permeability signaling by vegf:Inhibition of protein kinase c suppresses vegf-induced angiogenesis, but promotes vegf-induced, no-dependent vascular permeability. Arteriosclerosis, thrombosis, and vascular biology. 2002;22:901-906
    65. Zebrowski BK, Yano S. Liu W, Shaheen RM, Hicklin DJ, Putnam JB, Jr., Ellis LM. Vascular endothelial growth factor levels and induction of permeability in malignant pleural effusions. Clinical cancer research:an official journal of the American Association for Cancer Research.1999;5:3364-3368
    66. Yu J, Bergaya S, Murata T, Alp IF. Bauer MP, Lin MI, Drab M, Kurzchalia TV, Stan RV, Sessa WC. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. The Journal of clinical investigation.2006; 116:1284-1291
    67. Murata T, Lin MI, Stan RV, Bauer PM, Yu J, Sessa WC. Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells.The Journal of biological chemistry.2007;282:16631-16643
    68. Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC. Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. The Journal of experimental medicine.2007:204:2373-2382
    69. Liu ZJ, Velazquez OC. Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxidants & redox signaling. 2008; 10:1869-1882
    70. Imai K, Kobayashi M. Wang J, Shinobu N, Yoshida H, Hamada J, Shindo M. Higashino F. Tanaka J, Asaka M,Hosokawa M. Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells:A possible role in homing of haemopoietic progenitor cells to bone marrow. British journal of haematology.1999; 106:905-911
    71. Gupta SK. Lysko PG, Pillarisetti K, Ohlstein E, Stadel JM. Chemokine receptors in human endothelial cells. Functional expression of cxcr4 and its transcriptional regulation by inflammatory cytokines. The Journal of biological chemistry.1998;273:4282-4287
    72. Dar A, Goichberg P, Shinder V. Kalinkovich A, Kollet O, Netzer N, Margalit R, Zsak M, Nagler A, Flardan I, Resnick I, Rot A. Lapidot T. Chemokine receptor cxcr4-dependent internalization and resecretion of functional chemokine sdf-1 by bone marrow endothelial and stromal cells. Nature immunology. 2005;6:1038-1046
    73. Tang J, Wang J, Song H, Huang Y, Yang J, Kong X, Guo L, Zheng F, Zhang L. Adenovirus-mediated stromal cell-derived factor-1 alpha gene transfer improves cardiac structure and function after experimental myocardial infarction through angiogenic and antifibrotic actions. Molecular biology reports.2010;37:1957-1969

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700