利用色散管理和相位共轭抑制光纤通信系统中的克尔效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性克尔(Kerr)效应导致的非线性传输损伤是光纤通信系统面临的主要障碍之一。色散管理和相位共轭(OPC)是两种能有效抑制非线性传输损伤的技术。两者各有利弊又可结合使用。本论文系统分析了这两种技术对非线性损伤的抑制效果,针对采用这两项技术的系统分别提出了快速的设计、优化方法,并对超短脉冲传输后的OPC进行了理论和实验研究。
     为有效抑制非线性损伤,须对色散管理系统的三个参数:预补偿、每跨段残余色散和净残余色散(NRD)进行优化,其中优化NRD可极大提高受自相位调制(SPM)限制的系统的性能。本论文首次提出了两种解析方法来快速优化受SPM限制系统的NRD量。其中最小化脉宽法还可同时优化上述三个参数。此外还提出可以仅利用两个系统参量:色散与比特率平方的乘积和非线性相移,建立眼开度代价(EOP)的数据库来评估任意单信道色散管理系统的非线性损伤。
     即使上述三个参数都被优化,色散管理系统仍受到非线性损伤的困扰。而另一种技术——OPC理论上可完全抑制非线性损伤。但通过分析发现,由于实际系统中的功率不对称,OPC在同一个系统中对各种类型的非线性损伤抑制效果差异很大,甚至有可能在某些非线性损伤被抑制的同时其它非线性损伤反而被增强。鉴于此,可结合色散管理和OPC这两种技术来更有效地抑制系统的非线性损伤。基于最小化脉宽法,本论文发展了一种用于设计受SPM限制的OPC系统的解析方法。该方法还可快速评估任意系统中OPC对SPM的抑制效率。
     本论文还从理论和实验两方面研究了超短脉冲的OPC。利用1km长的高非线性色散位移光纤(HNL-DSF)的四波混频效应,实现了~300飞秒脉冲经过10km单模光纤传输之后的OPC,其转换效率约为-16dB,3dB转换带宽为20nm。利用该相位共轭器,初步探索了超短脉冲20km单模光纤的传输实验。本论文针对实验观察到的在OPC过程中共轭光频谱发生畸变的现象进行了理论分析,发现该畸变源于非线性相位调制,调制量等效于信号经历2.5倍长的HNL-DSF传输时所受的SPM。因此可以利用优化NRD等方法来补偿该畸变。这些研究有助于进一步探索如何将OPC用于宽带、高速率的通信系统。
Nonlinear Kerr effect is one of the most serious impairments of optical fiber communications. Dispersion management and optical phase conjugation (OPC) are two techniques of suppression of the nonlinear impairment. Both of them have pros and cons; however, their combination shows great advantages to combat the nonlinear impairments in optical fiber communication systems. In this dissertation, we discuss and compare the two techniques systematically. The efficiency of these techniques for countering the nonlinear effects is investigated, and analytical methods are proposed to design and optimize the systems. Moreover, the realization of the OPC of dispersed ultrashort pulse is investigated theoretically and experimentally.
     Dispersion management includes tuning the amounts of precompensation, residual dispersion per span (RDPS), and net residual dispersion (NRD). In order to suppress the nonlinear impairments mostly, the above three parameters need be optimized. For self-phase modulation (SPM)-limited systems, optimizing the NRD is necessary because it can improve the system performance greatly. Unfortunately, analytical model for optimizing NRD is lack. Two different analytical methods, i.e., minimizing the width and maximizing the center amplitude of the output pulse, are presented here to optimize NRD for SPM-limited dispersion-managed systems. An analytical expression of optimized NRD is obtained by the method of minimizing pulse width. This method can also be used to optimize all the three parameters mentioned above simultaneously. The method of maximizing center amplitude is simpler and more straightforward comparing to the first method. Addtionally, establishment database with two system parameters, nonlinear phase shift and product of dispersion parameter and square of bit rate, is proposed to estimate the nonlinear impairments of arbitrary single-channel dispersion-managed systems.
     The performance of dispersion managed systems is still limited by nonlinear penalty, even all the three parameters are optimized simultaneously. OPC is another promising technique, theoretically, through which the nonlinear impairments can be fully compensated. However, through systematical investigation, it is found that the effects of OPC on various nonlinearities are different in a practical system without power-symmetry. Some nonlinearities may even become worse if one of the nonlinearities is fully compensated.
     Extending the method of minimizing pulse width mentioned above, an analytical model is proposed for SPM-limited systems with nonlinearity compensated by OPC. Using this model, the single-pulse SPM-compensation efficiency of OPC can also be estimated conveniently for any systems.
     Furthermore, the OPC of dispersed ultrashort pulse is investigated theoretically and experimentally. The phase conjugator is realized by four-wave mixing (FWM) in a highly-nonlinear dispersion-shift fiber (HNL-DSF), and about -16 dB conversion efficiency and 20 nm 3dB conversion bandwidth is obtained experimentally. By use of this conjugator, transmission of a ~300 fs pulse along a 20-km long standard single mode fiber with midway OPC is inverstigated. Additionally, in the OPC experiment, the spectral distortion of phase conjugated-signal is observed. It is found theoretically that this spectral asymmetry FWM is induced by the nonlinear phase modulation from signal pulse and pump. Moreover, the amount of the nonlinear phase shift is found equal to the SPM-induced phase of signal transmitting through the HNL-DSF with 2.5 times length. The investigation of ultrashort pulse OPC is believed to benefit to the use of OPC in wideband, high speed transmission systems.
引文
[1] G. P. Agrawal 著,贾东方,余震虹、谈斌,胡智勇,等译. 非线性光纤光学原理及应用. 北京:电子工业出版社,2002
    [2] Thoms Schneider. Nonlinear Optics in Telecommunications. Germany: Springer, 2004
    [3] Ivan Kaminow and Tingye Li, eds. Optical Fiber Telecommunications IV B, Systems and Impairments. San Diego: Academic Press, 2002
    [4] 顾畹仪. WDM 超长距离光传输技术. 北京:北京邮电大学出版社,2006
    [5] 原荣. 光纤通信. 北京:电子工业出版社,2002. 88~93
    [6] 戴一堂. 新型光纤布拉格光栅的研究与应用:[博士学位论文]. 北京:清华大学电子工程系,2006
    [7] T. Yamamoto, E. Yoshida, K. R. Tamura, K. Yonenaga, and M. Nakazawa. 640-Gbit/s optical TDM transmission over 92 km through a dispersion-managed fiber consisting of single-mode fiber and reverse dispersion fiber. IEEE Photon. Technol. Lett. 2000, 12:353-355
    [8] B. Zhu, L. E. Nelso, S. Stulz, A. H. Gnauck, C. Doerr, J. Leuthold, L. Grüner-Nelsen, M. O. Pedersen, J. Kim, R. Lingle, Jr., Y. Emori, Y. Ohki, N. Tsukiji, A. Oguri, and S. Namiki. 6.4-Tb/s (160x42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32x100 km of fiber using CSRZ-DPSK format. OFC2003, Paper PD19
    [9] 童治. 宽带光纤放大器及其在超长距离 DWDM 传输系统中的应用:[博士学位论文]. 北京:北京交通大学光波所,2004
    [10] G. P. Agrawal 著,贾东方,余震虹、谈斌,胡智勇,等译. 非线性光纤光学原理及应用. 北京:电子工业出版社,2002. 195~199
    [11] J. Hansryd and P. A. Andrekson. Fiber-based optical parametric amplifiers and their applications. IEEE. J. Select. Topics Quantum Electron. 2002, 8:506-518
    [12] G. P. Agrawal 著,贾东方,余震虹、谈斌,胡智勇,等译. 非线性光纤光学原理及应用. 北京:电子工业出版社,2002. 258~262
    [13] C. Yang, S. Li, H. Miao, Y. Tian, E. Zhang, G. Jin. Compact first-order polarization mode dispersion compensator based on birefringent crystals. Chin. Phys. Lett. 2004, 21:326-328
    [14] 王目光. 光纤偏振特性及其测量与补偿技术的研究:[博士学位论文]. 北京:北京交通大学光波所,2004
    [15] 王海帆. 40Gb/s(STM-256)高速时分复用传输技术前景展望. 光通信技术,2002,26(2):1~3
    [16] G. P. Agrawal 著,贾东方,余震虹、谈斌,胡智勇,等译. 非线性光纤光学原理及应用. 北京:电子工业出版社,2002. 474~475
    [17] 石顺祥,陈国夫,赵卫,刘继芳. 非线性光学. 西安:西安电子科技大学出版社,2003
    [18] R. W. Boyd. Nonlinear optics (2nd ed). San Diego: Academic Press, 2003. Ch. 2
    [19] P. A. Franken, A. E. Hill, C. W. Peters, et al. Generation of optical harmonics. Phys. Rev. Lett. 1961, 7:118-119
    [20] W. Kaiser, C. Garrett, D. L. Wood. Fluorescence and optical maser effects in CaF2:Sm++. Phys. Rev. 1961, 123:766-776
    [21] R. Stolen, E. Ippen, A. Tynes. Raman oscillation in glass optical waveguide. Appl. Phys. Lett. 1972, 20:62-64
    [22] E. Ippen, R. Stolen. Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett. 1972, 21:539-541
    [23] E. Ippen, C. Shank, T. Gustafson. Self-phase modulation of picosecond pulses in optical fibers. Appl. Phys. Lett. 1974, 24:190-192
    [24] R. Stolen, J. Bjorkholm, A. Ashkin. Phase-matched three-wave mixing in silica fiber optical waveguides. Appl. Phys. Lett. 1974, 24:308-310
    [25] J. Toulouse. Optical nonlinearities in fibers: review, recent examples, and systems applications. J. Lightw. Technol. 2005, 23:3625-3641
    [26] Y. Guo, C. K. Kao, E. H. Li, and K. S. Chiang. Nonlinear Photonics. Hongkong: The Chinese University Press, 2002
    [27] R.-J. Essiambre, G. Raybon, and B. Mikkelsen. Pseudo-linear transmission of high-speed TDM signals: 40 and 160 Gb/s. In: Ivan Kaminow and Tingye Li, eds. Optical Fiber Telecommunications IV B, Systems and Impairments. San Diego: Academic Press, 2002. Ch. 6
    [28] E. A. Golovchenko and A. N. Pilipetskii. Unified analysis of four-photon mixing, modulational instability, and stimulated Raman scattering under various polarization conditions in fibers. J. Opt. Soc. Am. B. 1994, 11:92-101
    [29] G. P. Agrawal. Nonlinear Fiber Optics (3rd ed). San Diego: Academic Press, 2001. Ch. 5 and Ch. 10
    [30] M. Matsumoto. Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers. J. Lightw. Technol. 2004, 22:1472-1482
    [31] M. Daikoku, N. Yoshikane, T. Otani, and H. Tanaka. Optical 40-Gb/s 3R regenerator with a combination of the SPM and XAM effects for all-optical networks. J. Lightw. Technol. 2006, 24:1142-1148
    [32] 龚倩,徐荣,叶小华,张民. 高速超长距离光传输技术. 北京:人民邮电出版社,2005. 117~147
    [33] 龚倩,徐荣,叶小华,张民. 高速超长距离光传输技术. 北京:人民邮电出版社,2005. 51~84
    [34] T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa. Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss. J. Lightw. Technol. 2005, 23:4178-4183
    [35] 顾畹仪. WDM 超长距离光传输技术. 北京:北京邮电大学出版社,2006. 219~259
    [36] M. Zou, M. Chen, and S. Xie. Suppression of ghost pulses in 40Gbps optical transmission systems with fixed-pattern phase modulation. Opt. Express. 2005, 13:2251-2255
    [37] Ivan Kaminow and Tingye Li, eds. Optical Fiber Telecommunications IV B, Systems and Impairments. San Diego: Academic Press, 2002, Ch. 7
    [38] I. B. Djordjevic and Bane Vasic. Constrained coding techniques for the suppression of intrachannel nonlinear effects in high-speed optical transmission. J. Lightw. Technol. 2006, 24:411-419
    [39] G. P. Agrawal 著,贾东方,余震虹、谈斌,胡智勇,等译. 非线性光纤光学原理及应用. 北京:电子工业出版社,2002. 503~545
    [40] 龚倩,徐荣,叶小华,张民. 高速超长距离光传输技术. 北京:人民邮电出版社,2005. 215~232
    [41] P. Minzioni and A. Schiffini. Unifying theory of compensation techniques of intrachannel nonlinear effects. Opt. Express. 2005, 13:8460-8468
    [42] A. G. Striegler and B. Schmauss. Compensation of intrachannel effects in symmetric dispersion-managed transmission systems. J. Lightw. Technol. 2004, 22:1877-1882
    [43] G. P. Agrawal. Fiber-optic Communication Systems (3rd ed). New York: John Wiley, 2002. 279-329
    [44] X. Xiao, S. Gao, Y. Tian, and C. Yang. Analytical optimization of the net residual dispersion in SPM-limited dispersion-managed systems. J. Lightw. Technol. 2006, 24:2038-2044
    [45] X. Xiao, C. Yang, S. Gao, and Y. Tian. Optimization of the net residual dispersion for self-phase modulation-impaired systems by perturbation theory. J. Lightw. Technol. accepted
    [46] S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Sp?lter, G.-D. Khoe, and H. de Waardt. Long-haul DWDM transmission systems employing optical phase conjugation. IEEE. J. Select. Topics Quantum Electron. 2006, 12:505-520
    [47] X. Xiao, C. Yang, S. Gao, and Y. Tian, Partial compensation of Kerr nonlinearities by optical phase conjugation in optical fiber transmission systems without power symmetry. Opt. Commun. 2006, 265:326-330
    [48] X. Xiao, C. Yang, S. Gao, and Y. Tian. Analytical model for the design of SPM-limitedsystems with nonlinearity compensated by optical phase conjugation. IEEE Photon. Technol. Lett. revised
    [49] F. Forghieri, R. Tkach, A. Chraplyvy, et al. Reduction of four-wave mixing crosstalk in WDM systems using unequally spaced channels. IEEE Photon. Technol. Lett. 1994, 6:54-56
    [50] J. Hansryd, H. Sunnerud, P. Andrekson, et al. Impact of PMD on four-wave-mixing-induced crosstalk in WDM systems. IEEE Photon. Technol. Lett. 2000, 12:1261-1263
    [51] I. Djordjevic and B. Vasic. Nonlinear BCJR equalizer for suppression of intrachannel nonlinearities in 40 Gb/s optical communications systems. Opt. Express. 2006, 14:4625-4635
    [52] E. Poutrina. Design of modern dispersion-managed Lightwave systems: [Ph. D. Dissertation]. New York: The Institute of Optics, University of Rochester, 2003. 1-11
    [53] J. D. Ania-Casta?ón, I. O. Nasieva, S. K. Turitsyn, N. Brochier, and E. Pincemin. Optimal span length in high-speed transmission systems with hybrid Raman-erbium-doped fiber amplification. Opt. Lett. 2005, 30:23-25
    [54] M. I. Hayee and A. E. Willner. Pre- and post-compensation of dispersion and nonlinearities in 10-Gb/s WDM systems. IEEE Photon. Technol. Lett. 1997, 9:1271-1273
    [55] 原荣. 光纤通信. 北京:电子工业出版社,2002. 380~411
    [56] 顾畹仪. WDM 超长距离光传输技术. 北京:北京邮电大学出版社,2006. 318~326
    [57] A. F?rbert, C. Scheerer, J.-P. Elbers, C. Glingener, and G. Fischer. Optimised dispersion management scheme for long-haul optical communication systems. Electron. Lett. 1999, 35:1865-1866
    [58] J.-P. Elbers, A. F?rbert, C. Scheerer, C. Glingener, and G. Fischer. Reduced model to describe SPM-limited fiber transmission in dispersion-managed lightwave systems. IEEE J. Select. Topics Quantum Electron. 2000, 6:276-281
    [59] Y. Frignac and S. Bigo. Numerical optimization of residual dispersion in dispersion-managed systems at 40 Gbit/s. OFC2000, Paper TuD3-2.
    [60] C. Caspar, H.-M. Foisel, A. Gladisch, N. Hanik, F. Küppers, R. Ludwig, A. Mattheus, W. Pieper, B. Strebel, and H. G. Weber. RZ versus NRZ modulation format for dispesion compensated SMF-based 10-Gb/s transmission with more than 100-km amplifier spacing. IEEE Photon. Technol. Lett. 1999, 11:481-483
    [61] G. Bellotti, A. Bertaina, and S. Bigo. Impact of residual dispersion on SPM-related power margins in 10 Gbit/s-based systems using standard SMF. ECOC1998, 681-682
    [62] Thoms Schneider. Nonlinear Optics in Telecommunications. Germany: Springer, 2004. Ch. 8
    [63] P. V. Mamyshev and N. A. Mamysheva. Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing. Opt. Lett. 1999, 24:1454-1456
    [64] S. Kumar, J. C. Mauro, S. Raghavan, and D. Q. Chowdhury. Intrachannel nonlinear penalties in dispersion-managed transmission systems. IEEE J. Select. Topics Quantum Electron. 2002, 8:626-631
    [65] A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck. Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses. IEEE Photon. Technol. Lett. 2001, 13:445-447
    [66] R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel. Reduction of intrachannel nonlinear distortion in 40-Gb/s-based WDM transmission over standard fiber. IEEE Photon. Technol. Lett. 2000, 12:1624-1626
    [67] Y. Frignac, J.-c. Antona, S. Bigo, and J.-P. Hamaide. Numerical optimization of pre- and in-line dispersion compensation in dispersion-managed systems at 40 Gbit/s. OFC2002, Paper ThFF5.
    [68] Y. Frignac, J.-c. Antona, and S. Bigo. Enhanced analytical engineering rule for fast optimization of dispersion maps in 40 Gbit/s-based transmission systems. OFC2004, Paper TuN3.
    [69] R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel. Prediction of transmission penalties due to cross-phase modulation in WDM systems using a simplified technique. IEEE Photon. Technol. Lett. 2000, 12:804-806
    [70] S. Norimatsu and M. Maruoka. Accurate Q-factor estimation of optically amplified systems in the presence of waveform distortions. J. Lightw. Technol. 2002, 20:19-27
    [71] S. Bigo, D. Penninckx, and M.W. Chbat. Investigation of self-phase modulation limitation on 10-Gb/s transmission over different fiber types. OFC1998, Paper FC2
    [72] G. Bellotti, A. Bertaina, and S. Bigo. Dependence of self-phase modulation impairments on residual dispersion in 10 Gb/s-based terrestrial transmissions using standard fiber. IEEE Photon. Techn. Lett. 1999, 11:824-826
    [73] J.-C. Antona, S. Bigo, and J.-P. Faure. Nonlinear cumulated phase as a criterion to assess performance of terrestrial WDM systems. OFC2002:365-367
    [74] S. Vorbeck and M. Schneiders. Cumulative nonlinear phase shift as engineering rule for performance estimation in 160-Gb/s transmission systems. IEEE Photon. Technol. Lett. 2004, 16:2571-2573
    [75] B. Konrad and K. Petermann. Optimum fiber dispersion in high-speed TDM systems. IEEE Photon. Technol. Lett. 2001 13:299-301
    [76] A. Cauvin, Y. Frignac, and S. Bigo. Nonlinear impairments at various bit rates in single-channel dispersion-managed systems. Electron. Lett. 2003, 39:1670-1671
    [77] R. W. Boyd. Nonlinear optics (2nd ed). San Diego: Academic Press, 2003. Ch. 7
    [78] G. P. Agrawal 著,贾东方,余震虹、谈斌,胡智勇,等译. 非线性光纤光学原理及应用. 北京:电子工业出版社,2002. 263~264
    [79] A. Yariv, D. Fekete, and D. M. Pepper. Compensation for channel dispersion by nonlinear optical phase conjugation. Opt. Lett. 1979, 2:52-54
    [80] R. A. Fisher, B. R. Suydam, and D. Yevick. Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects. Opt. Lett. 1983, 8:611-613
    [81] W. Forysiak and N. J. Doran. Conjugate solitons in amplified optical fibre transmission systems. Electron. Lett. 1994, 30:154-155
    [82] S. Watanabe. Cancellation of four-wave mixing in a single-mode fiber by midway optical phase conjugation. Opt. Lett. 1994, 19:1308-1310
    [83] Sien Chi and Senfar Wen. Recovery of the soliton self-frequency shift by optical phase conjugation. Opt. Lett. 1994, 19:1705-1707
    [84] A. G. Grandpierre, D. N. Christodoulides, and J. Toulouse. Theory of stimulated Raman scattering cancellation in wavelength-division- multiplexed system via spectral inversion. IEEE Photon. Technol. Lett. 1999, 11:1271–1273
    [85] I. Brener, B. Mikkelsen, K. Rottwitt, W. Burkett, g. Raybon, J. B. Stark, K. Parameswaran, M. H. Chou, M. M. Fejer, E. E. Chaban, R. Harel, D. L. Philen, and S. Kosinski. Cancellation of all Kerr nonlinearities in long fiber span using a LiNbO3 phase conjugator and Raman amplification. OFC2000:266-268
    [86] C. J. McKinstrie, S. Radic, and C. Xie. Reduction of soliton phase jitter by in-line phase conjugation. Opt. Lett. 2003, 28:1519-1521
    [87] G. L. Woods, P. Papaparaskeva, M. Shtaif, I. Brener, and D. A. Pitt. Reduction of cross-phase modulation-induced impairments in long-haul WDM telecommunication systems via spectral inversion. IEEE Photon. Technol. Lett. 2004. 16:677-679
    [88] X. Tang and Z.Wu. Suppressing modulation instability in midway optical phase conjugation systems by using dispersion compensation. IEEE Photon. Technol. Lett. 2005, 17:926–928
    [89] S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Sp?lter, P.M. Krummrich, G. D. Khoe, and H. de Waardt. Reduction of Gordon-Mollenauer phase noise by midlink spectral inversion. IEEE Photon. Technol. Lett. 2005, 17:923–925
    [90] A. Chowdhury and R.-J. Essiambre. Optical phase conjugation and pseudolinear transmission. Opt. Lett. 2004, 29:1105-1107
    [91] P. Minzioni, F. Alberti, and A. Schiffini. Techniques for nonlinearity cancellation into embedded links by optical phase conjugation. J. Lightw. Technol. 2005, 23:2364-2370
    [92] P. Minzioni, F. Alberti, and A. Schiffini. Optimized link design for nonlinearitycancellation by optical phase conjugation. IEEE Photon. Technol. Lett. 2004, 16:813-815
    [93] S. Watanabe, T. Natio, and T. Chikama. Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation. IEEE Photon. Technol. Lett. 1993, 5:92-95
    [94] R. M. Jopson, A. H. Gnauck and R. M. Derosier. Compensation of fibre chromatic dispersion by spectral inversion. Electron. Lett. 1993, 29:576-578
    [95] M. C.Tatham, X. Gu, L. D. Westbrook, G. Sherlock, D. M. Spirit. Overcoming fibre chromatic dispersion in high bit rate transmission. LEOS 1994, 1:194-195
    [96] S.Watanabe, S. Kaneko, G. Ishikawa, A. Sugata, H. Ooi, and T. Chikama. 20-Gb/s fiber transmission experiment over 3000-km waveform precompensation using fiber compensator and optical phase conjugator. IOOC 1995, Paper PD2-6
    [97] D. D. Marcenac, D. Nesset, A. E. Kelly, M. Brierley, A. D. Ellis, D. G. Moodie, and C. W. Ford. 40-Gb/s transmission over 406 km of NDSF using midspan spectral inversion by four-wave-mixing in a 2-mm long semiconductor optical amplifier. Electron. Lett. 1997, 33:879-880
    [98] S.Watanabe, S. Takeda, G. Ishikawa, H. Ooi, J. G. Nielsen, and C. Sonne. Simultaneous wavelength conversion and optical phase conjugation of 200 Gb/s (5×40 Gb/s) WDM signal using a highly nonlinear fiber four-wave mixer. ECOC1997:1-4.
    [99] D. D. Marcenac, D. Nesset, A. E. Kelly, and D. Gavrilovic. 40Gbit/s transmission over 103km of NDSF using polarisation independent mid-span spectral inversion by four-wave mixing in a semiconductor optical amplifier. Electron. Lett. 1998, 34:100-101
    [100] S. Watanabe, S. Takeda, and T. Chikama. Interband wavelength conversion of 320 Gb/s (32×10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer. ECOC1998:85-87
    [101] U. Feiste, R. Ludwig, E. Dietrich, S. Diez, H. J. Ehrke, Dz. Razic, and H. G. Weber. 40 Gbit/s transmission over 434 km standard-fiber using polarisation independent mid-span spectral inversion. ECOC1998:115-117
    [102] S. Y. Set, R. Girardi, E. Riccardi, B. E. Olsson, M. Puleo, M. Ibsen, R. I. Laming, P. A. Andrekson, F. Cisternino, and H. Geiger. 40 Gbit/s field transmission over standard fibre using midspan spectral inversion for dispersion compensation. Electron. Lett. 1999, 35:581-582
    [103] U. Feiste, R. Ludwig, C. Schmidt, E. Dietrich, S. Diez, H. J. Ehrke, E. Patzak, H. G. Weber, and T. Merker. 80-Gb/s transmission over 106-km standard-fiber using optical phase conjugation in a Sagnac-interferometer. IEEE Photon. Technol. Lett. 1999, 11:1063-1065
    [104] S. Radic, R. M. Jopson, C. J. McKinstrie, A. H. Gnauck, S. Chandrasekhar, and J. C.Centanni. Wavelength division multiplexed transmission over standard single mode fiber using polarization insensitive signal conjugation in highly nonlinear optical fiber. OFC2003, Paper PD12
    [105] R. Huang, D.Woll, I. White, H. Escobar, L. Marshall, G. Kra, andM. Sher. Broadband dispersion compensation using midlink spectral inversion enables performance improvement and cost reduction in optical networks. Nat. Fiber Optic Engineers Conf. Session 2003, Paper D9
    [106] J. Inoue and F. Kubota. OC-192 RZ signal transmission over 100 km standard singlemode fibre using wavelength-shift-free optical phase conjugator. Electron. Lett. 2003, 39:1842-1844
    [107] S. L. Jansen, S. Sp?lter, G.-D. Khoe, H. deWaardt, H. E. Escobar, M. Sher, D. Woll, and D. Zhou. 10-Gb/s, 25-GHz spaced transmission over 800 km without using dispersion compensation modules. OFC2004, Paper ThT1
    [108] A. Chowdhury, G. Raybon, R.-J. Essiambre, J. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar. Compensation of intrachannel nonlinearities in 40-Gb/s pseudo linear systems using optical phase conjugation. OFC2004, Paper PDP 32
    [109] S. L. Jansen, G.-D. Khoe, H. de Waardt, S. Sp?lter, C.-J. Weiske, A. Sch?pflin, S. J. Field, H. E. Escobar, and M. H. Sher. Mixed data rate and format transmission (40 Gb/s NRZ, 40 Gb/s duobinary, 10 Gb/s NRZ) using midlink spectral inversion. Opt. Lett. 2004, 29:2348-2350
    [110] S. L. Jansen, D. van den Borne, C. Climent, M. Serbay, C.-J. Weiske, H. Suche, P. M. Krummrich, S. Sp?lter, S. Calabro, N. Hecker-Denschlag, P. Leisching,W. Rosenkranz,W. Sohler, G. D. Khoe, T. Koonen, and H. de Waardt. 10200 km 22×2×10 Gb/s RZ-DQPSK denseWDM transmission without inline dispersion compensation through optical phase conjugation. OFC2005, Paper PDP28
    [111] S. L. Jansen, D. van den Borne, G. D. Khoe, H. de Waardt, P.M. Krummrich, S. Sp?lter. Phase conjugation for increased system robustness. OFC 2006, Paper OTuK3
    [112] I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer. 160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter. Electron. Lett. 2000, 36:1788-1790
    [113] 顾畹仪. WDM 超长距离光传输技术. 北京:北京邮电大学出版社,2006. 表 1-1
    [114] R. I. Laming, D. J. Richardson, D. Taverner, and D. N. Payne. Transmission of 6 ps linear pulses over 50 km of standard fiber using midpoint spectral inversion to eliminate dispersion. IEEE J. Select. Topics in Quantum Electron. 1994, 3:2114-2119
    [115] K. Kikuchi and K. Matsuura. Transmission of 2-ps optical pulses at 1550 nm over 40-km standard fiber using midspan optical phase conjugation in semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 1998, 10:1410-1412
    [116] H. Zheng, S. Xie, M. Chen, M. Yao, and B. Zhou. Transmission of 12-ps RZ code over 203-km dispersive fiber using mid-span spectral inversion. CLEO1999, 487-488
    [117] H. C. Lim, F. Futami, K. Taira, and K. Kikuchi. Broad-band mid-span spectral inversion without wavelength shift of 1.7-ps optical pulses using a highly nonlinear fiber Sagnac interferometer. IEEE Photon. Technol. Lett. 1999, 11:1405-1407
    [118] D. Kunimatsu, C. Q. Xu, M. D. Pelusi, X. Wang, K. Kikuchi, H. Ito, and A. Suzuki. Subpicosecond pulse transmission over 144 km using midway optical phase conjugation via a cascaded second-order process in a LiNbO3 waveguide. IEEE Photon. Technol. Lett. 2000, 12:1621-1623
    [119] P. Johannisson, D. Anderson, A. Berntson, and J. Martensson. Generation and dynamics of ghost pulses in strongly dispersion-managed fiber-optic communication systems. Opt. Lett. 2001, 26:1227-1229
    [120] A. Striegler and B. Schmauss. Fiber based compensation of IXPM induced timing jitter. IEEE Photon. Technol. Lett. 2004, 16:2574–2576
    [121] X. Xiao, S. Gao, Y. Tian, and C. Yang. Estimation the nonlinear impairment of single channel transmission systems with arbitrary parameters. Proc. SPIE 2006 6025:602518.
    [122] 高士明. 光波混频效应对波分复用系统性能的影响及其应用:[博士学位论文]. 北京:清华大学精密仪器与机械学系,2004
    [123] M. C. Jeruchim, P. Balaban, and K. S. Shanmugan. Simulation of communication systems: modeling, methodology, and techniques. MA: Kluwer, 2000. 386-389
    [124] J. Kissing, S. Vorbeck, M. Plura, and E.Voges. Design of high data rate optical transmission systems with self phase modulation and noise. Electr. Eng. 2002, 84:123-128
    [125] A. Mecozzi, C. Clausen, and M. Shtaif. System impact of intra- channel nonlinear effects in highly dispersed optical pulse transmission. IEEE Photon. Technol. Lett. 2000, 12:1633–1635
    [126] G. P. Agrawal. Nonlinear Fiber Optics (3rd ed). San Diego: Academic Press, 2001. Ch. 4
    [127] N. Kikuchi and S. Sasaki. Analytical evaluation technique of self-phase-modulation effect on the performance of cascaded optical amplifier systems. J. Lightw. Technol. 1995, 13:868-878
    [128] G. P. Agrawal 著,贾东方,余震虹、谈斌,胡智勇,等译. 非线性光纤光学原理及应用. 北京:电子工业出版社,2002. 491~492
    [129] Q. Yu and C. Fan. Analytical study on pulse broadening in chained optical amplifier systems. J. Lightw. Technol. 1997, 15:444-451
    [130] G. Adomian. A review of the decomposition method and some recent results for nonlinear equations. Math. Comput. Modeling 1990, 13:17–43
    [131] C. Xie. A doubly periodic dispersion map for ultralong-haul 10- and 40-Gb/s hybridDWDM optical mesh networks. IEEE Photon. Technol. Lett. 2005, 17:1091-1093
    [132] A. Vannucci, P. Serena, and A. Bononi. The RP method: a new tool for the iterative solution of the nonlinear Schr?dinger equation. J. Lightw. Technol. 2002, 20:1102-1112
    [133] H. Wei and D. V. Plant. Simultaneous nonlinearity suppression and wide-band dispersion compensation using optical phase conjugation. Opt. Express 2004, 12:1938-1958
    [134] G. P. Agrawal, Fiber-optic Communication Systems, 3rd ed. New York: Wiley, 2002, ch. 4.
    [135] X. Liu, X, Wei, A. H. Gnauck, C. Xu and L. K. Wickham. Suppression of intrachannel four-wave-mixing-induced ghost pulses in high-speed transmissions by phase inversion between adjacent marker blocks. Opt. Lett. 2002, 27:1177-1179
    [136] S. Watanabe and M. Shirasaki. Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation. J. Lightw. Technol. 1996, 14:243-248
    [137] A. Mecozzi, C. B. Clausen, and M. Shtaif. Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission. IEEE Photon. Technol. Lett. 2000, 12:392-394
    [138] R. I. Killey, V. Mikhailov, S. Appathurai, and P. Bayvel. Investigation of nonlinear distortion in 40-Gb/s transmission with higher order mode fiber dispersion compensators. J. Lightw. Technol. 2002, 20:2282-2289
    [139] W. Pieper, C. Kurtzke, R. Schnabel, D. Breuer, R. Ludwig, K. Petermann, and H. G. Weber. Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier. Electron. Lett. 1994, 30:724-726
    [140] X. Tang and Z. Wu. Reduction of intrachannel nonlinearity using optical phase conjugation. IEEE Photon. Technol. Lett. 2005, 17:1863-1865
    [141] G. P. Agrawal, Fiber-optic Communication Systems, 3rd ed. New York: Wiley, 2002, ch. 7
    [142] C. Peuchered, B. Zsigri, P. A. Andersen, K. S. Berg, A. Tersigni, P. Jeppesen, K. P. Hansen, and M. D. Nielsen. 40 Gbit/s transmission over photonic crystal fibre using mid-span spectral invrsion in highly nonlinear photonic crystal fibre. Electron. Lett. 2003, 12:919-921
    [143] M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky. Fiber-optical parametric amplifier with 35-nm bandwidth. OFC 1996, 95-97
    [144] P. O. Hedekvist, P. A. Andrekson, and K. Bertilsson. Impact of spectral inverter fiber length on four-wave mixing efficiency and signal distortion. J. Lightw. Technol. 1995, 13:1845-1819
    [145] S. Wen, S. Chi, and T.-C. Chang. Effect of cross-phase modulation on optical phase conjugation in dispersion-shifted fiber. Opt. Lett. 1994, 19:939-941
    [146] S. Wen. Optical phase conjugation of multiwavelength signals in a dispersion-shifted fiber.J. Lightw. Technol. 1997, 15: 1061-1070
    [147] K. Inoue and T. Mukai. Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier. Opt. Lett. 2001, 26:10-12
    [148] J. Herrera, F. Ramos, and J. Marti. Nonlinear distortion generated by DSF-based optical-phase conjugators in analog optical systems. J. Lightw. Technol. 2002, 20:1688-1693
    [149] X. Xiao, S. Gao, Y. Tian, H. Yan, and C. Yang. The effect of optical phase conjugation on inter- and intra-channel nonlinearities in ultrahigh speed transmission systems. Proc. SPIE 2005, 6021:602130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700