珠三角花岗岩残积土边坡稳定性分析及非线性预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以“广义系统科学”和“地质过程机制分析与非线性评价”为科研思路,对珠三角花岗岩残积土边坡的地质条件进行了详细调研,采用物理试验的方法分析了花岗岩残积土边坡的变形破坏机理,并对影响边坡稳定性的因素,预测边坡稳定性的方法及其适宜性进行了较系统地分析。研究表明传统的评价指标评价方法并不适用于花岗岩残积土类边坡稳定性评价,应建立非线性的边坡稳定性评价体系。论文采用粗糙集理论和支持向量机相结合的方式建立了花岗岩残积土边坡的非线性评价模型,并采用粗糙集理论分析了各边坡影响因素的敏感性,同时提出了一种模型可靠性检查的新思路来检查支持向量机评价模型的可靠性。边坡稳定性评价结果表明基于粗糙集和支持向量机的非线性边坡稳定性论文模型具有更高的客观性,更适合于花岗岩残积土边坡的稳定性评价。研究成果可为花岗岩残积土类边坡防治的设计提供科学依据,同时也反映了本文的选题具有一定的创新性和科学意义,在同类型的边坡稳定性方面具有一定的应用价值。
Granites is distributed widely in Pear River Delta. Because joints are well developed in Granites, the weathering could develop in-depth within the rock along the joints, and then form the thick red weathering crust. The upper part of the red weathering crust of granite is a granite residual soil (GRS) layer. From the soil interface, the composition of such media is sandy soil or clay soil, but there are weak structural planes or discontinuity planes that show anisotropic properties, these structural planes can be native sedimentary formation, succession of structural interface in weathering rock, can also be the result of epigenetic transformation; their performance appear the through weak structural planes form the macro side, revealing the structure interface or esoteric structure interface. These structural planes of plays a significant role in control of the slope stability, so that slope failure was different from the arc slope damage modes of homogeneous soil.
     Large number of engineering practice shows that the slope of this kind has its particularity. Through the survey of GRS slopes in Pearl River Delta, found that most slopes became instability in the case of smaller height or more slowly than calculate results with experiment parameters; only a few of the slope failure were similar to the arc damage often happened in soil slopes, and most are flat slide, in the form of scattered damage. Without taking the particular type of geological properties slope into account, which often caused the designers and construction staff the illusion. Also, unclear understanding to the nature of the slope may also lead unscientific project cost estimate and construction management; create obstacles to the project follow-up. Therefore, the study of the GRS slope special nature and its classification have important theoretical and practical significance
     Conducted survey of GRS in Pearl River Delta, collected a large number of engineering examples, comprehensive study had done from the residual soil slope components, engineering characteristics, mechanical properties and other aspects; comprehensively classify GRS slopes. Based on comprehensive classification, according to the main deformation form and corresponding major mechanical mechanism of GRS slopes established the geological models of slopes; select the appropriate physical and mechanical parameters. For the GRS slope stability, conduct physical simulation experiments and numerical studies, take use of physical simulation and numerical calculation method to study the slope deformation and failure mechanisms, stability, and other aspects of the state. Considering the many factors that affect slope stability and GRS special circumstances, make use of rough set theory, take advantage of rough sets to establish an index evaluation system of GRS slopes, and analyzed sensitivity of various indicators to the slope stability, then using the improved support vector machine (SVM) method to evaluate specific slope stability. The results show that based on rough sets-support vector machines for nonlinear slope stability evaluation method is feasible and results can be provided scientific basis for the prevention and treatment of the slopes.
     Through in-deep and systematic research to GRS slope in Guangzhou area, obtain the following main results and conclusions:
     1 GRS in Pearl River Delta, from the particle composition has characteristic of more coarse and fine particles and less multi-particle content, so GRS has the engineering properties of both sand and clay. As to shear strength, GRS possess a large cohesion c and internal friction angleφ, but this is false, tend to the engineering and technical personnel make mistakes on the intensity value. Structural plane (joints, fractures) exist in GRS. the shear strength these structures are much lower than GRS itself, and the distribution of these structural planes control composition and development of GRS slip interface.
     2 GRS slopes and excavated slope instability is basically a top-down progressive sliding, the sliding interface is composed by straight lines along the structural interface and circular interface in soil and most of sliding interface are the line at ends and the arc in the middle. When slopes are instable along the GRS and bedrock interface or in slope and the residual laminated layer, the interface is linear.
     3 Triggering factor of artificial excavation slope instability is natural rainfall, so the waterproof is the most crucial point in slope treatment. After the slope excavation, appropriate waterproof measures must be taken.
     4 The stress, strain, displacement characteristics and state of stability of the landslide could be simultaneously calculated using the finite difference numerical method, in addition to considering the nonlinear elastoplastic constitutive relation of geotechnical. get more accurate stress and displacement field, to dynamic simulate the process of landslide slip and interface shape; when solve stability factor, do not assume slip interface shape, do not assume that the interaction between compartmentalization, the result is more realistic.
     5 According to the physical simulation experiment results, the displacement of GRS slope gradually develop from the top to the foot, sliding interface of the slope is formed gradually along the direction from the top to the foot, finally the sliding interface was through.
     6 After the analysis of slope stability factors, adopt rough set theory to conduct attribute reduction operation to the factors affecting the slope stability. The results showed that:after attribute reduction, six factors (cohesion, internal friction angle, slope angle, the development degree of structural interface, slope structure, and the scouring action of rain) could comprehensively response to the main factors of GRS slope, which provided the optimum evaluation factors for the subsequent nonlinear prediction.
     7 Aimed at the problem of the prodigious influence of the SVM kernel function parameters to model classification ability, genetic algorithm is adopted to search the best parameters of SVM kernel function. The result shows that this method not only decreases the work done, but also increases the confidence level of the parameters.
     8 The examination method to training model used to the method of the individual sample examination, which is unilateral greatly. Aimed at this problem, the holistic examination method is provided, that is adopting the change tendency of single factor to slope stability to examine the SVM prediction model. This method can examine the extension ability of the SVM prediction model and avoid the limitation of the individual sample examination method.
     9 Comparative studies showed that the prediction results of slope stability by SVM and numerical calculation are similar and accordant with the fact. It is validated that the nonlinear theories and numerical calculation applied to granite residual soil slope are feasible and reasonable.
引文
[1]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):433-454.
    [2]黄润秋,许强.工程地质广义系统科学分析原理及应用[M].北京:地质出版社,1997.
    [3]张悼元.滑坡防治工程的现状与发展展望[J].地质灾害与环境保护,2000,11(2).
    [4]夏元友,朱瑞赓,李新平.边坡稳定性研究的综述与展望.金属矿山,1995(12):9-12
    [5]胡柳青,李夕兵,温世游.边坡稳定性研究及其发展趋势.矿业研究与开发,2000,20(5):7-9
    [6]王泳嘉,冯夏庭.关于计算岩石力学发展的几点思考.岩土工程学报.1996,18(4):103-104
    [7]夏元友,李梅.边坡稳定性评价方法研究及发展趋势.岩石力学与工程学报,2002.21(7):1087-1091
    [8]刘立平,姜德义,郑硕才等.边坡稳定性分析方法的最新进展.重庆大学学报(自然科学版).2000,23(2):115-118
    [9]常春,周德培,王泳嘉等.露天矿开采深度对边坡稳定性的影响[J].岩石力学与工程学报,1998,17(3):248-252
    [10]Voronkevieh.S.D. Engineering Geochemistry Problem and Applications[J]. Applied Geochemistry; 1994, (9):553-559
    [11]Li Kuanliang. Xu Zemin. Lian Huiqing. et al. The Principle and Methods of Environment Geoehemical Engineering[A]. In:He Zhenhua.Huang Runqiued.Proe.of the International SymPosium on Engineering and Environmental Geophysics Held in Chengdu[C]. Chengdu: Siehuan Publishing House of Science and Technology.1997,46-52
    [12]SunY.N. A Study on Stability Analysis of Shallow Layer Slope due to Raining Permeation[J].Unsaturated Soils,1995,1:315-320
    [13]Lumb. Effect of Rainstorm on Slope Stability [J]. Symon Hong Kong soils, Hong Kong.1962, 73-87
    [14]张建永.滑坡研究现状综述[J].中国岩溶,1999,15(3):250-257
    [15]孙广忠.中国典型滑坡[M].北京:科学出版社,1998
    [16]陈祖熠.土坡稳定分析通用条分法及其改进[J].岩土工程学报,1983,5(4):39-59
    [17]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980
    [18]黄润秋,许强等.地质过程模拟和过程控制研究[M].北京:科学出版社,2002.
    [19]王恭先.中国滑坡防治研究综述.滑坡文集(兰州滑坡会议论文集)[M].北京:中国铁道出版社,1988
    [20]干恭先.面向21世纪我国滑坡灾害防治的思考.文集编委会.兰州滑坡泥石流学术研讨会文 集[M],兰州:兰州大学出版社,1988
    [21]傅冰俊.滑坡灾害研究当议.崔政权.自然边坡稳定性分析暨华莹山边坡变形研讨会论文集[M],北京:地质出版社,1993
    [22]Sanna.S.K.. Stability Analysis of Embankments and Slopes.Geoteehnique.1979 105(12):1511-1524
    [23]Griffith, D.V. and Lane, P.A. Slope Stability Analysis by Finite Elements[J]. Geotechnique.1999,49(3):387-403
    [24]谷德振.岩体工程地质力学基础[M].北京:科学出版社.1979.
    [25]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [26]孙广忠.工程地质与地质工程[M].北京:地震出版社.1993.
    [27]傅鹤林.块裂岩质边坡稳定性理论分析模型及工程应用研究[D],长沙:中南大学博士学位论文,2000.
    [28]李素梅.块体理论在岩石路堑边坡稳定分析中的运用[J].云南交通科技,2003,19(4):14-15.
    [29]余子华,晏鄂川.碎裂结构路堑岩质边坡稳定性评价与治理设计.公路交通科技,2005.22(9),137-140.
    [30]杨学堂,王飞.边坡稳定性评价方法及发展趋势[J].岩土工程技术,2004,18(2).58-62
    [31]黄昌乾,丁恩保.边坡工程常用稳定性分析方法[J].水电站设计,1999,15(1).146-150
    [32]石豫川,王哲等.山区高等级公路边坡岩体分级研究[J].岩石力学与工程学报,2005,24(6)·587-591
    [33]李天斌.岩质工程高边坡稳定性及其控制的系统研究[D].成都:成都理工大学博士学位论文,2002.
    [34]黄润秋,唐世强,邓辉等.皖南某高速公路四号高边坡变形机理及稳定性分析[J].成都理工大学学报(自然科学版),2006,33(6):551-556
    [35]黄润秋.岩石高边坡稳定性[A].中国工程地质世纪成就[M].北京:地质出版社,2004.
    [36]张文华.花岗岩残积土的抗剪强度及土质边坡稳定性分析.水文地质工程地质,1994.30
    [37]张永波,张云等.花岗岩残积土工程类型划分体系研究.地球学报,1997.2。
    [38]吴志峰.华南花岗岩风化土体粒度成份的分形特征.中国水土保持,1997.6。
    [39]陆国奇.海南岛红色风化壳的研究.热带地理,1982,(1):51-58.
    [40]陈晓明.广东沿海花岗岩风化剖面及其差异风化现象的特征分析.广东公路勘察设计,2002.2:34-40.
    [41]阳发清,孙瑞娟.花岗岩残积土物理力学性质及变形特性的探讨,勘察科学技术,2002.6:34-37.
    [42]魏克和,刘殿选.闽粤沿海花岗岩风化分带方法及地基承载力的研究.河海大学学报,1991.7:76-84.
    [43]陈泳周,黄绍派等.广东花岗岩类岩石风化土的工程地质特征,桂林工学院学报,2002..7
    [44]刘明俊,李明雨.深圳花岗岩残积土的物理力学特性.工程勘察,1985.4.
    [45]黄欢.广东番禺市花岗岩岩残积土的工程地质特征及其应用.水文地质工程地质,2000.3.
    [46]王清,唐大雄等.中国东部花岗岩残积红土工程地质物征研究.长春地质学院学报(工程地质专辑),1988.
    [47]王彦华等.花岗岩中黑云母风化的矿物变化机制.地球化学,1999.5.
    [48]戴仕宝.花岗岩地区地下水溶质的形成机制探讨.河南大学学报,2001.6.
    [49]骆银辉,朱春林,李俊东.云南红层边坡变形破坏机制及其危害防治研究,岩土力学,2003,24(5):836-839
    [50]廖小平.类土质路堑边坡变形破坏类型及其锚固工程对策研究[J].岩石力学与工程学报.2003(Vol.22 supp.2)
    [51]胡厚田,赵晓彦.中国红层边坡岩体结构类型的研究[J].岩土工程学报,2006,28(6):689-694.
    [52]张悼元,王兰生,王士大.工程地质分析原理[M].北京:地质出版社,1994.
    [53]赵建军.公路边坡稳定性快速评价方法及应用研究[D].成都:成都理下大学博士学位论文,2007.
    [54]谭文辉,王家臣,周汝弟.岩体边坡渐进破坏的物理模拟和数值模拟研究[J],有色矿冶,2000,16(3):5-7
    [55]肖克强,周德培,李海波.软岩高边坡开挖变形规律的物理模拟研究[J],岩土力学,2007,28(1):111-115.
    [56]赵维炳.广义Voigt模型模拟的饱和土体轴对称固结理论解[J].河海大学学报,1988,16(5):47-56.
    [57]蔡国军,黄润秋,严明,龚满福.反倾向边坡开挖变形破裂响应的物理模拟研究[J].岩石力学与工程学报,2008,27(4):811-817.
    [58]董云.边坡变形破坏机制的底摩擦试验模拟[J].东北公路,2003,26(4):66-68.
    [59]石豫川,冯文凯,冯学纲,等.国道108线某段缓倾角顺层边坡变形破坏机制物理模拟研究[J].成都理工大学学报(自然科学版),2003,30(4):350-355.
    [60]徐进.斜坡变形破坏几种基本地质力学模式的物理模拟研究[博士学位论文][D].成都:成都理工大学,1987.
    [61]胡修文,唐辉明,刘佑荣.三峡库区赵树岭滑坡稳定性物理模拟试验研究[J].岩石力学与工程学报,2005,24(12):2089-2095.
    [62]冯文凯,石豫川,柴贺军,等.斜坡填筑路堤变形破坏物理模拟研究[J].岩石力学与工程学报,2006,25(增1):2861-2867.
    [63]蒋洋,王操,柴贺军.挖方边坡变形破坏机制物理模拟研究[J].路基工程,2008,137(2): 155-157.
    [64]刘一伟,张继春,郭学彬,等.软弱夹层强度参数的室内模拟[J].西南科技大学学报,2007,22(1):30-34.
    [65]肖正学,郭学彬,张继春等.含软弱夹层顺倾边坡爆破层裂效应的数值模拟与试验研究[J].岩土力学,2009,30(supp):15-23.
    [66]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1996
    [67]袁海庆,蒋沧如.有限单元法的理论与工程应用[M].武汉:武汉工业大学出版社,1997
    [68]徐卫亚,罗先启,谢守益,等.水布垭马崖高边坡岩体地下开挖三维数值模拟研究[J].工程地质学报,1999,7(1):89-94.
    [69]陈育民FLAC基础与工程实例[M]一匕京:中国水利出版社.2009:56-63
    [70]徐文杰,胡瑞林,李厚恩,等.CAD软件在工程地质三维建模中的应用[J].ir=程地质学报,2007,15(2):279-281.
    [71]廖秋林,曾钱帮,刘彤,等.基于ANSYS平台复杂地质体FLAC3D模型的自动生成[J].岩石力学与工程学报,2005,24(6):1010-1013.
    [72]姬保静,刘伟韬,任强.FLAC3D中复杂模型的三维建模技巧[J].安全与环境学报,2006,6(增刊):69-71.
    [73]潘建平,黄润秋,许强.攀枝花露天矿排土场边坡稳定性的三维数值模拟研究[J].成都理工学院学报,2002,29(3):329-331.
    [74]胡斌,张倬元,黄润秋,等.FLAC3D前处理程序的开发及仿真效果检验[J].岩石力学与工程学报,2002,21(9):1387-1391.
    [75]侯恩科,吴立新,李建民,等.三维地学模拟与数值模拟的耦合方法研究[J].煤炭学报,2002,27(4):388-392.
    [76]李荣伟,侯恩科,刘天林.基于三维数值模拟的露天煤矿复合边坡稳定性分析[J].煤田地质与勘探,2008,36(2):43-46.
    [77]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数.岩土工程学报,2002,24(3)343-346
    [78]赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定性分析[A].郑颖人.岩土力学与工程进展[C].重庆:重庆出版社,2003:322-333
    [79]赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析.岩石力学与工程学报.2003,22(2):256-260
    [80]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析.中国工程科学.2002.4(10):57-61
    [81]张鲁渝,郑颖人,赵尚毅等.有限元强度折减系数法计算土坡稳定安全系数的精度研究.水利学报.2003,(1):21-23
    [82]张鲁渝,郑颖人,赵尚毅等.有限元强度折减系数法计算土坡稳定安全系数的精度研究.水利学报.2003,(1):21-27
    [83]Pawlak Z. Rough set approach to knowledge-based decision support[J]. European Journal of Operational research,1997,99(23):48-57
    [84]Pawlak Z. Rough Classification[J]. Int. J. Man-Machine Studies,1984,(20):469-483.
    [85]Pawlak Z. Rough sets and fuzzy sets[J]. Fuzzy Sets and Systems,1985,(17):99-102.
    [86]Pawlak Z. Rough sets and decision tables[R]. Lecture Notes in Computer Science,1985,(208):187-196.
    [87]Pawlak Z. On decision tables[J]. Bulletin of the Polish Academy of Science:Technical Sciences,1986,(34):563-589.
    [88]Pawlak Z. et al..Rough sets[J]. Communication of the ACM,1995(38):89-95.
    [89]Pawlak Z.Vagueness and uncertainty:A rough set perspective[J].Computational Intelligence, 1995, (11):227-232.
    [90]Pawlak Z.,Wong S K M and Ziarko W.. Rough sets:probabilistic versus deterministic approach. International Journal of Man-machine Studies,1988,(29):81-95.
    [91]Chateauneuf A Jafray A Y. Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion. Math. Soc. Sci.,1989,17 (12):263-283.
    [92]张文修,吴伟志,梁吉业等.粗糙集理念与方法[M].北京:科学出版社,2001.7:1-36.
    [93]张文修,仇国芳.基于粗糙集的不确定决策[M].北京:清华大学出版社,2005.7:1-211.
    [94]Pawlak Z. Rough Set-theoretical Aspects of Reasoning about Data[M].Dordrecht Kluwer Academic Publishers,1991.
    [95]Slowinski R. Intelligent Decision Support-handbook of Applications and Advances of the Rough Sets Theory[C]. Dordtrcht Kluwer Academic Publishers,1992.
    [96]王宗军,李红伙,邓晓岗.粗糙集理论研究的最新进展及发展趋势[J].政治理工大学学报-信息与管理工程版,2006,28(1):43-49.
    [97]张文修,吴伟志.粗糙集理念介绍与综述[J].模糊系统与数学,2000,14(4):1-12.
    [98]高隽.智能信息处理方法导论[M].北京:机械工业出版社.2004.
    [99]Ziarko W. Variable precision rough set model[J]. Journal of Computer and System Sciences, 1993, (46):39-59.
    [100]Ziarko W. Rough sets, suzzy sets and knowledge discovery. London:Spinger-verlag,1994.
    [101]Ziarko W. Introduction to the special issue on rough sets and knowledge discovery. Computational Intelligence,1995,(11):223-226.
    [102]Ju Shengmi, Wei Zhiwu, Wen Xiuzhang. Approaches to Knowledge Reduction Based on Variable Precision Rough set Model[J]. Information Sciences,2004, (159):255-272.
    [103]米据生,吴伟志,张文修.基于变精度粗糙集理论的知识约简方法[J].系统工程理论与实践.2004,(1):76-82.
    [104]菅利荣,达庆利,陈伟达.基于变精度粗糙集的分层知识粒度[J].管理工程学报,2004,(2):60-63.
    [105]张建军,张静波.一种新的基于粗糙集理念的决策表离散化算法[J].西安电子科技大学学报(自然科学版),2004,31(3):469-472.
    [106]郑书富.奇异粗糙集理论及其研究现状[J].三明高等专科学校学报,2004,21(2):8-12.
    [107]曾剑锋,吴根秀.基于相异关系的粗糙集理论[J].江西师范大学党报(自然科学版),2004,28(5):426-430.
    [108]Ren Puli, Zheng Ouwang. Mining Classification Rules Using Rough Sets and Neural Networks[J]. European Journal of Operational Research,2004,(157):439-448.
    [109]Jensen R.,Shen Q. Fuzzy-rough Data Reduction with Ant Colony Optimization[J]. Fuzzy Sets and Systems,2005,(149):5-20.
    [110]王健鹏,戴岱,周正春.基于覆盖的模糊粗糙集模型[J].周口师范学院学报,2004,21(2):20-22.
    [111]Hua Guangzhang, Hong Liliang,Eerong Liu. Two New Operators in Rough Set Theory with Applications to Fuzzy Sets[J].Information Sciences,2004,(166):147-165.
    [112]Greco S.,Pawlak Z.,Slowinski R. Can Bayesian Confirmation Measure be Useful for Rough Set Decision Rules[J]. Engineering Applications of Articicial Intelligence,2004, (17):345-361.
    [113]何国建.基于粗糙集理论与遗传算法的分类算法研究[D].西南交通大学硕士学位论文,2005.3:1-13.
    [114]马玉良.知识获取中的Rough Sets理论及其应用研究[D].浙江大学博士学位论文,2005.2:1-20.
    [115]B.Walczak,D.LMassart.Rough Sets theory[J].Chemometrics and Intelligent Laboratory Systems 1999, (47):1-16
    [116]Kryszkiew M.Rough set approacht oin completein formations ystems.In formation Sciences,1998,112(89):39-49.
    [117]苗夺谦,王钰.粗糙集理论中知识粗糙性和信息嫡关系的讨论.模式识别与人工智能[L],1998,00:34-40.
    [118]Hu X. Knowledge Discovery in Databases:An attribute-oriented rough Approach[M]. Canada:University of Regina,1995:45-58
    [119]刘健勤.粗糙集理论极其最新进展[J].计算技术与自动化,1998.17(1):43-47.
    [120]Tsumoto S. Tanaka H. Primerose:Probalistic rule introduction method based on rough sets and resampling methods. Computational Intelligence,1995,11(34):389-405.
    [121]Pawlak Z. Rule induction method based on rough sets and resampling methods[J]. C omputationalin telligence,1 995,34(11):389-405
    [122]Skowron A.Extracting laws from decision tables:A rough set approach. Computational Inteligence,1995,11(47):371-38
    [123]En-Wei Shi. Some Properties of the indisemibility relation in rough sets.Chinese Science Bulletin,1990,35(23):338-341.
    [124]孙长嵩,董西国,张键沛.一种基于粗糙集和决策树的最简分类规则集生成算法[J].哈尔滨工业大学学报,2002,(10):87-91.
    [125]Zhong N,Dong J Z,Ohsuga S.. Data mining based on the generalization distribution table and rough sets. Lecture Notes in artifical Intelligence,1998,1394 (256):360-373.
    [126]Bodjanova S. Approximation of fuzzy concepts in decision making. Fuzzy Sets and Systems, 1997,86(56):23-29.
    [127]M. Banerjee, S. K. Pal.Roughness of a fuzzy set[J]. Information Sciences,1996,93(3,4): 235-246.
    [128]A. Skowton, From rough set theory to evidence theory. Advances in the Dempster Shafer Theor y of Evidence[M]. New York:John Wiley & Sons Inc.,1994.
    [129]周勇,杨兴江,徐扬.属性约简的依赖度算法研究[J].计算机工程与应用,2004.4.
    [130]J. Jelonek et al. Rough set reduction of attributes and their domains for neural networks [J].Computationall ntelligence,1995,11(2):339-347.
    [131]胡可云,陆玉昌,石纯一.粗糙集理论及其应用进展[J].清华大学学报(自然科学版)2001,41(1):64-68.
    [132]王萍.粗糙集理论及其应用进展[J].南京工业职业技术学院学报,2004,4(3).
    [133]任学惠.遗传算法在粗集属性约简中的应用研究[D].兰州大学硕士学位论文,2005.5:1-43.
    [134]代建华,李元香.粗集中属性约简的一种启发式遗传算法[J].西安交通大学学报,2002.36(12):1286-1290.
    [135]崔广才,尹巧珍.一种基于遗传算法的属性约简算法[J].长春理工大学学报,2003,26(3):4-6
    [136]孙晶晶,刘粉林,刘坚强等.基于遗传算法的粗糙集属性最小约简方法[J].计算机科学,2004,31(10A):95-97.
    [137]Qinghua Hu, Daren Yu, Zongxia Xie. Neighborhood classifiers[J].Expert Systems with Applications(2006),doi:10.1016/j.eswa.20006.10.043.
    [138]Daren Yu, Qinghua Hu, Congxin Wu.Uncertainty measures for fuzzy relations and their applications, Appl. Soft Comput.J.(2006),doi:10.1016/j.asoc.2006.10.004.
    [139]Qinghua Hu, Daren Yu, Zongxia Xie. Information-preserving hybrid data reduction based on fuzzy-rough techniques[J].Pattern Recognition Letters,2006 (27):414-423.
    [140]张旭辉,龚晓南,徐日庆.边坡稳定影响因素敏感性的正交法计算分析.中国公路学报,2003,16(1):36-39
    [141]谭晓慧.平面滑动边坡的可靠度计算及敏感性分析.安徽地质,2001,11(1):49-53
    [142]夏元友,熊海丰.边坡稳定性影响因素敏感性人工神经网络分析.岩石力学与工程学报,2004,23(16):2703-2707
    [143]秦四清.非线性工程地质学导引[M].成都:西南交通大学出版社,1993
    [144]冯夏庭.智能岩石力学导论[M].北京:科学出版社.2000.
    [145]V.Vapink.The Nature of Statistical Learning Theory[M], Springer, N.Y.,1995.
    [146]Vapnik V.LevinE, LeCunY. Measuring the VC-dimension of A Learning Machine[J], Nueral Computation,1994,6;851-876.
    [147]赖永标.支持向量机在地下工程中的应用研究[硕士学位论文][D].济南:山东科技大学,2004.
    [148]黄良力.多分类支撑向量机综述.[J].中国水运(学术版),2006,Vol.6,5:72-74
    [149]许建华,张学工,李衍达.支持向量机的新发展.[J].控制与决策,2004,19(5):481-484.
    [150]杨斌,路游,基于统计学习理论的支持向量机的分类方法[J].计算机技术与发展,2006,16(11):56-58.
    [151]官理,祖峰,唐文胜.快速的支持向量机多类分类研究[J].计算机工程与应用,2008,44(5):177-179.
    [152]吴换妮.基于支持向量机的多类模式识别模型[硕士学位论文][D].重庆:重庆大学,2007.
    [153]SteveR.Gunn.Support Vertor Machines for Classification and Regression [M], University of SOuthampton 1998.
    [154]CortesC, Vapink V. Support-vertor networks. Machine Learning[J],1995,20.
    [155]SuykensJAK, JVandewalle. Least squares support vertor machine classifiers[J].Neural Proeessing Letters,1999,9(3):29-33.
    [156]柳回春、马树元.支持向量机的研究现状[J],中国图象图形学报,2002,6(6).
    [157]赵洪波,冯夏庭.基于支持向量机的岩体工程分级[J].岩土力学,2002,23(6):698-701.
    [158]冯夏庭,赵洪波.岩爆预测的支持向量机[J].东北大学学报(自然科学版),2002,23(1):57-59.
    [159]Burge C J C. A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998.(2):121-167.
    [160]John C Platt. Sequential minimal optimization:a fast algorithm for training support vector machines [R].Technical Report MSR-TR-98-14, April,21,1998.
    [161]孟海涛,刘鹏.一种改进的SVM支持向量分类方法.[J].现代电子技术,2007,1:150-152.
    [162]胡国胜,钱玲,张国红.支持向量机的多类分类算法.[J].系统工程与电子技术,2006,1,Vol.28,No.1:127-131.
    [163]刘志刚等.支持向量机在多类分类问题中的推广.[J].计算机工程与应用,2004,7:11-13.
    [164]张翔,肖小玲,徐光祐.支持向量机方法中加权后验概率建模方法[J].清华大学学报(自然科学版),2007,47(10):1689-1691.
    [165]于国荣,夏自强.混沌时间序列支持向量机模型及其在径流预测中应用[J].水利科学进展,2008,19(1):116-122.
    [166]郭丽娟,孙世宇,段修生.支持向量机及核函数研究[J].科学技术与工程,2008,8(2):487-490.
    [167]雷英杰等MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [168]李颖.基于支持向量机的煤层底板突水预测方法研究[硕士学位论文][D].北京:煤炭科学研究总院,2007.
    [169]V.Vapinl. An Overview of Statistical Learning Theory[J],IEEE Transactions on Neural Networks Vol.10.No.5pp.988-999,1999.
    [170]ChangCC, HsuCW, LinCJ. The Analysis of Decomposition Methods For Support Vector Machines[J], In Workshop on Support Vertor Machines, IJCAA,1999.
    [171]邓乃扬,田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2005.
    [172]Andrew R.Webb著.王萍等译.统计模式识别[M].北京:电子工业出版社,2004.
    [173]VapnikVN. The Nature of statistical Learning Theory[M], NY:springer Verlag,1995张学工译.统计学习理论的本质.北京:清华大学出版社,2000.
    [174]许建强,李高平.基于遗传算法的支持向量机的特征选取[J].计算机工程,2004,30(24):1-2.
    [175]陈果.基于遗传算法的支持向量机分类器模型参数优化[J].机械科学与技术,2007,26(3):347-350.
    [176]桑海峰,何大阔,张大鹏.基于支持向量机与遗传算法的发酵过程软测量建模[J].东北大学学报(自然科学版),2007,28(6):781-784.
    [177]John C Platt. Sequential minimal optimization:a fast algorithm for training support vector machines[R]. Technical Report MSR-TR-98-14.Redmond.Wash:Microsoft Research,1998.
    [178]田盛丰,黄厚宽·支持向量机多专家决策算法[J]·模式识别与人工智能,2000,13(2):165-169.
    [179]S Raudys.How good are support vector machines[J].Neural Networks,2000,13:17-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700