聚对苯二甲酰对苯二胺液晶溶液性质及其纤维成形工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对苯二甲酰对苯二胺(Poly(p-phenylene terephthalamide),PPTA)纤维是一种高性能的芳香族聚酰胺纤维,在航空航天、国防、复合材料等方面都有重要应用。本文利用热台偏光显微镜观察PPTA溶解过程及其溶液的液晶现象;通过差式量热扫描分析PPTA分子量、质量分数等因素对其液晶溶液熔融温度及相转变温度的影响;采用平板旋转流变仪研究PPTA-H_2SO_4液晶溶液的动态流变性质,分析讨论溶液温度、PPTA分子量及其分布、质量分数对复数黏度、损耗角正切、储能模量、损耗模量等参数的影响。通过对实验结果的数学拟合得到PPTA-H_2SO_4液晶溶液的非牛顿指数、零切黏度、松弛时间、黏流活化能等参数,以及建立了零切黏度与重均分子量之间的经验公式。通过上述实验结果分析为后续的纺丝工艺提供理论依据。采用双螺杆快速溶解得到PPTA-H_2SO_4液晶溶液进行纺丝。纺丝过程中通过改变纺丝溶液固含量、纺丝压力、喷丝板孔径、喷头拉伸比、卷绕速度、凝固浴温度和配比等因素研究其对纤维性能的影响;通过X-射线衍射、应力松弛、TG等实验手段深入研究纤维的结晶、取向等结构因素对其性能的影响。尝试在不同温度,不同停留时间和不同张力条件变化对纤维的机械性能的影响,初步探索得到高模PPTA纤维的热处理工艺。
     在PPTA溶解过程中是先溶胀后溶解,溶解一定时间后,PPTA溶液会出现液晶现象,在剪切作用下液晶现象更加明显。比较进口与自制PPTA配制的液晶溶液在偏光显微镜下拍摄的图片没有明显差别。采取先升温再降温再升温的过程进行差式量热扫描分析得到的相转变温度更为准确;升温时吸热峰均随PPTA的质量分数和分子量的升高向高温移动;当PPTA质量分数未达到19.5%时其溶液的熔融峰和相转变峰完全重合,在其熔融过程中同时伴随着相转变;反之,相转变过程在高于熔融温度下进行。PPTA-H_2SO_4液晶溶液是典形的切力变稀流体,随剪切频率的升高溶液的复数黏度迅速降低,损耗模量和损耗角正切tanδ逐渐升高并趋于缓慢增加,储能模量曲线几乎不变化;复数黏度、储能模量、损耗模量、损耗角正切随着溶液中聚合体质量分数和分子量的增加曲线上移,随着温度的提高而下移。PPTA-H_2SO_4液晶溶液流动曲线满足幂律方程,通过拟合得到非牛顿指数n都很小,严重偏离牛顿流体;n值随溶液中PPTA质量分数的升高、温度的降低、PPTA分子量增加而下降,但几方面对刀的变化影响都不大。PPTA-H_2SO_4液晶溶液满足Cross- Williamson方程,通过拟合得到零切黏度和松弛时间都随溶液质量分数的升高、温度的降低、PPTA分子量增加而上升;PPTA-H_2SO_4液晶溶液有很高的粘流活化能ΔE_η,随着溶液中PPTA质量分数和分子量的增大而略有增大。采用WLF方程根据时温等效原理将流动曲线最大扫描频率100rad·s~(-1)拓宽至接近1000rad·s~(-1)。不同温度下的logη_0~logM_w关系图,可以得到零切黏度η_0与重均分子量M_w之间的关系。vGP图中分子量越大相角的最小值就越小,平台模量G_N~0=1.92E5。分子量分布不改变vGP图的形状,自制的聚合体比进口聚合体略窄。
     随着拉伸倍数的提高,喷出速度的降低,纺丝温度和纺丝原液固含量增加和聚合体比浓对数粘度的增大,纤维的断裂强度和初始模量均有显著增加,纤维断裂伸长率下降。喷出速度和拉伸倍数对纤维取向度的影响不明显;同时随喷出速度的增加纤维的结晶度变化不大,随拉伸倍数的增加,纤维结晶度增加,应力松弛率降低。较理想的纺丝工艺参数:浆液温度:80℃;浆液浓度:19%;喷丝板孔径:0.07mm;喷出速度:25~40m/min;拉伸倍数:6~7;凝固浴浓度:8~10%H_2SO_4;凝固浴温度:5℃;纺丝原液不能放置时间较长。
     随着纤维热处理温度的升高,纤维的断裂强度和断裂伸长率在下降,而初始模量在上升,断裂伸长率的CV值也在增加。随着停留时间的增加,热处理后纤维的断裂强度和初始模量先增加后下降,而断裂伸长率减小,其CV值不断增加;随着温度的增加,纤维热处理的停留时间越短,其断裂强度和初始模量越容易达到最大值。随着热处理中张力的增加,纤维的断裂强度和初始模量先增加后降低,断裂伸长率持续减小,断裂伸长率的CV值持续上升;随着温度的升高,纤维热处理的最佳张力降低。因此,进行张力热处理有助于提高纤维的断裂强度和初始模量。纤维初始模量和热处理后的模量是近似线性关系。随着纤维初始模量的增加,热处理后纤维的模量也在增加。热处理后,纤维的取向度有小幅的变化,结晶度的增加更加明显;热处理温度和张力的变化对纤维取向度和结晶度的影响不明显;随着热处理停留时间的增加,结晶度继续有小步的增加;随着热处理张力的增加,纤维的应力松弛率先下降后上升。
     本论文研究的主要创新点:(1)通过差式量热扫描两次升温法分析研究PPTA液晶溶液熔融及相转变过程。(2)系统分析了PPTA-H_2SO_4液晶溶液的动态流变性,及其影响因素。(3)建立了零切黏度与重均分子量之间的经验公式。(4)采用双螺杆快速溶解得到PPTA-H_2SO_4液晶溶液进行纺丝,制备出高强度、高模量的PPTA纤维。(5)直接热处理纺丝得到的PPTA纤维,制备出高模型PPTA纤维。
Poly(p-phenylene terephthalamide)(PPTA)fiber is one of aromatic polyamide fibers with high performances and used widely in aviation,national defense, composite material and other industries.The resolving process of PPTA and its appearance of liquid crystalline(LC)were observed by micropolariscope with plate heating.Effect of molecular weight(MW)and weight concentration of PPTA on its melting temperature(T_m)and phase transition temperature(T_(trans))were analyzed by differential scanning calorimetry(DSC).Dynamic rheological properties of LC solution,effect of solution temperature,molecular weight(MW)and its distribution (MWD)of PPTA,weight concentration on complex viscosity(η(?)),loss tangent (tanδ),storage modulus(G′),loss modulus(G″)and so on,were studied with plate rotational rheometer,and parameters of PPTA-H_2SO_4 LC solution,non-Newton Index (n),zero shear viscosity(η_0),relaxation time(λ)and viscous activation energy(△E_η) were concluded and an empirical formula betweenη_0 and average viscosimetric molecular weight(M_W)was founded by fitting the experiment results with mathematic formulas.All of these conclusions are important references for the future spinning process.PPTA-H_2SO_4 LC solution was prepared by twin-screw for spinning. Effect of PPTA weight concentration,pressure,spinneret orifice number,draw ratio, wind-up speed,temperature and concentration of coagulation bath,et al,on fiber properties were discussed.Technology of heat-treating to get high-modulus fiber was investigated according to temperature,staying time and tension.
     In dissolving process,PPTA particles was swelling,then dissolving,and a few minutes later LC was appeared and more clearly with shearing.There was no obvious difference in micropolariscope photos of LC solution between imports and own.The T_(trans)was more accurate in process of heating,cooling and heating again by DSC,and the endothermic peak moved to higher temperature with raise of weight concentration and MW of PPTA.Phase transition was undergoing higher than T_m if weight concentration is larger than 19.5%,otherwise,melting peak and phase transition peak overlapped in melting process.LC solution is shearing sensitive liquid,η(?)decreased immediately,G″and tanδrose and G′was almost never changed,when shear rate((?))increased.The curves ofη(?),G″,G′and tanδwere higher with raise of weight concentration and MW,and lower with raise of temperature.The flow curves of LC solution fit with the Power Law and n,obtained by the Power Law,is very small,which means the solution deviated the Newton Liquid seriously.The n decreased when weight concentration and MW increased,when temperature decreased,and all these factors made tittles effects on it.The flow curves of LC solution fit with the Cross-Williamson Equation,andη_0 andλ,obtained by the equation,increased when PPTA weight concentration and MW increased,when temperature decreased.△E_ηof LC solution is large and larger a little as PPTA weight concentration and MW increased.The maximum scanning frequency(ω)of flow curves is 100rad·s~(-1)extending near to 1000rad·s~(-1)using the WLF Equation according to the Time-Temperature Equivalence Principle.Relation betweenη_0 and M_W were received according to the figures of logη_0~logM_W in different temperature. In vGP figure,minimum of phase angle is smaller as M_W is larger,plate modulus G_N~0=1.92E5,and MWD wouldn't change the vGP shape,and own's is a little narrow than imports'.
     Breaking tenacity and initial modulus of PPTA fiber rose and elongation at break declined,when draw ratio rise,when spinning speed declined,when spinning temperature,weight concentration andη_(inh)of PPTA increased.Effect of spinning speed and draw ratio on fiber orientation is not obvious,and effect of spinning speed on fiber crystallinity is also not distinct,while fiber crystallinity increased,stress relaxation decreased with raise of draw ratio.The favorable parameters in spinning process are:dope temperature is 80℃;PPTA weight concentration is 19%;diameter of spinneret orifices is 0.07mm;spinning speed is 25~40m/min;draw ratio is 6~7; coagulation concentration is 8~10%H_2SO_4;Coagulation temperature is 5℃; spinning dope should be used as soon as possible.
     Breaking tenacity and elongation at break of fiber declined when heat-treating temperature rose,while initial modulus and its CV(coefficient of variation)increased. Breaking tenacity and initial modulus increased,then decreased,and elongation at break declined,its CV increased when staying time rose.Breaking tenacity and initial modulus reach the maximum more easily if heat-treating temperature rise and staying time shorten.When heat-treating tension increased,breaking tenacity and initial modulus increased,then decreased,and elongation at break decreased and its CV increased;when heat-treating temperature increased,appropriate tension of fiber heat-treating decreased.Relationship between initial modulus and heat-treated modulus is almost linear.Effect of heat-treating temperature and tension on fiber orientation and crystallinity is very little,its crystallinity increased a little with raise of staying time.Fiber stress relaxation decreased,then increased with increase of heat-treating tension.
     The new ideas mainly brought forward in this paper were as follows:(1) Melting and phase transition process of PPTA-H_2SO_4 LC solution is studied by the way of DSC.(2)Dynamic rheological properties and its influence factors are analyzed systemically.(3)An empirical formula betweenη_0 and M_W is founded.(4) PPTA fiber with high-tenacity,high-modulus is gained whose spinning dope is prepared in twin-screw.(5)PPTA fiber with higher modulus is prepared by means of heat-treating directly.
引文
[1]高田忠彦(日).对位形芳纶的性能和应用[J].高科技纤维与应用,1998,(6):40-44.
    [2]Takashi Noma.Properties and Application of Aramid Fibers[J].SEN'I GAKKA ISHI.2000,56(8):241-247.
    [3]S.阿达纳编,徐朴,叶亦梁,童步章译.产业用纺织品手册[M].北京:中国纺织出版社,2000.
    [4]罗益锋,迈入大发展期的世界高科技纤维[J].化工新形材料,2001,29(9):1-6.
    [5]我国高性能化纤产业芳纶逐渐进入快速发展期.中国纺织经济信息网,2007-5-14.
    [6]“王牌纤维”生产将打破美日技术垄断.中国教育网,2007-11-27.
    [7]东华大学.聚对苯二甲酰对苯二胺的合成方法.CN200610023364.7(2006)
    [8]东华大学.一种高剪切速率纺制聚对苯二酰对苯二胺纤维的方法.CN200510030946.3(2005).
    [9]东华大学.一种连续化制备聚对苯二甲酰对苯二胺树脂的方法.CNZL200510025709.8(2005).
    [10]东华大学.一种连续化制备聚对苯二甲酰对苯二胺纤维的方法.CN20051002508.3(2005).
    [11]上海艾麦达化纤科技有限公司.均一性聚对苯二甲酰对苯二胺纤维的制备.200710036252.x(2007)
    [12]东华大学.半连续化直接缩聚法制备对位芳纶浆粕.CNZL02136979.8(2002).
    [13]东华大学.对苯二甲酰对苯二胺浆粕状纤维的制备方法.CNZL02138112.7(2002).
    [14]上海艾麦达化纤科技有限公司.聚对苯二甲酰对苯二胺聚合用溶剂回收新方法.CN200710039497.8(2007)
    [15]上海艾麦达化纤科技有限公司.聚对苯二甲酰对苯二胺树脂的制造新工艺.CN200710036244.5(2007)
    [16]上海艾麦达化纤科技有限公司.制造均一性聚对苯二甲酰对苯二胺纤维的 连续脱泡装置.CN200720066149.5(2007)
    [17]上海艾麦达化纤科技有限公司.制造均一性聚对苯二甲酰对苯二胺纤维的凝固浴装置.CN 200720066150.8(2007)
    [18]上海艾麦达化纤科技有限公司.聚对苯二甲酰对苯二胺聚合用组合式双螺杆挤出机.CN 200720068969.8(2007)
    [19]上海艾麦达化纤科技有限公司.上海艾麦达化纤科技有限公司.聚对苯二甲酰对苯二胺聚合用溶剂回收装置.CN 200720068970.0(2007)
    [20]东华大学.含2,4-二(4-氨基苯基)-2,3-二氮杂萘-1-酮的PPTA及其制造方法.CN 200510112181(2005)
    [21]东华大学.半连续化制备聚对苯二甲酰对苯二胺树脂的方法.CN200310109431(2003)
    [22]东华大学.一种2-(4'-氨基苯甲酰基)苯甲酸的合成方法.CN 200510110679(2005)
    [23]对位芳纶中试研究通过技术鉴定.中国纺织报,2007-12-05.
    [24]王曙中,王庆瑞,刘兆峰编著.高技术纤维概论[M].上海:中国纺织大学出版社,1999:329.
    [25]H P Ki,W Shiji,K Masa-aki,et al.Rapid Synthesis of Aromatic Polyamides by Microwave-Assisted Directed Polycondensation of Aromatic Diamines with Aromatic Dicarboxilic Acids[J].Polymer journal.1993,25(2):209-213.
    [26]I Yoshkio,N Hisashi,W Shiji,et al.A New and Rapid Synthesis of Aliphatic Polyamides by Microwave-assisted Polycondensation of ω-amino Acids and Nylon Salts[J].Polymer journal.1996,28(3):256-260.
    [27]H.Bernhard,Glomm,C.G Markus.Arrangement of Substituted,Rigid-rod Rramids in the Highly Ordered Solid State[J].Macromoleculer Chemistry and Physics.2000,201:1476-1486.
    [28]W.C.Chen,J.A.Sauer,M.Hara.Ionic Poly(p-phenyleneterephthalamide):Solubility and Thermal Stability[J].Journal of Polymer Science:Part B:Polymer Physics.2001,39(22),2653-2663.
    [29]J.K.Seog,I.H.Sung,R.P.Chong.Preparation and Properties of Aromatic Polyamide Homologs Containing Chlorine Substituent[J].Journal of Applied Polymer Science,2000,77(6):1387-1392.
    [30]Herbert Blades,Hockessin,Del.High Strength Polyamide Fibers and Films.USP 3,869,429.1972.
    [31]T.I.Bair,et al.Poly(1,4-phenyleneterephthalamides).Polymerization and Novel Liquid-Crystalline Solution[J],Macromolecules.1977,10(6):1396-1400.
    [32]H.P.JIN,R.M.San.Process for Preparing Aromatic Polyamide Fibre and Film.EP316486A1,1987.
    [33]Mera,et al.Process for Producing Polyamides with Lactam or Use a Solvent and CaC12.USP 4 172 938.1979.
    [34]Vollbracht,Veerman,J.Teunis.Process For the Preparation of Poly-p- pheny leneterephthalamide.USP 4,308,374.1981.
    [35]肖若鉴,等.N-甲基吡咯烷酮—氯化钙溶剂体系中对苯二胺与对苯二甲酰氯低温溶液缩聚的研究[J].华东纺织工学院学报,1981,(7)3:107-115.
    [36]李繁亭,王曙中,肖若鉴,等.吡啶类添加剂存在下对苯二甲酰氯与对苯二胺的低温溶液缩聚[J].中国纺织大学学报,1986,12(1):69-71.
    [37]洪定一,吕占霞,等.溶致液晶聚对苯二甲酰对苯二胺的合成及性能[J].合成聚合体及塑料.1994,11(4):9-15.
    [38]化工部晨光研究院第四室,芳纶Ⅱ形树脂连续缩聚工艺及设备研究.产业用纺织品(芳纶学术论文专辑)[J],1988:20-28.
    [39]潘育英,蔡柏龄,周助胜.高粘度聚对苯二甲酰对苯二胺的制备方法及设备.CN 1048710A,1999.
    [40]J.Preston,L.Hofferbert.Preparation of Polyamides via the Phosphorylation Reaction.Ⅰ:Wholly Aromatic Polyamides and Polyamide-Hydrazides[J].Journal of Polymer Science Symposia,1978,65(1):13-27.
    [41]J.Preston,L.Hofferbert.Preparation of Polyamides via the Phosphorylation Reaction.Ⅱ:Modification of Wholly Aromatic Polyamides with Trifunc tional Monomers[J].Journal of Applied Polymer Science,1979,24(4):1109-1113.
    [42]F.Higashi,et al.Wholly Aromatic Polyamides by the Direct Polycondensation Reaction Using Triphenyl Phosphite in the Presence of Poly(4-vinylpyridine) [J].Journal of Polymer Science:Polymer Chemistry Edition,1980,18(3):851-856.
    [43]F.Silver,et al.Aromatic Polyamides II:Synthesis,Wet-spinning,and fiber Thermal Characterization of Poly(4,4'-oxanilideterephthalamide)and Copol ymers with 4,4'-oxydianiline or lsophthalic Acid[J].Journal of Polymer Science:Polymer Chemistry Edition.1978,16(9):2141-2149.
    [44]Silver.Process for Preparing Anisotropic Oleum Dopes of Polyamides by Polymerizing in Sulfur Trioxide.USP 4,148,774.1979.
    [45]F.Higashi,et al.High-molecular-weight Poly(p-phenylenetere phthalamide)by the Direct Polycondensation Reaction with Triphenyl Phosphite[J].Journal of Polymer Science:Polymer Chemistry Edition.1982,20(8):2081-2087.
    [46]戴信飞,王新威,尤秀兰,等.PPTA共缩聚改性研究现状[J].高科技纤维与应用.2004,29(4):30-36.
    [47]H.M.Caesar著.PPTA的制造工艺与应用[J].国外纺织技术,2001,(3):1-7.
    [48]YoTSUMoTo,TOSHIHIRO,IMA1 ISAMU.Pneum Atic Tire Having Bead Section Reinforcing Layer.JP 62,131804.1987.
    [49]于燕生,周其庠,赵安赤,等.聚芳酰胺共缩聚改性的研究[J].高分子材料科学与工程,1989,9(5):10-16.
    [50]V.F.Shashoua,W.M.Lareckson.Interfacial Polycondensation.V.Poly(tereph thalamide)s From Short-chain Aliphatic,Primary and Secondary Diamines[J].Journal Polymer Science,1959,40(137):343-358.
    [51]P.W.Morgan,Condensation Polymer by Interfacial and Solution Methods[M].Wiley,New York,1965.
    [52]Angelo,Rudolph John,et al.Gas-barrier Coated Films,Sheets or Foils and Method of Preparation.USP 4,104,438.1978.
    [53]R.H.Ikeda,K.Jangelo,et al.Polymerization From the Vapor Phase I:Poly(pphenyleneterephthalamide)Gas Barrier Coatings[J].Journal Applied Poly mer Science.1980,25(7):1391-1405.
    [54]Skin,Hyunkook.Vapor-phase Preparation of Aromatic Polyamides.USP 4,009,153.1977.
    [55]潘智存,黄健,杨毅,等.聚对苯二甲酰对苯二胺在浓硫酸中溶解规律的研究[J].合成化纤工业,1985,(4):12-17.
    [56]潘智存,范奎城,顾军,等.高分子量聚对苯二甲酰对苯二胺硫酸溶解热稳定性的研究[J].合成化纤工业.1989,12(3):34-36.
    [57]管宝琼.芳香族聚酰胺液晶的特性及纺丝[J].合成纤维.1979,8(1):28-39.
    [58]王曙中.芳香族高性能纤维[J].合成纤维工业.1998,21(6):24-27.
    [59]尤秀兰,刘兆峰.芳纶浆粕纤维制备技术的研究进展[J].高分子材料科学与工程.2003,19(3):45-48.
    [60]王祖明,袁宝庆.芳香族聚酰胺纤维生产技术与应用[J].高科技纤维与应用.2004,29(5):40-45.
    [61]H.M.Caesar著.PPTA的制造工艺与应用[J].袁力强译.国外纺织技术,2001,(3):1-7.
    [62]Roelofs,Wilhelmus Marie,et al.Process for Making Fibres From Poly(p-phenylene terephthalamide).USP 5,882,563.1999.
    [63]GMiess,P.Klien.Aromatic Copolyamides,Process for their Preparation and Shaped Articles Thereof.EP 522418.1995.
    [64]Lee,Kiu-Seung.Solution of PPD-T and PVP and Articles Made There From.USP 5,523,034.1996.
    [65]李同起,王成扬.芳纶的制备及其微观结构与测试方法[J].合成纤维工业,2002,25(4):31-34.
    [66]田所宏行,纤维と工业[J].1978,34(3):89.
    [67]#12
    [68]顾丽霞.Kevlar纤维的结构、性能及应用[J].上海纺织工学院学报,1980,6(2):74-81.
    [69]王曙中,王庆瑞,刘兆峰.高科技纤维概论[M].上海:中国纺织大学出版社:307-338.
    [70]孙酣经,柴宗花.高性能化工材料及其应用(二)-芳纶纤维及其应用[J].化工新形材料,998(5):41-43.
    [71]韩秀山.汽车用芳纶的发展[J].橡胶工业.2003,50(10):636-637.
    [72]郭晓玲,李龙.高强高模纤维在高科技产业领域中的应用[J].产业用纺织品,2002,39(4):26-29.
    [1]潘智存,黄健,杨毅,等.聚对苯二甲酰对苯二胺在浓硫酸中溶解规律的研究[J].合成纤维工业,1985,8(4),12-17.
    [2]范星河主编.图解液晶聚合物——分子设计、合成和应用[M].北京:化学工业出版社,2005:59-61.
    [3]车明国,曹煜彤,于俊荣,等.聚对苯二甲酰对苯二胺-硫酸溶液体系的流变性质的研究[J].合成纤维,2006,35(2):22-24.
    [4]何家骏.高分子溶液理论导论[M].兰州:兰州大学出版社,1989,89-105
    [5]陈希,黄象安主编.化学纤维实验教程[M].北京:纺织工业出版社,1988:50-57.
    [6]M ARPIN,C STRAZIELLE.Characterization and Conformation of Aromatic Polyamides:poly(l,4-phenylene terephalamide)and poly(p-benzamide)in Sulphuric Acid[J].Polymer,1977,18:591.
    [7]江体乾主编.化工流变学[M].上海:华东理工大学出版社,2004:82-84.
    [8]车明国.聚对苯二甲酰对苯二胺的聚合和溶解工艺的研究(东华大学硕士论文),2005:52-54.
    [9]Rommel H,Forster G Topology of the Ternary Phase System Poly(pphenyleneterephalamide)-Sulphuric Acid-Water[J].Macromolecules,1994,27(16):4570-4573.
    [10]Lin J.P,Wu H.R,Li S.J.Kinetics of Phase-transition in Lyotropic Liquid-Crystalline Polymers[J].Polymer International,1993,32(4):339-342.
    [11]吴其晔,巫静安主编.高分子材料流变学导论[M].北京:化学工业出版社,1994:51-53.
    [12]梁伯润主编.高分子物理学[M].北京:中国纺织出版社,2000:226-230.
    [13]吴其晔,巫静安主编.高分子材料流变学导论[M].北京:化学工业出版社,1994:62.
    [14]Cox WP,Merz EN.Correlation of dynamic and steady flow viscosities[J]. Journal polymer science.1958,28:619-622.
    [15]何曼君主编.高分子物理[M].上海:复旦大学出版社,1998,263.
    [16]周持兴主编.聚合物实验与应用[M].上海:上海交通大学出版社,2003:3.
    [17]金日光主编.聚合物流变学及其在加工中的应用[M].北京:化学工业出版社,1986:50-52.
    [18]Laverenko P N,Okatova O V.Thermal Flexibility of Aromatic Polyamide Chains in Solution from Viscometric Analysis[J].Journal of Polymer Science Part B-Polymer Physics.1993,31(6):633-640.
    [19]金日光主编.聚合物流变学及其在加工中的应用[M].北京:化学工业出版社,1986:246-249.
    [20]周持兴主编.聚合物实验与应用[M].上海:上海交通大学出版社,2003:4.
    [21]Trinkle S,Friedrich C.van Gurp-Palmen plot:a way to characterize polydispersity of linear polymers[J].Rheol Acta,2001,40:322-328.
    [1]王曙中,王庆瑞,刘兆峰.高科技纤维概论[M].上海:中国纺织大学出版社.320-324.
    [2]董纪震,孙桐,古大治.合成纤维生产工艺学(上册)[M].北京:纺织工业出版社,1981:96-139.
    [3]高绪珊,吴大诚等.纤维应用物理学[M].北京:中国纺织出版社,2001:533-539.
    [4]芳纶1414鉴定技术报告.华东纺织工学院,合成纤维研究所,1980:3-7.
    [5]Blades H.High Strength Polyamide Fibers and Films.US:3,869,429,1975.
    [6]黄彬,吴清基,朱介民,等.PPTA纤维高速纺丝新工艺[J],中国纺织大学学报,1981,16(2):23-29.
    [7]何曼君,陈维孝,董西侠.高分子物理(修订版)[M].上海:复旦大学出版杜.2005:261-271。
    [8]V.N.Kiyaoglu,T.A.Rozhdestvenskaya,L.D.Serova.Rheological Properties of Liquid-crystalline Solutions of Poly(p-phenylene terephthalamide)and Behavior of the Jet in Spinning Through an Air Space[J].Fiber Chemistry,1997,29(2):81-86.
    [9]S.J.Picken,S.van der Zwaag,M.GNortholt.Molecular and Macroscopic Orientational Order in Aramid Solutions:A Model to Explain the Influence of Some Spinning Parameters on the Modulus of Aramid Yarns[J].Polymer.1992,33(14):2998-3005.
    [10]H.H.Yang.Aromatic High Strengh Fibers[M].The United States of America:A Wiley-interscience Publication.1989:207-216.
    [11]车明国.聚对苯二甲酰对苯二胺的聚合和溶解工艺的研究(东华大学硕士论文),2005:41-49.
    [12]V.N.Kiya-Oglu,A.V.Volokhina.Some Parameters of Spinning Poly(p-phenyl ene terephthalamide)Fibres Through An Air Gap[J].Fiber Chemistry,1998,30(2):77-80.
    [1]尤秀兰,刘兆峰.芳纶浆粕纤维制备技术的研究进展[J].高分子材料科学与工程,2003,19(3):45-48.
    [2]王曙中.芳香族高性能纤维[M].合成纤维工业,1998,21(6):24-27.
    [3]芳纶1414鉴定技术报告.华东纺织工学院,合成纤维研究所,1980:3-7.
    [4]张盛庆,楼银香,宝净生,等.聚对苯二甲酰对苯二胺纤维的热处理(一)[J].合成纤维工业,1984,7(3):16-19.
    [5]吴宗铨,黄彬,张安秋,等.热处理对PPTA纤维的序态及机械性能的影响[J].中 国纺织大学学报,987,13(5):28-35.
    [6]美国杜邦公司Kevlar纤维[J].合成纤维技术.1977,增刊.
    [7]楼银香,张盛庆,宝净生.聚对苯二甲酰对苯二胺纤维的热处理(二)[J].合成纤维工业,1984,7(4):38-40.
    [8]朱介民,吴清基,阮毛娣,等.芳纶纤维的耐疲劳分析[J].中国纺织大学学报,1987,13(4):19-23.
    [9]David T,Grubb,Keshav Prasad.Small-angle X-ray Diffraction of Kevlar Using Synchrotron Radiation.Polymer,1991,32(7):1167-1172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700