聚对苯二甲酰对苯二胺(芳纶1414)聚合技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳纶,尤其是对位芳纶(以下简称PPTA)以其特有的高拉伸强度和热稳定性能成为三大高性能纤维中使用量最大,应用范围最广的产品。由于PPTA纤维生产工艺繁琐,且需要溶解在浓硫酸中进行纺丝,因此直到目前一直由少数发达国家掌控着世界90%以上的市场。
     随着我国高新技术产业的发展和国防力量的需求,国内对PPTA纤维的需求日益显著。国内外在制备PPTA聚合物时,主要是在添加CaCl2为助溶剂的NMP溶液中进行反应。由于NMP极易吸水,因此国内生产的NMP普遍具有含水率高的缺点,这就会造成TPC单体极易水解失活。尽管高品质的NMP可以从日本进口获得,但是溶剂的回收问题尚未得到解决,在生产成本上极大的制约了我国对位芳纶的产业化进程。
     本论文采用低毒低盐的DMAC-LiCl体系作为反应场所,首先在探讨了传统PPTA在DMAC-LiCl体系中的聚合工艺条件,制得的聚合物ηinh≥3.88。通过红外、热失重分析验证了其结构与热稳定性能,制得的二元聚合物分解温度高达550℃,并利用偏光显微镜观察到了聚合物在纺丝浓度下特有的液晶性能,结果表明聚合物的化学性质与国外样品Kevlar 29基本一致。
     针对PPTA只能溶解在浓硫酸的问题,本论文在通过共聚的方法将第三单体4,4'-二氨基二苯醚引入,当第三单体添加量占二胺类单体物质的量浓度≥40%时,聚合溶液由凝胶体系变为透明均匀稠厚的浆液,这与XRD观察其结晶状态一致,并使用多种有机溶剂对共聚物进行了溶解性测试,共聚物的溶解性能得到极大的提高,并且能再次溶于酰胺-碱金属溶剂体系中。利用红外证明了共聚物结构,并通过热失重分析的方法研究了共聚物的热稳定性,结果表明了共聚物在氮气气氛下于530℃才开始分解,仍然为一种优良的耐热材料。通过沉析法结合扫描电镜对制得的共聚物进行形态观察,结果表明制得的共聚物在凝固浴体系中为DMAC/H2O为30/70时,具有良好的成纤形态。
     PPTA类聚合物的溶解问题还限制了部分表征手段对聚合物的分析测试工作,因此本论文采用烷基化的方法彻底破坏了聚合链的氢键结构,并对产物进行了GPC测试,进一步表明,在DMAC-LiCl体系中制得的二元聚合物和三元共聚物具有分子量分布窄小的优点。
Aramid fiber, especially the para-aromatic fiber(hereinafter PPTA) depending on the largest consumption and wide application rang has occupy a dominant position in the three kinds of high performance fibers due to the excellent mechanical property and thermal properties.Until now, the few capitalist countries grasp more than 90% of the world market because of the complex production process, furthermore, to obtain the PPTA fiber, the polymer must be dissolved in the concentrated sulfuric acid.
     With the development of the high-tech industry and the national defense demand, the requirement of PPTA is more and more significant. The polymer of the PPTA is prepared from the solvent system of NMP-CaCl2 in the domestic and overseas. However, the moisture content of the domestic NMP is too high to be used in the polymerization of PPTA, because that the TPC is liable to be hydrolyzed. Though the high quality NMP can be import from the Japan, the problem of solvent recovery is not yet solved. All the matters caused the cost problem restrict the industrialization process of PPTA.
     In this paper, we used the low toxicity and low salinity DMAC-LiCl solvent system as the reaction zones. The polymerization process of general PPTA was researched in the DMAC-LiCl solvent system, and theηinh of the polymer was≥3.88. The FT-IR was used to characterize the structure, and the TGA was used to detect the thermal stability of the polymer, the result showd that the decomposition temperature of the polymer was 550℃, and the liquid crystalline properties of polymer was also analyzed by means of polarizing microscope. The result showed that all the property of the polymer was consistent with that of Kevlar29.
     Aiming at the problem that the polymer only can be dissolved in the concentrated sulfuric acid, the 4,4'-diaminodiphenyl is added to change the structure of PPTA. When the 4,4'-diaminodiphenyl content was more than 40mol% of the diamine, the copolymer solution were changed from gel system to well distributed heavy-bodied state, and the solubility behavior is consisted with the result of XRD studies. We also chose some typical organic solvent to examine the dissolving ability of the copolymer, the solubity of the copolymer is obvious improvement. The structure of the copolymer was characterized by FT-IR. The thermal stability was studied by means of TGA. Method of coagulation bath precipitation combined with SEM are used to observe the morphology of copolymer, the result showed that the copolymer performs good fiber-forming property.
     The poor dissolving capacity also limited the characterization methods to analyze the performance of PPTA and modified PPTA, and the alkylation method was introduced to break the hydrogen bonding structure of the polymer in order to use the GPC to test the molecular weight distribution. The consequence further suggested that the PPTA polymer and copolymer which were synthesized in the DMAC-LiCl solvent system had the advantage of narrow molecular weight distribution.
引文
[1]A.谢皮斯基.纤维成形基本原理:制造纤维的纺丝和拉伸的科学[M].上海:上海科学出版社,1983.
    [2]日本纤维机械学会纤维工学出版委员会.纤维的形成、结构及性能[M].北京:纺织工业出版社,1988.
    [3]王曙中.高科技纤维概论[M].上海:中国纺织大学出版社,1999.
    [4]汪家铭.高强高模聚乙烯纤维发展概况与应用前景[J].精细化工原料及中间体,2009,8:16-21.
    [5]张野.芳香族聚酰胺纤维的制备及应用[J].化工科技市场,2010,33(7):34-37.
    [6]肖长发.高性能纤维发展概况[J].纺织导报,2005,9:50-60.
    [7]顾超英.国内外高性能纤维的发展与前景分析[J].化工文摘,2007,4:20-22.
    [8]黄关葆.高性能纤维[J].化工新型材料,2005,33(10):9-11.
    [9]西鹏,李文刚.高技术纤维[M].北京:化学工业出版社,2004.
    [10]B.V.法凯著,张书绅译.合成纤维(下册)[M].纺织工业出版社,北京:1988.
    [11]肖长发,纤维复合材料-纤维、基体、力学性能[M].北京:中国石化出版社,1995.
    [12]赫尔.高性能纤维[M].上海:东华大学出版社,2004.
    [13]张树钧.改性纤维与特种纤维[M].北京:中国石化出版社,1995.
    [14]李新新,张慧萍,晏雄.芳纶纤维生产及应用状况[J].天津纺织科技,2009,3:04-09.
    [15]孙茂键,宋西全.我国问位芳纶产业的发展现状用前景[J].纺织导报,2007,12:65-68.
    [16]Herbert Blades, Hockessin, Del. High modulus,high tenacity poly(p-phenylene terephthalamide)fiber [P].US, Pat:3869430,1975.
    [17]Rtuichi Kakihara, Takashi Noma, Aromatic Polyamide Bristle[P].US, Pat:6033778, 2000.
    [18]李哗.对位芳纶的发展现状、技术分析及展望[J].合成纤维,2009,9(3):1-5.
    [19]高田忠彦.对位芳纶的性能和应用[J].高科技纤维与应用,1998,23(6):40-44.
    [20]Y.Rao, A. J. Waddon, R. J.Farris. Structure-property relation in poly(p-phenylene terephthalamide) (PPTA) fibers, Polymer[J].2001(42):5937-5946.
    [21]Y.Rao, A. J. Waddon, R. J. Farris. The evolution of structure and properties in poly(p-phenylene terephthalamide)fibers,Polymer[J].2001 (42):5925-5935.
    [22]杨拯,潘婉莲,曹煜彤,王新威,刘兆峰.芳纶1414的聚合研究[J].材料导报,2006,3:10-13.
    [23]刘雄军,余万能,何晓东.芳纶纤维的合成方法及纺丝工艺的研究进展[J].化工技 术与开发,2006,35(7):14-18.
    [24]刘安华,陆林,黎继荣.芳纶环保轮胎的制造与性能研究[J].轮胎工业,2007,7:417-421.
    [25]赵启林,王建民,孙玉平.芳纶浸渍帘布的研究开发[J].轮胎工业,2002,10:593-597.
    [26]钱伯章.芳纶的发展现状与市场[J].新材料产业,2009,1:40-44.
    [27]黎继荣.芳纶材料在高性能轮胎中的应用[J].中国橡胶,2007,23(24):31-36.
    [28]徐学忠.汽车用芳纶的发展[J].橡胶工业,2003,50(10):636-637.
    [29]Jeng-Shyong Lin.Effect of surface modification by bromination and metalation on Kevlar fibre-epoxy adhesion[J].European Polymer Journal,2002,38(1):79-86.
    [30]邓杰.芳纶/环氧复合材料性能研究[J].高科技纤维与应用,2008,33(2):6-11.
    [31]张国庆,游阳明.高性能芳纶纤维/环氧树脂复合材料在混凝土结构加固中的应用[J].高分子通报,2006,6:98-101.
    [32]R.H.Ericksen. Effect of folding on the strength of Kevlar 29 and nylon parachute materials[J]. Fibre Science Technology,1981,15(3):161-172.
    [33]黄新武,王廷梅,田农等.芳纶纤维增强丁腈橡胶的摩擦性能[J].合成橡胶工业,2006,29(6):451-453.
    [34]刘鹏涛.含二氮杂萘酮结构新型聚芳酰胺树脂的合成及性能研究[D].大连:大连理工大学,2006.
    [35]杨小兵,程晓农,严学华,杨娟.芳纶无纬布的制备及其抗弹性能研究[J].高科技纤维与应用,2007,32(3):20-23.
    [36]郭泓,何盼,覃兆平等.芳纶/酚醛复合防弹体系成型工业技术研究[J].玻璃钢/复合材料,2002,4:30-32.
    [37]H.Higashi,S.Ogata,Y.Aoki,High-molecular weight poly(p-phenylene terephthalamide) by the direct polycondensation reaction with triphenyl phosphate[J]. Journal of Polymer Science.PartA:Polymer Chemistry.1982,20(8):2081-2087.
    [38]Saverio Russo,Aleberto Mariani,Vladimir N,etal.High-molecular-weight aromatic polymides by direct polycondensation[J],Mcromolecules,1993,26:4984-4985.
    [39]VictorE. Shashoua, William M. Eareckson. Interfacial polycondensation. V. polyterephthal amides from short-chain aliphatic, primary,and secondary diamines[J], Journal of Polymer Science.PartA:Polymer Chemistry.1959,40:343-358.
    [40]Angelo R J. Gas-barrier coated films, sheets or foils and method of preparation[P]. US, Pat,4104438,1978.
    [41]俞波.对位芳纶生产和应用技术进展(Ⅰ).合成技术及应用,2005,20(2):22-28.
    [42]戴信飞.聚对苯二甲酰对苯二胺三元共缩聚改性研究[D].上海:东华大学,2004.
    [43]Akazo N.V. Process for the preparation of poly-p-phenyleneterephthalamide[P].GB, Patent 1547802,1976.
    [44]Jong Cheol Kim, Hyeong Rack lee,et al,Aromatic polyamide pulp its preparing process[P]. US, Pat 5767228,1998.
    [45]Rappaport, J.B.Kevlar aramid fiber properties and applications[J].Clemson University Industrial Fibers and Fabrics Conference,1990,5:14-15.
    [46]曹煜彤,车明国,于俊荣,胡祖明,刘兆峰.溶解对PPTA结构性能的影响[J].东华大学学报(自然科学版),2008,34(6):660-663.
    [47]梁启振.溶致液晶含二氮杂萘酮联苯结构共聚酰胺的合成与表征[D].大连:大连理工大学,2005.
    [48]李丛杰,李国伟,刘兆峰,胡盼盼.含2,4-二(4-氨基苯基)-2,3-二氮杂萘-1-酮的PPTA及其制造方法[P].中国专利:1793199A,2006.
    [49]柯扬船,何平笙.高分子物理教程[M].北京:化学工业出版社,2006.
    [50]王春璐.杂志类聚酰亚胺的合成与性能研究[D].青岛:青岛科技大学,2007.
    [51]G.D.Pasquale,A Rella.Synthesis and characterization of meta-linked polyamides containing sulfone,ether and ketone linkages[J].Polymer,1998,39(4):949-952.
    [52]Keizo Shimada, Hiroshi Mera et al,Aromatic copolymide containg 3,4'-diamino diphenylene moiety[P].US, Pat:4355151,1982.
    [53]宋志祥,王丹,蔡涛等.对位芳纶共缩聚改性研究进展[J].合成技术及应用,2009,24(2):31-34.
    [54]大卫R.萨利姆著,高绪珊,吴大诚译.聚合物纤维结构的形成[M].北京:化学工业出版社,2004.
    [55]Tomoko Goto, et al. High strength and high toughness aromatic polyamide fiber preparation and properties of block poly(p-phenylene and 4,4'-dipheny ether terephthalamide)fbier[J].J-Appl Polym,Sci,1989,37(4):867-875.
    [56]于燕生,周其痒,赵安赤,刘德山.聚芳酰胺共缩聚改性的研究[J].高分子材料科学与工程,1989,9(5):10-16.
    [57]戴信飞,曹煜彤,尤秀兰,刘兆峰.合成方法对共缩聚PPTA比浓对数粘度的影响[J].合成纤维工业,2005,28(3):28-31.
    [58]刘雄军,佘万能,何晓东.PPTA及改性PPTA的合成与性能表征[J].当代化工,2006,35(4):230-233.
    [59]戴信飞,王新威,尤秀兰,曹煜彤,刘兆峰.PPTA共缩聚改性研究现状[J].高科技纤维与应用,2004,29(1):30-36.
    [60]Viale S, Jager W F,Picken S J.Synthesis and characterization of a water-soluble rigid-rod polymer[J]. Polymer,2003,44:7843-7850.
    [61]Kanda Takuma, Kawai Takashi.Production of aromatic polyamide copolymer fiber[P]. JP, Pat:55022052,1978.
    [62]Tsutomu Takahashi,Hiroyuki Sato.Para-aramid dope of low degree of polymerization, para-aramid fiber and para-aramid pulp produced therefrom and processes for producing the same[P].US,Pat:5442003,1995.
    [63]潘祖仁.高分子化学[M].北京:化学工业出版社,2007.
    [64]尤秀兰,傅群,刘兆峰,胡祖明.低温溶液缩聚法直接制备PPTA浆粕基本规律的研究[J].东华大学学报(自然科学版),2005,31(2):9-12.
    [65]王曙中,肖若鉴,刘华中.聚对苯二甲酰对苯二胺缩聚反应热效应的测定[J].华东纺织工学院学报,1984,10(1):40-46.
    [66]M.panar, L.F. Beste. Structure of poly(1,4-benzamide) solution[J]. Macromolecules, 1977,10(6):1401-1406.
    [67]贝拉米.复杂分子的红外光谱[M].北京:科学出版社,1975.
    [68]周其凤,王新久著.液晶高分子[M].北京:北京出版社,1994.
    [69]H.R.Schulten, Studies on the thermal degradation of aromatic polyamides by pyrolysis-field ionization mass spectrometry and pyrolysis-gas chromatography[J]. Macromolecular Materials and Engineering,1987,155(1):1-20.
    [70]Structural changes during deformation of Kevlar fibers via on-line synchrotron SAXS/WAXD techniques[J]. Polymer,2001,42(4):1061-1612.
    [71]罗渝然.化学键能数据手册[M].北京:科学出版社,2005.
    [72]Tsung-Ming Tai. Wet spinning process for aramid polymer containing salts[P]. US,Pat:5667743,1997.
    [73]M. Aprin, C. Strazielle.Characterization and conformation of aromatic polyamides: poly(1,4-phenylene terephthalamide) and poly(p-benzamide)in sulphuric acid[J]. Polymer,1977,18:591-598.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700