芳纶增强橡胶密封复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于国际上已公认石棉是一种致癌物质,许多国家已逐步禁止石棉制品的生产和使用,但目前尚无一种能完全代替石棉的橡胶增强材料,因此寻找替代石棉材料已成为现代密封材料领域的一个重要研究方向。芳纶纤维由于具有高强度、高模量等优异性能,成为代替石棉的首选材料。但由于芳纶纤维表面光滑、无反应活性,导致与大多数基体之间的界面粘附性较差,影响复合材料力学性能的发挥,因此需要对芳纶表面进行改性处理。
     本文采用国产间位芳纶纤维作为代替石棉的增强材料,突破现有的芳纶改性方法,采用界面聚合法将芳纶纤维表面改性后与丁腈橡胶复合,制备成芳纶增强橡胶密封复合材料,并对材料的结构、性能、复合机理进行了研究。创新之处在于,改性后的芳纶形态为毛棒状,且具有液晶性能。
     采用NaOH/乙醇溶液对间位芳纶进行水解处理,使纤维表面水解生成活性-NH_2基团。利用界面聚合法,使水解后的芳纶纤维与介晶单体DDBA,液晶离聚物BY,癸二酰氯等发生接枝反应,分别制得DDBA改性芳纶纤维和DDBA、BY改性芳纶纤维。通过SEM、FTIR、DSC、POM等对改性前后芳纶的结构和性能进行了表征,结果表明,芳纶纤维经水解处理后,表面生成活性-NH_2,可以引发界面聚合反应的发生,实现芳纶的表面接枝;改性后的芳纶纤维,表面生成接枝聚合物,表面粗糙度明显增加,且具有液晶性能。
     将芳纶纤维与丁腈橡胶制备成芳纶纤维增强橡胶密封复合材料后,对材料的各项性能进行了测试,结果表明改性芳纶增强橡胶密封复合材料的各项性能均达到标准的要求,且均优于芳纶原料增强橡胶复合材料。研究了芳纶纤维的改性机理及芳纶纤维/橡胶界面复合理论,认为界面复合以机械互锁作用为主。
Asbestos is a kind of cancerogen accepted internationally, so many countries are gradually forbidding the production and use of the asbestos products. But now, there is not a kind of rubber reinforced material which can take place of asbestos completely. Therefore, looking for the materials which replace asbestos becomes an important research direction in modern sealing material area. Aramid fiber is of the high strength and modulus and other excellent properties, so it becomes the preferred material to replace asbestos. Because aramid fiber's surface is smoothing and lack of reactive activity, it is difficult to adhere to many kinds of matrixes, which affects the mechanics of composites. Thus the surface modification of aramid fiber is needed.
     In this paper, the domestic meta-aramid fiber as the material replacing asbestos and the method of interfacial polymerization are been used to complete the aramid's surface modification. Combining with NBR, the composite material reinforced with aramid fiber have been synthesized. The structure, properties and mechanism are also been studied. It is novel that the morphology of modified aramid fibers is rigid-rod and the fiber has liquid crystalline properties.
     In the experiment, the -NH2 groups are introduced to the surface of meta-aramid fibers by treating the fiber surface with dilute sodium hydroxide solution. The modified aramid fibers which are grafted separately by DDBA, DDBA and BY are synthesized by interfacial polymerization of the DDBA, BY, sebacoyl dichloride and aramid fibers hydrolysed. The structure and properties of aramid fibers before and after modification are characterized by SEM, FTIR, DSC and POM. The results show that after hydrolyzing, the -NH2 groups are introduced to the surface of aramid, which can initiate interfacial polymerization to realize the modification of aramid; the surface of grafted aramid is very rough, and the modified fiber has liquid crystalline properties.
     Combining the aramid fiber with NBR, the composite material reinforced with aramid fiber has been synthesized. The properties of the material have been testing. The results show that the properties of the modified aramid/NBR composite material, which is superior to the raw aramid/NBR composite material, can meet the standard requirements. The mechanism of modification and adhesion are also been researched, and it is considered that mechanical interlocking is the main mechanism on the composite interface.
引文
[1]Payne J.Bolted joint improvements through gasket performance test.NPRA Maintenance Conference,Texas,1992:5-21.
    [2]Brown.J.Selecting nonasbestos sheet gasketing.Hydrocarbon processing,1991,70(4):78-84.
    [3]Watts J.Asbestos gaskets,packing face EPA prohibition substitutes offer enhanced performance.Pipeline and Gas.1986,(10):32-35.
    [4]Fold A P.Reinforcement of rubber through short individual filaments.Rubber Chemistry and Technology,1976,49(2):379-385.
    [5]Yue C Y,Padmanabhan K.Interfacial studies on surface modified Kevlar fibre/epoxy matrix composites.Composites:PartB,1999,30(2):205-217.
    [6]Lin T K,Wu S J,Lai J G et al.The Effect of chemical treatment on reinforcement/matrix interaction in Kevlar-fiber/bismaleimide composites.Composites Science and Technology,2000,60(9):1873-1878.
    [7]Tarantili P A,Andreopoulos A G.Mechanical properties of epoxies reinforced with chloride-treated aramid fibers.Journal of Applied Polymer Science,1997,65(2):267-276.
    [8]Brown J R,Mathys Z.Plasma surface modification of advanced organic fibres:Part Ⅴ Effects on the mechanical properties of aramid/phenolic composites.Journal of Materials Science,1997,32(10):2599-2604.
    [9]Andreopoulos A G.A new coupling agent for aramid fibers.Journal of Applied Polymer Science,1989,38(6):1053-1064.
    [10]Heinz K M.Fluid sealing technology-principles and applications.New York:1998.
    [11]蔡仁良,谢苏江.非石棉压缩纤维密封垫片的研究与开发.石油化工设备,1994,23(4):83-86.
    [12]谢苏江,蔡仁良.无石棉垫片材料基本性能的研究进展.化工设备与防腐蚀,2003,6(6):85-87.
    [13]张景仁.石棉橡胶板垫圈材料.北京:中国建筑工业出版社,1979.
    [14]郑元锁,张文,宋月贤等.芳纶短纤维增强天然橡胶耐磨材料的研究.高分子材料科学与工程,2000,16(4):92-95.
    [15]郑元锁,黄振东,宋月贤等.芳香族聚酰胺纤维增强丁腈橡胶垫片材料.合成橡胶工业,1998,21(4):236-238.
    [16]郑元锁,宋月贤,黄振东等.芳纶短纤维对丁腈橡胶的增强作用.西安交通大学学报,1998,32(8):81-84.
    [17]汤东征,于涛,陈晔等.芳纶纤维增强橡胶密封板材的配方设计.润滑与密封,2004,(4):95-111.
    [18]陈晔,顾伯勤,于涛.芳纶-预氧化丝混杂纤维增强橡胶基密封复合材料的配方设计及优化.润滑与密封,2006,(8):19-23.
    [19]陈晔,顾伯勤,于涛.橡胶基密封复合材料中混杂纤维增强效应的研究.润滑与密封,2006,(9):44-51.
    [20]于涛,顾伯勤,陈晔等.芳纶表面处理对纤维增强橡胶基复合密封材料性能的影响.润滑与密封,2005,(1):70-72.
    [21]陈晔,顾伯勤,于涛.纤维表面处理对芳纶-预氧化丝混杂纤维增强NAFC材料耐温性能的影响.润滑与密封,2006,(6):8-11.
    [22]谢苏江,蔡仁良.纤维增强橡胶无石棉密封材料的制备和性能研究.第六届全国压力容器学术会议,杭州,2005.
    [23]谢苏江,章兰珠,蔡仁良.芳纶浆粕增强橡胶无石棉垫片密封的制备及性能研究.润滑与密封,1999,(2):44-46.
    [24]加腾诚一著,施祖培译.芳香族聚酰胺纤维技术展望.产业用纺品,1995,13(1):40-43.
    [25]马晓光,刘越.高性能纤维的发展及其在先进复合材料中的应用.纤维复合材料,2000,17(4):14-18.
    [26]余艳娥,谭艳君.新型高性能纤维-芳纶.高科技纤维与应用,2004,29(5):37-39.
    [27]王建平,管宝琼,刘亮佳.高性能县委的发展动向与应用前景.上海纺织科技,1998,26(1):5-10.
    [28]罗益锋.世界主要高性能县委简况.化工新型材料,2001,29(5):1-5.
    [29]沙中瑛,于振环,宋威.芳纶纤维在轮胎工业中的应用.弹性体,2004,14(1):62-65.
    [30]高胜玉.性能非凡的高性能间位芳纶:美塔斯METAMAX~(TM).产业用纺织品,1996,14(6):31-35.
    [31]王维相,翁亚栋.芳纶在橡胶制品中的应用概况.橡胶工业,2004,51(7):436-469.
    [32]赵克熙.原苏联芳纶复合材料研究进展及其在固体发动机壳体上的应用.宇航材料工艺,1995,25(5):8-19.
    [33]张文彬.新世纪产业用特种纤维材料.纺织导报,2001,(5):104-106.
    [34]Maksimov R D,Plume E.Long-term creep of hybrid aramid/glass-fiber-reinforced plastics.Mechanics of Composite Materials,2001,37(4):271-280.
    [35]王维相,翁亚栋.国外芳纶纤维在软管和涂覆织物制品中的应用进展.橡胶工业,2001,48(6):377-379.
    [36]Wu Y J,Seferis J C,Lorentz V.Evaluations of an aramid fiber in nonwoven processes for honeycomb applications.Journal of Applied Polymer Science,2002,86(5):1149-1156.
    [37]Mikhailova M P,Sklyarova G B,Slugin I V et al.Textile auxiliaries in production of aramid fibres and articles made from them.Fibre Chemistry,2004,36(2):133-135.
    [38]赵钰,吴文隆.对位芳香聚酞胺纤维的性质、裁剪加工及应用(1).高科技纤维与应用,2002,27(1):22-27.
    [39]李同起,王成扬.影响芳纶纤维及其复合材料性能的因素和改善方法.高分子材料科学与工程,2003,19(5):5-9.
    [40]Liu L,Jiang Q,Zhu T et al.Influence of moisture regain of aramid fibers on effects of atmospheric pressure plasma treatment on improvingadhesion with epoxy.Journal of Applied Polymer Science,2006,102(1):242-247.
    [41]Lange de P J,Mader E,Mai K et al.Characterization and micromechanical testing of the interphase of aramid-reinforced epoxy composites.Composites Part A:Applied Science and Manufacturing,2001,32(3-4):331-342.
    [42]Fan G N,Zhao J C,Zhang Y K.Grafting modification of Kevlar fiber using horseradish peroxidase.Polymer Bulletin,2006,56(4-5):507-515.
    [43]单国荣,潘智存,贺玉斌等.合成方法对芳香共聚酰胺性能的影响Ⅰ.共聚酰胺的对数比浓粘度.高分子材料科学与工程,1997,13(6):56-59.
    [44]戴信飞,王新威,尤秀兰等.PPTA共缩聚改性研究现状.高科技纤维与应用,2004,29(1):30-36.
    [45]Bernhard H G,Markus C G,Peter N et al.Arrangement of substituted,rigid-rod aramids in the highly-ordered solid state.Macromol.Chem.Phys.,2000,201(13):1476-1486.
    [46]单国荣,潘智存,刘德山等.合成方法对芳香共聚酰胺液晶行为的影响.清华大学学报(自然科学版),1998,38(6):31-33.
    [47]蹇锡高,王瑞玲,朱秀玲等.新型可溶性聚芳酰胺及其共聚物的合成与性能研究.高分子学报,2001,(5):576-579.
    [48]Liou G S,Fang Y K.Electrochemical behavior of N,N,N',N'-tetraphenyl-1,4-phenylenediamine moiety on novel aromatic polyamides and their electrochromic properties.Dyes and Pigments,2007,74(2):273-278.
    [49]Liou G S,Huang N K,Yang Y L.New soluble triphenylamine-based amorphous aromatic polyamides for high performance blue-emitting hole-transporting and anodically electrochromic materials.Polymer,2006,47(20):7013-7020.
    [50]Sava I.Iosip M D,Bruma M et al.Aromatic polyamides with pendent acetoxybenzamide groups and thin films made therefrom.European Polymer Journal,2003,39(4):725-738.
    [51]Hsiao S H,Lin K H.Soluble aromatic polyamides bearing asymmetrical diaryl ether groups.Polymer,2004,45(23):7877-7885.
    [52]Ahmad I,Wong P Y,Abdullah I.Effects of fiber composition and graft-copoly(ethylene/maleic anhydride) on thermoplastic natural rubber composites reinforced by aramid Fiber.Polymer Composites,2006,27(4):395-401.
    [53]Malty J,Jacob C,Das C K et al.Fluorinated aramid fiber reinforced polypropylene composites and their characterization.Polymer Composites,2007,28(4):462-469.
    [54]Mukherjee M,Das C K,Kharitonov A P et al.Properties of syndiotactic polystyrene composites with surface modified short Kevlar fiber.Materials Science and Engineering:A,2006,441(1-2):206-214.
    [55]Taweechai A,Budsaporn S,Sauvarop B L et al.Composite of aramid fibre(poly-m-phenylene isophthalamide)-thermoplastic elastomers(SEBS):enhancement of tensile properties by maleated-SEBS compatibiliser.Polymer,1999,40(11):2993-2999.
    [56]Anongnuch C,Chakrit S,Taweechai A et al.Improvement of interfacial adhesion of poly(m-phenylene isophthalamide) short fiber-thermoplastic elastomer(SEBS) composites by n-alkylation on fiber surface.Journal of Applied Polymer Science,1999,74(10):2414-2422.
    [57]Lin J S.Effect of surface modification by bromination and metalation on Kevlar fibre-epoxy adhesion.European polymer journal,2002,38(1):79-86.
    [58]Day R J,Hewson K D,Lovell P A.Surface modification and its effect on the interfacial properties of model aramid-fibre/epoxy composites.Composites Science and Technology.2002,62(2):153-166.
    [59]Wim J van O,Shijian L,Saswati D.Surface modification of textile fibers and cords by plasma polymerization.Plasmas and Polymers,1999,1(4):33-55.
    [60]严志云,刘安华,贾德民.氮气等离子体处理对芳纶与橡胶粘合性能的影响.橡胶工业,2007,54(8):467-470.
    [61]Wu S R,Sheu C S,Shyu S S.Kevlar fiber-epoxy adhesion and its effect on composite mechanical and fracture properties by plasma and chemical treatment.Journal of Applied Polymer Science,1996,62(9):1347-1360.
    [62]Liu L,Huang Y D,Zhang Z Q et al.Ultrasonic modification of aramid fiber-epoxy interface.Journal of Applied Polymer Science,2001,81(11):2764-2768.
    [63]Liu L,Huang Y D,Zhang Z Q et al.Effect of ultrasound on wettability between aramid fibers and epoxy resin.Journal of Applied Polymer Science,2006,99(6):3172-3177.
    [64]Abdel-Bary E M,El-Nesr E M,Helaly F M.Effect of gamma radiation-grafted aramid chopped fibers as the reinforcing filler in styrene-butadiene rubber mixtures.Polymers for Advanced Technologies,1997,8(3):140-145.
    [65]Zhang Y H,Huang Y D,Liu L et al.Surface modification ofaramid fibers with γ-Ray radiation for improving interfacial bonding strength with epoxy resin.Journal of Applied Polymer Science,2007,106(4):2251-2262.
    [66]Xing Y J,Ding X.UV photo-stabilization of tetrabutyl titanate for aramid fibers via sol-gel surface modification.Journal of Applied Polymer Science,2007,103(5):3113-3119.
    [67]Zhang H P,Zhang J C,Chen J Y et al.Effects of solar UV irradiation on the tensile properties and structure of PPTA fiber.Polymer Degradation and Stability,2006,91(11):2761-2767.
    [68]Ghosh L,Fadhilah M H,Kinoshita H et al.Synergistic effect of hyperthermal atomic oxygen beam and vacuum ultraviolet radiation exposures on the mechanical degradation of high-modulus aramid fibers.Polymer,2006,47(19):6836-6842.
    [69]Wu J,Cheng X H.Interfacial studies on the surface modified aramid fiber reinforced epoxy composites.Journal of Applied Polymer Science,2006,102(5):4165-4170.
    [70]Cheng X H,Wu J,Xie C Y.Effect of rare earth elements surface treatment on tensile properties of aramid fiber-reinforced epoxy composites.Journal of Applied Polymer Science,2004,92(2):1037-1041.
    [71]Wu J,Cheng X.Study of interlaminar shear strength of rare earths treated aramid fiber reinforced epoxy composites.Journal of Materials Science,2005,40(4):1043-1045.
    [72]Rahel J,Cemak M,Hudec I et al.Surface modification of polyester monofi-laments by atmospheric-pressure nitrogen plasma.Plasma and Polymers,2000,5(3/4):119-127.
    [73]王立彦.丁腈橡胶的应用.弹性体,2000,10(3):41-44.
    [74]D.赫尔著.张双寅,郑维平,蔡良武译.复合材料导论.北京:中国建筑工业出版社,1989.46-52.
    [75]蒲启君.橡胶与骨架材料的粘合机理.橡胶工业,1999,46(11):683-695.
    [76]王善元,张汝光.纤维增强复合材料.上海:中国纺织大学出版社,1998.96-128.
    [77]王荣国,武卫莉,谷万里.复合材料概论.哈尔滨:哈尔滨工业大学出版社,1999.1-2.
    [78]Shaw L L.Thermal residual stresses in plates and coatings composed of multi-layered and functionally graded materials.Composites Part B:Engineering,1998,29(3):199-210.
    [79]John A N,Paul.Z.Matrix solidification and the resulting residual thermal stresses in composites.Material Science,1985,20(1):355-367.
    [80]Eisenbach C D,Hofmann J,Goldel A et al.Miscibility of rigid-rod and random-coil macromolecules through acid-base interactions.Macromolecules,1999,32(5):1463-1470.
    [81]张宝砚,朱久伟,周爱娟.由苯酚合成4,4-二羟基-α,α-二甲基苄联氮.东北大学学报(自然科学版),1994,15(3):245-247.
    [82]Wang Y F,Chen T M,Kitamura M et al.Syntheses and properties of a series of amphiphic polyacrylamides bearing two long alkyl chains and phosphatidylcholine anologous groups in the side chains.Journal of Polymer Science,Part A:Polymer Chemistry,1996,34(3):449-460
    [83]Zhi J G,Zhang B Y,Wu Y Y et al.Study on a series of main-chain liquid-crystalline ionomers containing sulfonate groups.Journal of Applied Polymer Science,2001,81(9):2210-2218.
    [84]Zhang B Y,Weiss R A.Liquid crystalline ionomers.Ⅱ.Main chain liquid crystalline polymers with terminal sulfonate groups.Journal of Polymer Science Part A:Polymer Chemistry,1992,30(6):989-996.
    [85]吴刚.材料结构表征及应用.北京:化学工业出版社,2002:32-45.
    [86]傅明连.Kevlar纤维表面阴离子接枝尼龙6及其对复合材料结构性能的影响:(硕士学位论文).福州:福州大学,2005.
    [87]沈德言.红外光谱法在高分子研究中的应用.北京:科学出版社,1982:86.
    [88]黄玉萍,严峰,曹绪龙等.2-羟基-3-辛基-5长链烷基苯磺酸钠的合成及表面活性.精细化工,2007,24(2):185-189.
    [89]周其凤.液晶高分子.北京:科学出版社,1994.
    [90]刘盛洲,王烽,陈天禄.高磺化度芳香聚醚醚酮的合成与表征.高等学校化学学报,2001,22(3):494-497.
    [91]宋瑞国,梁成浩,张志军.改性石油磺酸盐的合成与表征.精细石油化工进展,2007.8(6):19-21.
    [92]胡宏玖,谢苏江,刘美红.非石棉垫片复合材料设计与性能.上海:上海大学出版社,2006:202-205.
    [93]钱春香,陈世欣.纤维表面处理对复合材料力学性能的影响.高科技纤维与应用,2003,28(3):36-38.
    [94]束德林.工程材料力学性能.北京:机械工业出版社,2003:98-105.
    [95]王霞,张春昕,金士九等.芳纶纤维/环氧树脂微复合材料的界面断裂.材料工程,1994.8(9):88-89.
    [96]吴人洁.复合材料.天津:天津大学出版社,2000:232.
    [97]王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺.北京:科学出版社,2004:142-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700