苏北盆地下第三系隐蔽油气藏预测与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏北盆地是一个勘探程度相对较高的盆地,油气勘探逐渐进入隐蔽油气藏勘探阶段。如何有效地应用层序地层学理论和三维地震资料进行隐蔽圈闭预测是目前进行隐蔽油气藏勘探中最敏感的课题。本文利用三维地震、测井、钻井和岩芯等资料,对苏北盆地下第三系进行层序地层学研究,划分了沉积层序,建立了各层序的沉积模式。综合地质、测井和钻井资料,依靠先进的地震特殊处理和解释新技术,包括提高地震分辨率的各种处理技术、高精度的层位标定技术、三维可视化解释技术、地震相干分析技术、属性分析技术、测井约束反演技术等,对隐蔽油气藏目标进行识别、解释和成藏研究,最后指出盆地内隐蔽油气臧的有利目标。
     依据地震、钻井、测井和岩芯等资料中的层序地层特征,可将苏北盆地下第三系划分为2个二级层序,8个三级层序。对三级层序进行了体系域划分。在8个三级层序中识别出低位、湖侵和高位体系域的不同组合。根据层序地层和构造分析,建立了高邮凹陷西部具断裂坡折带和东部斜坡无明显坡折带的层序地层样式。
     苏北盆地具有隐蔽油气藏成藏的有利条件,断层是隐蔽油气藏成藏的关键因素,能起到沟通油源和侧向封堵的双重作用。湖底扇、三角洲前缘、扇三角洲前缘和近岸水下扇扇中等为有利的储集岩相带。
     以层序地层学理论为指导,充分应用现代地震勘探新技术(主要指高分辨率地震、多属性提取、三维可视化、相干体分析、测井约束反演、储层横向预测等技术),形成了一套识别和描述隐蔽圈闭的技术系列,并在高邮凹陷马家嘴—联盟庄地区、金湖凹陷刘庄北地区三维地震解释中找到了一批有利隐蔽圈闭,在综合评价的基础上提供钻探目标六个。
     描述裂缝储层的主要参数有裂缝的形状、方位和密度等,这也是控制产油产气的主要因素。本文简要介绍盐城凹陷泥岩裂缝储层的地质特征与测井特征,应用不同观测方位的三分量地震转换波资料,九分量VSP资料,以及3D特殊地震属性等资料的综合分析,对裂缝段进行了横向预测和描述的方法探索。结合AVO、反演及地震属性提取等手段,预测了该裂缝段的裂缝密度和主方位角。
With the relatively higher degree of prospecting, the subtle reservoir in Subei basin was considered as an important exploration direction. Forecasting subtle traps by sequence stratigraphy and 3D seismic data is a sensitive topic in hydrocarbon exploration. In this paper, using sufficiently 3D seismic data, drilling data, log data and core data, stratum sequence Lower Tertiary Subei basin is partitioned by using sequence stratigraphy theory. Each sediment sequence system mode is built. Integrated using geology、 log、 drilling data, special seismic processing technique, interpretation technique, including high resolution seismic data processing method, high precision horizon calibration technique, 3D seismic visualizing interpretation, seismic coherence analyze, attribute analyze, logging-constrained inversion, subtle trap objects were identified and interpreted .Finally, advantage objects of subtle trap in this area were determined.Based on the analysis of seismic data, borehole and well logging and core of Lower Tertiary Subei Basin, two second level sequences and 8 third sequences have been identified. System tracts were also identified within each sequence. Each of the 8 sequences consists of either complete lowstand, transgressive and highstand system tracts or one or two of them. Based on sequence stratigraphy and structural analysis , sequence pattern in Gaoyou sag may be described as the west part with fault break and east slop without break.There are a couple of favorable conditions to form subtle trap reservoirs in Subei basin. Fault is the key factor of subtle traps to oil accumulation, and has the function of linking reservoir and lateral sealing. The favorable oil bearing facies belts include sublacustrine fan, delta front, fan delta front and the central part of subaqueous fan.Guided by the theory of sequence stratigraphy, a suite of techniques for identification and description of subtle traps have been developed based on modern new technologies of seismic exploration such as high resolution seismic processing , multi attribute extraction , 3D visualization , coherence analysis , well constrained seismic inversion , reservoir lateral prediction. A number of subtle traps have been found during the 3D seismic interpretation on data in Majiazui & Lianmengzhuang 3D seismic project Gaoyou sag and Liuzhuanbei Jinghu sag 3D seismic project. With the data mentioned above and analysis on the petroleum geologic conditions, 6 favorable areas for subtle trap exploration are put forward.Production from fractured reservoirs is controlled primarily by the shape, orientation and concentration of the fractures. In this paper, evidence of fractures from cores and borehole image logs were integrated with 3-component seismic converted wave data in different directions, 9-component VSP, and 3D seismic reflection data, to develop an understanding of how the seismic data relate to the fracture. AVO, seismic inversion data, and other attributes of seismic reflection data was used to detect and characterize fracture density and dominating fracture azimuth in Yancheng sag.
引文
[1] A I Best and M S Sams. Compressional wave velocity and attenuation at ultrasonic and sonic frequencies in near-surface sedimentary rocks. Geophysical prospecting, 1997, 45 (2), 327~344
    [2] A I Best. The effect of pressure on ultrasonic velocity and attenuation in near-surface sedimentary rocks. Geophysical prospecting, 1997, 45 (2), 345~364
    [3] Barker C. Calculated Volume and Pressure Changes During the Thermal Cracking of Oil to Gas in Reservoirs. AAPG Bulletin, 1990, 74(8), 1254~1261
    [4] Barker C. Development of Abnormal and Subnormal Pressures in Rezrvoirs Containing bacterially Generated Gas. AAPG Bulletin, 1987, 71(11), 1404~1413
    [5] Bowen David W, Weimer Paul. Reservoir geology within a sequence stratigraphic framework; incised valley—fill sandstones of the Pennsylvanian Morrow Formation southern Stateline Trend Colorado and Kansas. AAPG Bulletin, 1997, 81 (7), 1219
    [6] Bradley J. S. Abnormal Formation Pressure. AAPG Bulletin, 1975, 59, 957~973
    [7] Brown R. L, Seifert D. Velocity dispersion: A tool for characterizing reservoir rocks. Geophysics, 1997, 62(2), 477~486
    [8] Cant D J. Diagenetic traps in sandstone. AAPG Bulletin, 1986, 70(2), 155~160
    [9] Cant D J. Diagenetic traps in sandstone. AAPG Bulletin, 1986, 70(2), 155~160
    [10] Cross T A. Controls on coal distribution in transgressive-regressive cycles,Upper Cretaceous, Western Interior, U.S.A.In;Wilgaus C K et al. Sea-level changes: An integrated approach. SEPM Special Publication, 1988, 42, 371~380
    [11] Cross T A. Stratigraphic contrals on reservoir attributes in continental strata. Earth Science Frontiers, 2000, 7(4), 322~350
    [12] G.Mavko and T Mukerji. A rock physics strategy for quantifing uncertainty in common hydrocarbon indicators. Geophysics, 1998, 163 (6), 1997~2008
    [13] G.Mavko and T Mukerji. Comparision of the kreif and critical porosity models for prediction of porosity and Vp/Vs. Geophysics, 1998, 63 (6), 925~927
    [14] Galloway W E. Genetic stratigraphic sequences in basin analysis l:architecture and genesis of flooding-surface bounding depositional units. AAPG Bulletin, 1998, 73(2), 125~142
    [15] Galloway W E. Siliciclastic slope and base-of-slope depositional systems:component facies, stratigraphic architecture, and callification. AAPG Bulletin, 1998, 82(4), 569~595
    [16] Galloway, W.E. Genetic stratigraphic sequences in basin analysis Ⅱ: architecture and genesis of flooding-surface bounded depositional units. AAPG Bulltion, 1989, 73, 143~154
    [17] Grdner G H F etal. Formation velocity and density--the giagnostic basics for stratigraphic trapsGeophysics, 1974, 39(6), 770~780
    [18] Keith W, Shanley, Peter J, Macabe. Perspective on the sequence Stratigraphy of Continental Strata. AAPG Bulletin, 1994, 78(4), 544—568
    [19] LEN G P, OSAMENTIER H W. Sequence stratigraphy and fades model of an incised valley-fill::the Gironde estuay, France. Journal of Sedimentary Petrology, 1993, 63(3), 378~ 391
    [20] Lorenz, J.C., Warpinski, N.R., and Teufel, L.W. Natural fracture characteristics and effects. The Leading Edge, 1996, 15(8), 909-911
    [21] Lynn, H.B., Simon, K.M., and Bates, C.R. Correlation between P-wave AVO and S-wave traveltime anisotropy in a naturally fractured gas reservoir. The Leading Edge, 1996, 15(8), 931-935
    [22] Mail A D. Stratigraphic sequences and their chronostratigraphic correlation. Journal of Sedimentary Petrology, 1991, 61,497—505
    [23] Mail A D. The architecture of fluvial-deltaic sequences in the Upper Mesaverde Group, Book Cliffs, Utah.In:Best J L,Bristow C eds. Brainded Rivers. Geological Society of London Special Publication, 1993, 75, 305-331
    [24] Miall A D. Reconstructing fluvial macroform architecture fro two-dimensioned outcrops: examples from the Castlegate Sandstone, Book Cliffs,Utah.Jour. Sedimentary Petrology, 1994, 63, 146-158
    [25] Mitchum,R.M. Seismic stratigraphy and global changer of sea level.Prat 1: Glossary of terms used of in seismic stratigraphy, in C.E.Payton,ed, Seismic stratigraphy-applications to hydrocarbon exploration: AAPG Menoir, 1977,26, 205—212
    [26] Schmidt V, et al. Development of diagenetic seal in carbonate and sandstone. AAPG Bulletin, 1993,67,545-546
    [27] Schmidt V, McDonald D A. The role of secondary porosity in the course of sandstone diagenesis. InAspects of diagenesis: Special Publication, 1979, 26, 175—208
    [28] Scholz C A and Rosendabl B R. Coarse-classic facies and stratigraphic sequence models from lakes Malawi and Tanganyika, East Africa. 4APG Memoir , 1991, 50, 151 — 168
    [29] Shanley K W. River response to base-level changes; Implication for sequence. Journal of Geology, 1993, 101(3), 279-294
    [30] Shanley, K. W and McCabe, P. J. Perspectives on the sequence stratigraphy of continental strata. AAPG Bulletin, 1994, 78(4), 544-568
    [31] Sidney S. Seismic attribute technology for reservoir forecasting and monitoring. The Leading, 16(05), 445-456
    [32] Sidney S. Seismic attribute technology for reservoir forecasting and monitoring. The Leading, 16(05), 445-456
    [33] VaiI,PR.,Hardenbol, and R.G.Todd, Jurassic unconformities, chronostratigraphy and sea-level changes from seismic stratigraphy and biostratigraphy, in J.S.Schlee, ed., Inter-regional unconformities and hydrocarbon accumulation: AAPG Memoir 36, 1984,p. 129-144.
    [34] Vail P R. Seismic stratigraphy interpretation using sequence stratigraphy. Part l:seismic stratigraphy interpretation procedure. In: Rally A W, ed. Atlas of seismic stratigraphy. AmericanAssociation of Petroleum Geologists, Studies in Geology, 1987, 27, 1 — 10
    [35] Virginia A Clark. The effect of oil under in-situ conditions on the seismic properties of rocks. Geophysics, 1992, 57(7), 894~901
    [36] Z Wang, M E Cates and R T Langan. Seismic monitoring of a CO2 flood in a carbonate reservoir:A rock physics study. Geophysics, 1998,163 (5), 1604~1617
    [37] 薄永德,贺向阳.苏北盆地高邮凹陷邵伯西地区戴南组隐藏油藏研究.石油物探,2004,43(2),161~162
    [38] 蔡希源,宋国奇.陆相盆地高精度层序地层学.北京:地质出版,2003,178~220
    [39] 陈佳梁,胡润苗.高分辨率三维地震勘探隐蔽油气藏的效果.石油地球物理勘探,2005,40(4),451~453
    [40] 陈佳梁,兰素清,王昌杰.裂缝性储层的预测方法及应用.勘探地球物理进展,2004,27(1),35~40
    [41] 陈佳梁,王文君.人机联作工作站在构造精细解释中的应用及效果,复杂小断块石油勘探开发技术.北京:中国石化出版社,2005年4月,209~213
    [42] 陈永进,杨晓敏,王登稳.寻找隐蔽油气藏圈闭研究的新思路.地学前缘,2001,8(3),140
    [43] 樊太亮,李卫东.层序地层学应用于陆相油藏预测的成功实例.石油学报,1999,20(2),12~17
    [44] 费宝生.隐蔽油气藏的勘探.油气地质与采收率,2002,9(6),29~32
    [45] 付广,李玉喜.断层垂向封闭油气性研究方法及其应用.天然气工业,1997,17(6),22~25
    [46] 高德群,陈佳梁,李学英等.金湖凹陷铜城断裂带低渗透储层特征研究.江苏地质,2005,29(3),147~151
    [47] 顾家裕.陆相盆地层序地层学格架概念及模式.石油勘探与开发,1995,22(4),6~10
    [48] 郭栋.地震属性分析及其在资料解释中的应用.油气地球物理,2004,2(3),46~49
    [49] 郭元岭.济阳坳陷探明石油地质储量特点分析.石油勘探与开发,2001,28(3),33~35
    [50] 黄绪德.油气层的物理特征.石油物探译丛,1998,第2期,1~16
    [51] 季仲霖,李建林等.含油岩石弹性特征及其与油气的关系.地球物理学报,1993,36(2),242~255
    [52] 季仲霖,彭希龄,赖仲康.准葛尔盆地东部岩石弹性参数预测及其应用,见:高章伟主编.石油地震勘探技术交流会论文集,1993,320~330
    [53] 孔凡仙.尔营凹陷北带砂砾岩扇体勘探技术与实践.石油学报,2000,21(6),27~31
    [54] 李爱兵.频率温度对砂岩的横波速度和Q s值的影响.地球物理学报,1994,37(5),653~658
    [55] 李建雄,李明杰,赵秀岐等.断陷湖盆层序地层学解释与隐蔽油气藏勘探.石油地球物理勘探,2004,39(5),608~613
    [56] 李丕龙,庞雄奇.隐蔽油气藏形成机理与勘探实践.见:胡见义.具有潜力的油气藏类型和勘探领域.北京:石油工业出版社,2004,1~2
    [57] 李丕龙,张善文,曲寿利等.陆相断陷盆地油气地质与勘探(六).北京:石油工业出版社, 2003,297~298
    [58] 李丕龙,张善文,宋国奇等.断陷盆地隐蔽油气藏形成机制—以渤海湾盆地济阳坳陷为例.石油实验地质,2004,26(1),3~10
    [59] 李丕龙.断陷湖盆油气聚集模式及其动力学特征.石油大学学报,2000,24(4),26~28
    [60] 李庆忠.岩石的纵、横波速度规律.石油地球物理勘探,1992,27(1),1~12
    [61] 李庆忠.走向精确勘探的道路.北京:石油工业出版社,1994,110~215
    [62] 李群,王英民,邱以刚等.层序单元体系域划分及勘探意义.石油勘探与开发,2003,30(3),23~25
    [63] 李群.松辽盆地南部隐蔽圈闭及有利地区预测.石油天然气与地质,2002,23(2),159~178
    [64] 李思田,潘元林,陆永潮等.断陷湖盆隐蔽油气藏预测及勘探的关键技术—高精度地震探测基础上的层序地层学研究.地球科学,2002,27(5),592~598
    [65] 李祥权,催丽静,陈少平.隐蔽油气藏勘探同顾与展望.油气地质与采收率,2005,12(1),31~32
    [66] 李云,陈佳梁,王建.盐城凹陷朱家墩天然气成藏特征.石油天然气学报,2005,27(3),300~303
    [67] 林畅松,潘元林,肖建新等.“构造坡折带”——断陷盆地层序分析和油气预测的重要概念.地球科学——中国地质大学学报,2000,25(3),260~264
    [68] 林雄,田景春.非构造油气藏国内外研究现状及发展方向.岩相古地学报,1998,18(4),63~70
    [69] 刘传虎,刘福贵.一个隐蔽油气藏的发现.石油物探,1994,33(1),103~110
    [70] 刘兴材,钱凯,吴世祥.东营凹陷油气场环对应分布论.石油与天然气地质,1996,17(3),185~190
    [71] 刘玉瑞,王建.苏北盆地复杂断块油气藏勘探及技术.江苏地质,2003,27(4),193~198
    [72] 刘云武,孙学继,金张虎.高分辨率地震岩性圈闭识别技术应用.大庆石油地质与开发,2000,19(4),47
    [73] 鹿洪友,操应长,吴明荣等.层序地层学应用于陆相湖盆中隐蔽油气藏的成因解释.大地构造与成矿学,2004,28(2),209~213
    [74] 毛宁波,范哲清,李玉海等.歧南洼陷西斜坡滩坝砂隐藏油气藏研究与评价.石油与天然气地质,2004,24(4),455~461
    [75] 谯汉生,沈明明.渤海湾盆地隐蔽油气藏.地学前缘,2000,7(4),497~506
    [76] 邱旭明.苏北盆地断块圈闭分类及油气成藏特征.石油与天然气地质,2003,24(4),372~374
    [77] 沈守文,彭大钧,颜其彬等.试论隐蔽油气藏的分类及勘探思路.石油学报,2000,21(1),16~22
    [78] 沈守文,彭大钧,颜其彬等.层序地层学预测隐蔽油气藏的原理和方法.地球学报,2000,21(3),300~305
    [79] 沈守文,彭大钧,颜其彬等.试论隐蔽油气藏的分类及勘探思路.石油学报,2000,21(1),16~22
    [80] 石健,郑开富.苏北盆地浅层油气成藏特征与勘探前景.江苏地质,2004,28(2),70~75
    [81] 宋明雁,胡涛,韩志刚.隐蔽油气藏预测技术综述.世界石油工业,2000,7(3),16~19
    [82] 王正文,赵追,李峰等.陆相盆地层序地层学研究现状及发展趋势.河南石油,2002,16(3),8~11
    [83] 吴东胜,陈华军,刘少华等.三维可视化技术在隐蔽油气藏勘探中的应用.2005,44(1),44~46
    [84] 吴东胜.金湖凹陷戴南组隐蔽油气藏研究.西南石油学院学报,2005,27(4),16~19
    [85] 吴东胜.陆相盆地隐藏油气勘探方法——以金湖凹陷戴南组为例.江汉石油学院学报,2003,25(4),18~20
    [86] 吴富强,刘家铎,胡雪等.经典层序地层学与高分辨率层序地层学.中国海上油气(地质),2001,15(3),220~226
    [87] 吴义杰,高德群,许江桥等.JH凹陷隐蔽圈闭识别与描述方法研究.石油物探,2003,42(3),334~339
    [88] 席道英.饱和多孔岩石的衰减与孔隙度和饱和度的关系.地球物理学报,1997,32(2),196~201
    [89] 席道英.孔隙流体饱砂岩的衰减与频率相关性.石油地球物理勘探,1998,33(1),66~70
    [90] 肖焕钦,陈广军,李常宝.陆相断陷盆地隐蔽油气藏分类及勘探.特种油气藏,2002,9(5),10~15
    [91] 熊翥.隐蔽油气藏勘探——地震数据处理与解释.勘探地球物理进展,2004,27(6),391~396
    [92] 徐怀大.寻找非构造油气藏的新思路.勘探家,1996,1(1),43~47
    [93] 徐继伟.刘庄北地区高分辨率地震勘探应用及研究.石油地球物理勘探,2003,38(11),10~15
    [94] 薛良清.湖相盆地中的层序、体系域与隐蔽油气藏.石油与天然气地质,2002,23(2),115~120
    [95] 俞寿朋.高分辨率地震勘探.北京:石油工业出版社,1993,68~74
    [96] 袁选俊,憔汉生.渤海湾盆地富油气凹陷隐蔽油气藏勘探.石油与天然气地质,2002,23(2),130~133
    [97] 曾溅辉,王洪玉.输导层和岩性圈闭中石油运移和聚集模拟试验研究.地球科学——中国地质大学学报,1999,24(2),193~196
    [98] 张德武,冯有良,邱以钢等.东营凹陷下第三系层序地层研究与隐蔽油气藏预测.沉积学报,2004,22(1),67~72
    [99] 张善文,王英民,李群.应用坡折带理论寻找隐蔽油气藏.石油勘探与开发,2003,30(3),6~7
    [100] 张守昌,李晨,张泽慧等.地震技术在隐蔽油气藏勘探中的应用.特种油气藏,2001,8(3),13~16
    [101] 张喜林,朱筱敏,钟大康等.苏北盆地高邮凹陷第二系——上白垩统层序地层格架特征.沉积学报,2004,22(3),393~399
    [102] 张喜林,朱筱敏,钟大康等.苏北盆地高邮凹陷古近系戴南组沉积相及其对隐蔽油气藏的控制.古地理学报,2005,7(2),207~218
    [103] 朱建伟,刘招君,刘葵等.地球物理处理技术在层序地层学中的应用.世界地质,2001,20(3),300~306
    [104] 朱夏.对隐蔽油气圈闭的浅见.中国隐蔽油气藏勘探论文集.哈尔滨:黑龙江科学技术出版社,1984,1~5
    [105] 朱筱敏.含油气断陷盆地分析.北京:石油工业出版社,1995,148~169
    [106] 祝厚勤,朱煜,郑开富.苏北盆地盐城组天然气藏成藏条件及控制因素探讨.海洋地质动态,2003,19(9),22~26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700