Al_2Ca、Al_4Ce对Mg-Al系镁合金晶粒细化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸态镁合金的晶粒粗大,影响了其性能的提高和后续的应用。因此,本文通过添加合金元素,原位生成金属间化合物,并利用它们与镁基体间的晶体学关系来异质形核细化镁合金的晶粒,优化铸态镁合金的性能。
     本文采用金相分析(OM)、扫描电镜(SEM)、能谱分析(EDS)及X射线衍射分析(XRD)等试验手段,研究了Al/Ca比、Al/Ce比对镁合金铸态组织的影响,初步探索了化合物的形成机制,取得以下研究结果:
     Mg-Al-0.5Ca合金中Al含量在0.5 ~ 2 wt%范围内时,随着Al含量的增大,晶粒明显细化,由420μm减小至287μm,Ca含量较高时,Al_2Ca尺寸呈增大的趋势,细化效果减弱;在Mg-Al-1Ce合金中Al含量在0.2 ~ 2.5 wt%范围内变化时,随着Al含量的增大,合金的晶粒尺寸先减小再增大最后又减小,Ce含量较高时,Al_4Ce尺寸亦增大,细化效果减弱。
     热力学计算认为:Al-Ca的生成热小于Mg-Ca和Mg-Al,故向Mg-Ca合金中加入Al元素会优先形成Al_2Ca金属间化合物;Al-Ce的生成热小于Mg-Ce和Mg-Al,在Mg-Al-Ce熔体中,元素Al优先与Ce元素形成金属间化合物Al_4Ce。通过液态淬火试验,Al_2Ca、Al_4Ce化合物存在于液相中,证实了热力学计算结果。在Mg-Al-Ca合金中,随着Al含量的增加,第二相种类由Al_2Ca和Mg2Ca转变为Al_2Ca和Mg_(17)Al_(12),其形状由颗粒状和杆状变成网状。Mg-Al-Ce合金中,随着Al含量的增加,第二相由Mg12Ce、Mg17Ce2和Al_4Ce转变为Mg_(17)Al_(12)和Al_4Ce,其形貌有颗粒状和杆状变成骨骼形网络状。
     晶体学计算结果认为:Al_2Ca和α-Mg基体间存在Mg Al_2Ca{1 010}/{220}2[1120]_(Mg) /[111]Al Ca和Mg Al_2Ca{1011}/{311}2[1120]_(Mg) /[112]Al Ca两组位向关系,匹配度均小于10%,Al_2Ca颗粒可作为镁合金的有效晶粒细化剂;Al_4Ce和α-Mg基体间两组位向关系4{1010}M g /{112}_(Al_4Ce) 4[1120]_(Mg) /[111]_(Al_4Ce)和4{1010}M g /{112}_(Al_4Ce) 4[1120]_(Mg) /[110]_(Al_4Ce)证明了Al_4Ce的异质形核核心的作用。因此,在凝固过程中Al_2Ca和Al_4Ce可作为镁基体的异质形核质点,细化铸态镁合金的晶粒。
The coarse grains in as-cast magnesium alloys have great effect on the improvement of their performance and applications. Therefore, this article has been researched on generating the metallic compounds through in situ formation by adding alloy elements to refine grains through heterogeneous nucleation which depends on the crystallographic relationship between the compounds and magnesium matrix, thus optimizing their performance.
     In this paper, the investigation on the effects of the value of Al/Ca or Al/Ce on the as-cast microstructure of magnesium alloys has been carried out by means of optical microscope, electrical resistivity measurements, X-ray diffraction technique, etc. Thermodynamic and crystallographic calculation are also been used to explore the formation mechanism of the compounds preliminarily. Following research results were obtained.
     Grains refined obviously when the Al content changed in 0.5 ~ 2wt% in Mg-Al-0.5Ca alloys, with the increase of Al content, the grain size decreased from 420μm to 287μm. When Ca content was higher, the Al_2Ca dimension showed an increasing trend and weak refinement. With the adding 0.2 ~ 2.5 wt% Al to Mg-Al-1Ce alloy, the grain size decreased at first, but with the Al content increasing the grain size increased in a short range and decreased finally. When Ce content was higher, the Al_4Ce size showed an increasing trend and weak refinement.
     From thermodynamic calculation it is clear that: the formation enthalpy of Al-Ca is smaller than that of Mg-Ca or Mg-Al, which can promote the formation of Al-Ca metallic compounds; Al-Ce metallic compounds have smaller the formation enthalpy than Mg-Ce and Mg-Al, in Mg-Al-Ce system, and Al and Ce would react firstly and generate metallic compound Al_4Ce. It was confirmed that Al_2Ca and Al_4Ce presented in the liquid by liquid quenching experiments.
     In Mg-Al-Ca alloys, with the increase of Al content, the type of second phase transfromed from Al_2Ca and Mg2Ca to Al_2Ca and Mg_(17)Al_(12), and the morphology evolved from granular and nod to net-like. In Mg-Al-Ce alloys, with the Al content increased, the second phases changed from Mg_(12)Ce, Mg_(17)Ce)2 and Al_4Ce to Mg_(17)Al_(12) and Al_4Ce, and the morphology evolved from granular and nod to net-like bone-shape.
     Crystallographic calculation results showed that: there are two ORs between Al_2Ca andα-Mg matrix which misfits are less than 10%, Mg Al_2Ca{1 010}/{220}2[1120]_(Mg) /[111]Al Ca and Mg Al_2Ca{1011}/{311}2[1120]_(Mg) /[112]Al Ca , i.e. Al_2Ca could play as the effective nucleant for Mg alloys. The two ORs 4{1010}M g /{112}_(Al_4Ce) 4[1120]_(Mg) /[111]_(Al_4Ce) and 4{1010}M g /{112}_(Al_4Ce) 4[1120]_(Mg) /[110]_(Al_4Ce) between Al_4Ce andα-Mg matrix which is got by crystallographic calculation also proved the role of heterogeneous nucleant of Al_4Ce. Therefore, Al_2Ca and Al_4Ce could play the role of heterogeneous nucleant for Mg matrix and refine grains of the as-cast Mg alloys.
引文
[1]陈振华,严红革,陈吉华,全亚杰,王慧敏,陈鼎.镁合金[M].北京:化学工业出版社, 2004.
    [2]张津,张宗和.镁合金及应用[M].北京:化学工业出版社, 2004.
    [3]黄伯云,李成功,石力开,邱冠周,左铁镛.第四卷有色金属材料工程(上)[M].中国材料工程大典.北京:化学工业出版社, 2006.
    [4]陈振华.变形镁合金[M].北京:化学工业出版社, 2005.
    [5]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:科学出版社, 2007.
    [6]訾炳涛,王辉.镁合金及其在工业中的应用[J].稀有金属, 2004(01):229-232.
    [7]丁文江.镁合金科学与技术[M].北京:科学出版社, 2007.
    [8]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社, 2002.
    [9]崔忠圻.金属学与热处理[M].北京:机械工业出版社, 2000.
    [10]阮炜,孙樊.镁合金晶粒细化的研究进展[J].锻压装备与制造技术, 2009(04):20-23.
    [11]杨明波,潘复生,李忠盛,张静.镁合金铸态晶粒细化技术的研究进展[J].铸造, 2005(04):314-319.
    [12]刘林艳. Al4C3和Ce、Ca、Sr对AZ91D合金组织与性能影响[D]. 2007.
    [13]刘子利,沈以赴,李子全,王蕾.铸造镁合金的晶粒细化技术[J].材料科学与工程学报, 2004(01):146-149.
    [14]张世军,黎文献,余琨.添加含碳熔剂细化镁合金晶粒的方法[J].特种铸造及有色合金, 2002(04):18-19+2.
    [15]张世军,黎文献,余琨,谭敦强.镁合金的晶粒细化工艺[J].铸造, 2001(07):373-375.
    [16] Y. C. Lee, A. K. Dahle, D. H. Stjohn. The role of solute in grain refinement of magnesium[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2000, 31(11):2895-2906.
    [17] Dahle a K Lee Y C, Stjohn D H. Grain refinement of magnesium[J]. Magnesium Technology 2000 Symposium:211-218.
    [18] Baker H Avedesian M. M. Magnesium and magnesium alloys[M]. ASM international, 1999: 53-97.
    [19]王慧源,刘生发,徐萍,黄尚宇.锶在镁及其合金中的作用[J].铸造, 2005(11):1121-1124.
    [20] Wang Y. X. Zeng X. Q., Ding W., Luo A. A., Sachdev A. K. Effect of strontium on the microstructure, mechanical properties, and fracture behavior of AZ31 magnesium alloy[J]. Metallurgical and Materials transaction A, 2007, 37(4):1333-1341.
    [21] Gruzleski J. E. Aliravci C. A. Effect of strontium on the shrinkage microporosity in magnesium sand castings[J]. AFS Transcations, 1992, 115:353-362.
    [22] Bridot P. Nussbaum G., Warner T. J., New Mg-Al based alloys with improved casting and corrosion properties, in DGM conference on Magnesium Alloys and Their Applications. 1992: Oberursel, Germany. p. 351-358.
    [23] Peijie Li, Bin Tang, E. G. Kandalova. Microstructure and properties of AZ91D alloy with Ca additions[J]. Materials Letters, 2005, 59(6):671-675.
    [24] Wang Qudong, Chen Wenzhou, Zeng Xiaoqin, Lu Yizhen, Ding Wenjiang, Zhu Yanping, Xu Xiaoping, M. Mabuchi. Effects of Ca addition on the microstructure and mechanical properties of AZ91magnesium alloy[J]. Journal of Materials Science, 2001, 36(12):3035-3040.
    [25] Liu Shengfa, Kang Liugen, Han Hui, Wang Zhongfan. The role of calcium in microstructural refinement of AZ91 magnesium alloy[J]. Journal of Wuhan University of Technology--Materials Science Edition, 2006, 21(4):45-47.
    [26] Du Wenwen, Sun Yangshan, Min Xuegang, Xue Feng, Zhu Min, Wu Dengyun. Microstructure and mechanical properties of Mg-Al based alloy with calcium and rare earth additions[J]. Materials Science and Engineering A, 2003, 356(1-2):1-7.
    [27]闵学刚,杜温文,薛烽,孙扬善. Ca提高Mg17Al12相熔点的现象及EET理论分析[J].科学通报, 2002(02):109-112.
    [28]闫新,迟美,韩培德,许并社. 5d过渡金属二氮化物的第一性原理研究[J].太原理工大学学报, 2008(S1):23-26.
    [29]刘敏娟.稀土元素对AZ31变形镁合金组织和性能的影响[D].太原科技大学硕士论文, 2010.
    [30]樊昱,吴国华,高洪涛,李冠群,翟春泉. La对AZ91D镁合金力学性能和腐蚀性能的影响[J].金属学报, 2006(01):35-40.
    [31]黄正华,郭学锋,张忠明. Ce对AZ91D镁合金力学性能与阻尼性能的影响[J].稀有金属材料与工程, 2005(03):375-379.
    [32]李娜,刘建睿,王栓强,沈淑娟,黄卫东,逄玉台.稀土在镁及镁合金中的应用[J].铸造技术, 2006(10):1133-1136.
    [33]王渠东,吕宜振,曾小勤,丁文江,朱燕萍.稀土在铸造镁合金中的应用[J].特种铸造及有色合金, 1999(01).
    [34] Yoshida Y. Cisar L., Kamado S., Kojima Y., Watanabe F.. Microstructures and Tensile Properties of ECAE-Processed and Forged AZ31 Magnesium Alloy[J]. Materials Transactions, 2003, 44(4):476-483.
    [35]王慧源,刘生发,韩辉,康柳根.镁合金晶粒细化及机理研究进展[J].铸造技术, 2008(12):1734-1738.
    [36] H. Watanabe Toshiji Mukai, K. Moriwaki, Kunio Ishikawa, Y. Okanda, Kenji Higashi. Grain Refinement of a Commercial Magnesium Alloy for Superplastic Forming[J]. Materials Science Forum 2000, 357 - 359:459-464.
    [37]张诗昌,段汉桥,蔡启舟,魏伯康,林汉同.镁合金的熔炼工艺现状及发展趋势[J].特种铸造及有色合金, 2002(S1):310-313.
    [38] Bruce Bramfitt. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical and Materials Transactions B, 1970, 1(7):1987-1995.
    [39]袁广银,刘满平,王渠东,朱燕萍,丁文江. Mg-Al-Zn-Si合金的显微组织细化[J].金属学报, 2002(10):1105-1108.
    [40] L. Lu, A. K. Dahle, D. H. Stjohn. Grain refinement efficiency and mechanism of aluminium carbide in Mg-Al alloys[J]. Scripta Materialia, 2005, 53(5):517-522.
    [41] Frank F. C. Martensite[J]. Acta Materialia, 1953(1):15-21.
    [42] Van Der Merwe J. H. Shiflet G. J. The role of structural ledges as misfit-compensations defects: fcc-bcc interphase boundaries[J]. Metall Mater Trans A, 1994, 25A:1895-1903.
    [43] M.X. Zhang, P.M. Kelly. Accurate orientation relationships between ferrite and cementite in pearlite[J]. Journal Name: Scripta Materialia; Journal Volume: 37; Journal Issue: 12; Other Information: PBD: 15 Dec 1997, 1997:Medium: X; Size: pp. 2009-2015.
    [44] M. X. Zhang, P. M. Kelly, Ma Qian, J. A. Taylor. Crystallography of grain refinement in Mg-Al based alloys[J]. Acta Materialia, 2005, 53(11):3261-3270.
    [45] M. Zhang, P. Kelly, M. Easton, J. Taylor. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model[J]. Acta Materialia, 2005, 53(5):1427-1438.
    [46] Mark Easton, David Stjohn. Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm[J]. Metallurgical and Materials transaction A, 1999, 30(6):1625-1633.
    [47] Mark Easton, David Stjohn. Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms—a review of the literature[J]. Metallurgical and Materials transaction A, 1999, 30(6):1613-1623.
    [48]刘红梅,陈云贵,唐永柏,黄德明,涂铭旌,赵敏,李益国.铸态Mg-Sn二元合金的显微组织与力学性能[J].四川大学学报(工程科学版), 2006(02):90-94.
    [49] M. A. Easton, D. H. Stjohn. A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles[J]. Acta Materialia, 2001, 49(10):1867-1878.
    [50] Jae Joong Kim, Do Hyang Kim, K. S. Shin, Nack J. Kim. Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloys by Ca or P addition[J]. Scripta Materialia, 1999, 41(3):333-340.
    [51]宋海宁,袁广银,王渠东,朱燕萍,丁文江.耐热Mg-Zn-Si-Ca合金的显微组织和力学性能[J].中国有色金属学报, 2002(05):956-960.
    [52]刘生发,范晓明,王仲范.钙在铸造镁合金中的作用[J].铸造, 2003(04):246-248.
    [53] Lihong Han, Henry Hu, Derek O. Northwood. Effect of Ca additions on microstructure and microhardness of an as-cast Mg-5.0 wt% Al alloy[J]. Materials Letters, 2008, 62(3):381-384.
    [54] R. Ninomiya, T. Ojiro, K. Kubota. Improved heat resistance of Mg-Al alloys by the Ca addition[J]. Acta Metallurgica et Materialia, 1995, 43(2):669-674.
    [55] T. B. Massalski. Binary Alloy Phase Diagrams[M]. ASM International, 1990.
    [56]樊昱,吴国华,高洪涛,翟春泉,朱燕萍. Ca对镁合金组织、力学性能和腐蚀性能的影响[J].中国有色金属学报, 2005(02):210-216.
    [57]曹林锋,杜文博,苏学宽,聂祚仁,左铁镛. Ca合金化在镁合金中的作用[J].铸造技术, 2006(02):182-184.
    [58]李大全,王渠东,丁文江.稀土在变形镁合金中的应用[J].轻合金加工技术, 2006(12):9-12.
    [59]余琨,黎文献,李松瑞,谭敦强.含稀土镁合金的研究与开发[J].特种铸造及有色合金, 2002(S1):314-316.
    [60]张世军,黎文献,余琨.铈对镁合金AZ31晶粒大小及铸态力学性能的影响[J].铸造, 2002(12):767-771.
    [61]余琨,黎文献.细晶粒AZ31(Ce)镁合金板材的组织与性能[J].金属热处理, 2005(04):34-37.
    [62]余琨,黎文献,张世军. Ce对镁及镁合金中晶粒的细化机理[J].稀有金属材料与工程, 2005(07):1013-1016.
    [63]郑伟超,李培杰,郭旭涛,曾大本.稀土元素对AZ91D合金晶粒细化的影响[J].特种铸造及有色合金, 2004(04):26-28.
    [64] Tang Bin Li Shuangshou,Zheng Weichao, Zeng Daben, Guo Xutao. Grain Coarsening Behavior of Mg-Al Alloys with Mischmetal Addition[J]. Journal of Rare Earths, 2007(02):227-232.
    [65]郑伟超,李双寿,汤彬,曾大本.稀土对AZ31B变形镁合金组织和力学性能的影响[J].中国有色金属学报, 2006(02):197-204.
    [66]蔡素玲,谭彦显. AZ31-xCe镁合金组织和力学性能的研究[J].热处理技术与装备, 2008(04):27-31.
    [67]潘复生,彭家兴,杨明波.铈对AZ31镁合金铸态组织的影响[J].重庆大学学报, 2009(04):363-366.
    [68]韩德伟,张建新.金相试样制备与显示技术[M].长沙:中南大学出版社, 2005.
    [69]姚鸿年.金相研究方法[M].北京:北京工业出版社, 1961.
    [70] A. R. Miedema, P. F. De Chatel, F. R. De Boer. Cohesion in alloys -- fundamentals of a semi-empirical model[J]. Physica B+C, 1980, 100(1):1-28.
    [71] A. R. Miedema, F. R. De Boer, R. Boom. Model predictions for the enthalpy of formation of transition metal alloys[J]. Calphad, 1977, 1(4):341-359.
    [72] A. R. Miedema, F. R. De Boer, R. Boom. Predicting heat effects in alloys[J]. Physica B+C, 1981, 103(1):67-81.
    [73]周国治.新一代的溶液几何模型及其今后的展望[J].金属学报, 1997(02):126-132
    [74]范鹏,周国治.由组元的物性参数预测金属熔体的热力学性质[J].金属学报, 1999(04):421-426.
    [75]唐恺,蒋国昌,周国治,徐匡迪.新几何模型与SELF-SReM模型的关系[J].金属学报, 1999(08):801-804.
    [76]丁学勇,范鹏,韩其勇.三元系金属熔体中的活度和活度相互作用系数模型[J].金属学报, 1994(14).
    [77]余胜文,王为,徐赫,刘丽,聂祚仁. Al-Mg-Sc合金中热力学平衡相的计算[J].中国有色金属学报, 2006(03):505-510.
    [78]石国梁,张丁非,戴庆伟,刘渝萍. Mg-6Zn-1Mn镁合金中MgZn相析出的热力学计算[J].稀有金属材料与工程, 2009(11):1940-1944.
    [79]曹晔,钟宁,王晓东,黄宝旭,戎咏华.边-边匹配晶体学模型及其应用——HCP/FCC体系晶体学位向关系的预测[J].上海交通大学学报, 2007(04):586-591.
    [80] M. X. Zhang, P. M. Kelly. Edge-to-edge matching and its applications - Part I. Application to the simple HCP/BCC system[J]. Acta Materialia, 2005, 53(4):1073-1084.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700