医用镁锂钙合金及其涂层的耐蚀性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属材料作为近几十年来最成功的硬组织植入材料,在修复或替换骨组织的生物材料方面扮演着重要角色。但目前常用的不锈钢、钛合金、钴镍合金等医用金属材料在生物相容性和力学相容性上存在一定缺陷,且不可降解。医用镁基生物材料具有优良的生物力学性能,生物相容性和可降解性,是一种具有广阔前景的新型人体植入材料。然而,镁合金耐蚀性较差,过快的降解速率制约了其在临床应用上的研究和发展。因此近年来镁合金在模拟人体体液中的腐蚀和保护成为国内外的研究热点。
     本课题制备的新型Mg-Ca、Mg-Li-Ca和Mg-Li-Ca-Y合金,并进行挤压变形处理,分别使用浸涂和电沉积的方法在其表面进行了制备了硅烷涂层和Ca-P涂层。通过浸泡腐蚀实验、析氢和动电位电化学实验研究了Mg-Ca和Mg-Li-Ca合金及其表面涂层在Hank’s人体模拟体液中的腐蚀行为。考察了热挤压前后合金耐蚀性的变化,探讨了Ca、Li、Y元素对镁合金腐蚀性能的影响,研究了涂层的成膜机理及腐蚀保护效果。采用金相显微镜和扫描电子显微镜(SEM)观察了合金组织、腐蚀形貌和涂层形貌,使用能谱分析(EDS)和X射线衍射(XRD)等表面技术分析了合金、涂层以及腐蚀产物等的成分和结构。
     研究表明,镁合金在挤压变形过程中发生了动态再结晶,晶粒细化,第二相弥散分布,改善了耐蚀性。Ca元素具有细化晶粒的作用,对提高镁合金的耐蚀性有一定帮助,但当Ca含量超过一定范围时形成更多的Mg2Ca相,会加重微电偶腐蚀导致腐蚀速率快速升高。Mg-Li-Ca合金极化曲线的腐蚀电流密度较大,但随着浸泡时间的延长,腐蚀产物的致密度升高,有效降低了镁合金在Hank’s溶液中的腐蚀速率。合金中加入Y元素后,表面形成致密的氧化膜,提高了阴极析氢阻力,明显改善了镁合金的耐蚀性。
     硅烷预处理工艺提高了Mg-Ca合金的开路电位,缩小了三种Mg-Ca合金在Hank’s溶液中的腐蚀行为差异,在一定程度上提高了Mg-Ca合金的耐腐蚀性。利用电沉积法在Mg-Li-Ca合金表面制备Ca-P涂层,涂层的Ca/P原子比为0. 70~0. 79,Ca-P涂层明显提高了合金基体的耐蚀性能。
Metals as the most popular implant biomaterials played an important role in repairing and replacing bones in recent decades. However, metallic biomaterials, including stainless steels, titanium alloys and nickel-cobalt alloys used have currently some weakness in their bio-compatibility and bio-mechanical compatibility. Magnesium alloy are potential implant materials due to their excellent biocompatibility, good mechanical property and biodegradable. Unfortunately, the high susceptibility of Mg alloys to corrosion and thus too rapid degradation rate in human body limit their applications in the potentially clinical practice. Therefore, the study has been focused on corrosion and protection of magnesium alloys in simulated body fluids.
     Newly developed Mg-Ca, Mg-Li-Ca and Mg-Li-Ca-Y alloys had been extrued. The corrosion behavior of the alloys with and without sliane film and Ca-P film in Hank’s solution had been investigated by immersion tests, hydrogen evolution, and potentiodynamic electrochemical tests. The microstructure before and after the extrusion deformation and the effect of calcium, lithium and yttrium on the corrosion behavior of the alloys were studied. And the preparation and the corrosion resistance of silane film on Mg-Ca alloys and Ca-P coating on Mg-Li-Ca alloy were also investigated. The microstructure, corrosion morphology and coating surface was observed by means of scanning electron microscope (SEM). Meanwhile X-ray diffraction analysis (XRD) and Energy dispersive spectrum (EDS) were employed to characterize chemical makeup of coatings and corrosion products.
     The results showed that the grain size of magnesium alloy was decreased substantially with the dynamic recrystallization and the second phases were dispersed during the process of extrusion deformation, and refined with an increase in calcium content. The corrosion resistance of magnesium alloys was improved significantly by the extrusion process. Alloying element calcium can refine grains, and enhance the corrosion resistance of magnesium alloys. However, when the content of calcium exceeded a certain range the micro-galvanic corrosion would be promoted due to the formation of more intermetallic compounds Mg2Ca. The corrosion resistance of Mg-Li-Ca alloy was not more pronounced in the early immersion period, in comparison with Mg-Ca alloys. Note that with increasing immersion time corrosion products led to a rapid alkalization and reduction in the corrosion rate of magnesium alloys in Hank’s solution. The addition of yttrium into Mg-Li-Ca alloy hinder hydrogen evolution on cathode, thus improved the corrosion resistance of the alloy.
     The silane film increased the corrosion potential and corrosion resistance of the substrates, and reduced the difference of corrosion resistance among three Mg-Ca alloys. A Ca-P coating was prepared by means of electric-deposition on the Mg-Li-Ca alloy. The average Ca/P atomic ratio ranges between 0.70-0.79. The coating exhibited a plate-like morphology and boosted the corrosion resistance of the Mg-Li-Ca alloy.
引文
[1] Lambotte A. L'utilisation du magnesium comme materiel perdu dans l'osteosynthèse. Bull Mem Soc Nat Chri, 1932, 28: 1325-1334
    [2] Zeng R C, Dietzel W, Witte F, Hort N, Blawert C. Progress and Challenge for Magnesium Alloys as Biomaterials. Advanced Engineering Materials, 2008, 10(8): B3-B14
    [3]李龙川,高家诚,王勇.医用镁合金的腐蚀行为与表面改性.材料导报, 2003, 17(10): 29-32
    [4] Witte F, Kaese V, Haferkamp H. Corrosionof four magnesium alloys and the associated bone response. Biomaterials, 2005, 26 (17): 3557-3563
    [5] Witte F, Fischer J, Nellesen J, Crostack H, Kaese V, Pisch A, Beckmanne F, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27: 1013-1018
    [6] Song G L, Song S Z. A Possible Biodegradable Magnesium Implant Material. Advanced Engineering Materials, 2007, 7(7): 298-302
    [7]曾荣昌,周婉秋,韩恩厚,柯伟. pH值对挤压Mg合金AM60腐蚀的影响.金属学报, 2005, 41(3): 307-311
    [8] Zeng R C, Han E H, Ke W. Corrosion of artificial aged magnesium alloy AZ80 in 3.5% NaC1 solutions. Journal of Materials Science and Technology, 2007, 23(3): 353-358
    [9] Liu C L, Xin Y C, Tang G Y, Tang P K, Influence of heat treatment on degradation behavior of bio-degradable die-cast AZ63 magnesium alloy in simulated body fluid. Materials Science and Engineering A, 2007, 456(1-2): 350–357
    [10] Li L C, Gao J C, Wang Y. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surface and Coatings Technology, 2004, 185(1): 92-98
    [11] Williams D. New interests in magnesium[J]. Medical Device Technology , 2006, 17(3): 9-10
    [12] Witte F, Reifenrath J, Mmueller P P, Crostack H-A, Nellesen J, Bach F W, Bormann D, Rudert M. Cartilage repair on magnesium scaffolds used as a subchondral bone replacement Knorpelregeneration auf subchondralen Knochenersatzimplantaten aus Magnesium. Materialwissenschaft und Werkstofftechnik, 2006, 37(6): 504-508
    [13]郭毅,张永涛.镁合金表面化学转化膜研究现状.四川兵工学报, 2009, 30(11): 141-143
    [14]沈远香,黄晓霞.镁合金表面处理新技术及发展方向.四川兵工学报, 2010, 31(5) : 60-62
    [15] Erinc M, Sillekens W, Mannens R. Applicability of existing magnesium alloys as biomedical implant materials[C]//Magnesium Technology 2009. Warrendale: TMS, 2009: 209?214
    [16]郑玉峰,刘彬,顾雪楠,可生物降解性医用金属材料的研究进展,材料导报, 2009, 23(1): 1-4
    [17] Tadashi Kokubo, Hiroaki Takadama, How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials, 2006, 27(15): 2907-2915
    [18] R. Rettig, S. Virtanen, Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research Part A, 2009, 88(2): 359-369
    [19] S. V. Lamaka, M. F. Montemor, A. F. Galio, M. L. Zheludkevich, C. Trindade, L. F. Dick, M. G. S. Ferreira, Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy. Electrochimica Acta, 2008, 53(14): 4773-4783
    [20] Qiao Liying, Gao Jiacheng, Wang Yong, Wang Sali, Wu Sha, Xue Yan, Biocompatibility Evaluation of Magnesium-based Materials. Materials Science Forum, 2007, 546-549(part 1): 459-462
    [21]耿芳,谭丽丽,贺永莲,杨敬玉,张炳春,杨柯,多孔镁表面生物活性β-TCP涂层的制备及其细胞相容性研究.稀有金属材料与工程, 2009, 38(2): 318-322
    [22] Yang J X, Jiao Y P, Cui F Z, Lee I-S, Yin Q S, Zhang Y, Modification of degradation behavior of magnesium alloy by IBAD coating of calcium phosphate. Surface and Coatings Technology, 2008, 202(22-23): 5733-5736
    [23] Song Y W, Shan D Y, Han E H, Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Materials Letters, 2008, 62(17-18): 3276-3279
    [24]张春艳,曾荣昌,陈君,杨惠,田中青,镁合金AZ31表面液相沉积Ca-P生物陶瓷涂层的研究.稀有金属材料与工程, 2009, 38(8): 1363-1367
    [25]郭磊,刘魁,张世亮,高晓宇,黄晶晶,杨柯, CA-P/AZ31B镁合金的生物相容性研究.稀有金属材料与工程, 2009, 38(1): 99-103
    [26] Frank Witte, Frank Feyerabend, Petra Maier, Jens Fischer, Michael St?rmer, Carsten Blawert, Wolfgang Dietzel, Norbert Hort, Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomateials, 2007, 28(13): 2163-2174
    [27] Zeng Rongchang, Wolfgang Dietzel, Chen Jun, Huang Wei Jiu, Wang Jun, Corrosion Behavior of TiO2 Coating on Magnesium Alloy AM60 in Hank’s Solution. Key Engineering Materials, 2008, 373-374: 609-612
    [28] Xin Yunchang, Liu Chenglong, Zhang Wenjun, Jiang Jiang, Tang Guoyi, Tian Xiubo, Paul K Chu, Electrochemical Behavior Al2O3/Al Coated Surgical AZ91 Magnesium Alloy in Simulated Body Fluids. Journal of the Electrochemical Society, 2008, 155: c178-c182
    [29] Zeng Rongchang, Zhang Rongfa, Chen Rongshi, Wolfgang Dietzel, Karl U. Kainer, in Proceedings in 8th International Conference on Magnesium Alloys and Their Applications, Corrosion of Plasma Electrolytic Oxidation Coatings on Mg-Ca Alloy in Hank’s Solutions, edited by K. U. Kainer(Weiheim, WILEY-VCH, 2009)p.961
    [30] Zhang X P, Zhao Z P, Wu F M, Wang Y L, Wu J, Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution. Journal of Materials Science, 2007, 42(20): 8523-8528
    [31] Song Guangling, Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, 49(4): 1696-1701
    [32] Chen Jun, Zeng Rong-chang, Huang Wei-jiu, Zhang Zi-qing, Wang Zhen-lin, Wang Jun, Characterization and wear resistance of macro-arc oxidation coating on magnesium alloy AZ91 in simulated body fluids. The Chinese Journal of Nonferrous Metals, 2008, 18(s1): s361-s364
    [33]郭磊,刘魁,张世亮,黄晶晶,谭丽丽,杨柯,氧化镁膜AZ31B镁合金材料的细胞毒性研究.稀有金属材料与工程, 2009, 38(1): 99-103
    [34] J. E. Gray, B. Luan, Protective coatings on magnesium and its alloys - a critical review. Alloys & Compounds, 2002, 336(1-2): 88-113
    [35] T. Hassel, F.W. Bach, C. Krause, P. Wilk, in Magnesium Technology, Corrosion Protection and Repassivation after the Deformation of Magnesium Alloys Coated with a Protective Magnesium Flouride Layer, edited by R. N. Neelameggham, I. H. Kaplan, R. B. Powell(San Francisco, TMS, 2005)p.485
    [36] Zeng Rongchang, Chen Jun, W. Dietzel, N. Hort, K. U. Kainer, Electrochemical behavior of magnesium alloys in simulated body fluids. Transactions of Nonferrous Metals Society of China, 2007, 17: s166-s169
    [37] F. Witte, J. Fischer, J. Nellesen, C. Vogt, J. Vogt, T. Donath, Felix Beckmman, In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomaterial 2010, 6(5): 1792-1799.
    [38] Amy L. Rudd, Carmel B. Breslin, Florian Mansfeld, The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corrosion Science, 2000, 42(2): 275-288
    [39] Gao Jiacheng, Xue Yan, Qiao Liying, Wang Yong, Zhang Yan, Surface Modification of Magnesium with Rare Earth Conversion Films for Biomedical Protection. Materials Science Forum, 2007, 546/549(part 1): 601-604
    [40]颜廷亭,谭丽丽,熊党生,龚明明,张炳春,杨柯,生物医用AZ31B镁合金表面稀土转化膜的制备及其性能.稀有金属材料与工程, 2009, 38(5): 918-923
    [41]黄晶晶,任伊宾,张炳春,杨柯,可降解镁植入材料表面涂层的制备及其性能.中国有色金属学报, 2007, 17(9): 1465-1469
    [42]赵常利,张绍翔,何慈晖,李佳楠,张蓓蕾,张小农,生物医用镁合金表面PLGA涂层研究.功能材料, 2008, 39(6): 987-993
    [43]张萌,齐民,刘洪泽,杨璠,赵红,杨大智,刘炼,聚丙交酯-乙交酯聚合物(PLGA)涂层体外降解行为研究.功能材料, 2006, 37(2): 277-280
    [44]李孝红,黄志镗.聚乳酸及其共聚物的合成和在生物医学上的应用.高分子通报, 1999, 1, 24-32
    [45]许鑫华,程静,张春怀,闫学良,朱天兵,姚德康,曹路,刘寅,医用镁合金的生物腐蚀及高分子涂层处理.稀有金属材料与工程, 2008, 37(7): 1225-1228
    [46] Ozgur Duygulu, R. Alper Kaya, Gizem Oktay, A. Arslan Kaya, Investigation on the Potential of Magnesium Alloy AZ31 as a Bone Implant. Materials Science Forum, 2007, 546-59(1): 421-424
    [47] Liu Chenglong, Xin Yunchang, Tian Xiubo, Zhao J, Paul K. Chu, Corrosion resistance of titanium ion implanted AZ91 magnesium alloy. Journal of Vacuum Science and Technology A-Vacuum Surfaces and Films, 2007, 25 (2): 334-340
    [48] Zhang Erlin, Xu Liping, Yang Ke, Formation by Ion Plating of Ti-Coating on Pure Mg for Biomedical Applications. Scripta materialia, 2005, 53(5): 523-527
    [49] Wan Y Z, Xiong G Y, Luo H L, He F, Huang Y, Wang Y L, Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium–calcium alloys. Applied Surface Science, 2008, 254 (17): 5514-5516
    [50]曾荣昌,柯伟,徐永波,等.镁合金的最新发展及应用前景.金属学报, 2001, 37(7): 673-685
    [51] G. Song. Control of biodegradation of biocompatible magnesium alloys. Corrosion Science, 2007, 4(49): 1696-1701
    [52] Xu L P, Zhang E L, Yin D S, et al. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. J Mater Sci: Mater Med, 2008, 19(3): 1017-1025
    [53] Zberg B, Uggowitzer P J, Loeffler J F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials. 2009, 8(11): 887-891.
    [54]高家诚,伍沙,乔丽英,王勇.镁及镁合金在仿生体液中的腐蚀降解行为.中国组织工程研究与临床康复. 2007, 11(18): 3584-3586
    [55] N.N. AUNG, W. ZHOU. Effect of heat treatment on corrosion and electrochemical behaviour of AZ91D magnesium alloy. Journal of Applied Electrochemistry. 2002, 32: 1397-1401
    [56] Liu Chenglong, Xin Yunchang, Tian Xiubo, Paul K. Chu, Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. Journal of Materials Research, 2007, 22(7): 1806-1813
    [57]宋光铃,宋诗哲,镁在人体模拟液中的腐蚀行为.物理化学学报, 2006, 22(10): 1222-1226
    [58] L. Müller, F. A. Müller, Preparation of SBF with different HCO3-content and its influence on the composition of biomimetic apatites. Acta Biomaterialia, 2006, 2(2): 181-189
    [59]陶海荣,蒋垚,可降解镁合金内固定材料研究进展.国际骨科学杂志, 2008, 29(5): 293-294
    [60] Xu Liping, Yu Guo-ning, Zhang Erlin, Pan Feng, Yang Ke, In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. Journal of Biomedical Materials Research Part A, 2007, 83A(3): 703-711
    [61] Zeng Rongchang, Chen Jun, Ke Wei, Han Enhou, Dietzel, pH Value in Simulated Occluded Corrosion Cell for Magnesium Alloys. The Transactions of Nonferrous Metals Society of China, 2007, 17(s1A): s194-197
    [62] Carla Lorenz, Johannes G. Brunner, Philip Kollmannsberger, Leila Jaafar, Ben Fabry, Sannakaisa Virtanen, Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomaterialia, 2009, 5(7): 2783-2789
    [63] R. Rettig, S. Virtanen, Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research Part A, 2008, 85(1): 167-175
    [64] Akiko Yamamoto, Sachiko Hiromoto, Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Materials Science and Engineering C, 2009, 29(5): 1559-1568
    [65] Frank Witte, Norbert Hort, Carla Vogt, Smadar Cohen, Karl Ulrich Kainer, Regine Willumeit, Frank Feyerabend, Degradable biomaterials based on magnesium corrosion. Current opinion in solid state and materials science, 2008, 12(5-6): 63-72
    [66] Julie Lévesque, Hendra Hermawan, Dominique Dubé, Diego Mantovani, Design of a pseudo -physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomater, 2008, 4(2): 284-295
    [67]俞耀庭,张兴栋.《生物医用材料学》.天津:天津大学出版社, 2000.12
    [68] Rvon Mises. Mechanik der plastischen formverinderung von kristallen. Angew Z, Math Mech. 1928, 8: 161-185.
    [69]王智祥,谢建新,刘雪峰,李静媛,张丁非,潘复生.形变及时效对AZ91镁合金组织和力学性能的影响.金属学报, 2007, 43(9): 920-924
    [70]陈振华,许芳艳,傅定发,夏伟军.镁合金的动态再结晶.化工进展, 2006, 25(2): 140-146
    [71]张丁非,刘杰慧,胡红军,石国梁,戴庆伟.挤压-剪切工艺挤压AZ31镁合金的组织和结构演变.材料工程, 2010, 7: 24-28
    [72]全俊,唐靖林,曾大本.挤压工艺对AZ31镁合金组织和性能的影响.铸造技术, 2010, 31(9): 1187-1190
    [73]王赫男,赵玉华,张伟霞.挤压变形对金属镁耐腐蚀性能的影响.机械工程材料, 2008, 32(3): 42-44
    [74] Guang Ling Song, Andrej Atrens. Corrosion Mechanisms of Magnesium Alloys. Advanced Engineering Materials, 1999, 1(1): 11-33
    [75] Guangling Songa, Andrej Atrensa, Matthew Dargusch. Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science, 1999, 41: 249-273
    [76] Rajan Ambat, Naing Naing Aung, W. Zhou. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion Science, 2000, 42: 1433-1455
    [77]张忠林,刘兆晶,李凤珍.镁合金燃点和耐蚀性及力学性能的研究.轻合金加工技术, 2003, 31(7): 31-34
    [78]樊昱,吴国华,高洪涛等. Ca对镁合金组织、力学性能和腐蚀性能的影响.中国有色金属学报, 2005, 15(2): 210-215
    [79]卫中领,周学华,钮洁欣等. RE和Ca对镁铝合金一般腐蚀行为影响的电化学研究.材料保护, 2006, 39(11): 18-21
    [80] Antion C, Donnadieu P, Perrard F, et al. Hardening preeipitation in a Mg-4Y-3RE alloy. Aeta Materialia, 2003, 51(18): 5335-5348
    [81] N.T. Kirkland, J. Lespagnol, N. Birbilis, M.P. Staiger. A survey of bio-corrosion rates of magnesium alloys. Corrosion Science, 2010, 52: 287-291
    [82]宋光铃.《镁合金的腐蚀与防护》.北京:化学工业出版社, 2006. 24-35, 174-176
    [83]蒋斌,张丁非,彭建,丁培道. Mg-Li超轻合金的研究与应用.材料导报, 2005, 19(5): 38-41
    [84]曹富,荣丁桦,李英龙,周舸.超轻双相镁锂合金的超塑性、显微组织演变与变形机理.中国有色金属学报, 19(11): 1908-1916
    [85]黄晓锋,毛祖莉,阎峰云等.钇对Mg-9Al-1Si合金蠕变抗力和微观组织的影响,中国稀土学报, 2006, 8(24): 480-483
    [86] Zhang MX, Kelly PM. Morphology and crystallography of Mg24Y5 precipitate in Mg-Y alloy.Scripta Materialia, 2003, 48(4): 379-384
    [87]张密林, F.M.Elkin.《镁锂超轻合金》,北京:科学出版社, 2010. 303-304
    [88]刘贵.镁合金电子结构与腐蚀特性研究,物理学报, 2010, 59(4): 2708-2713
    [89]范才河,陈刚.稀土在镁及镁合金中的作用.材料导报, 2005, 7: 61-66
    [90] LAURA CECCHETTO, ALAIN DENOYELLE, DIDIER DELABOUGLISE, et al. A silane pretreatment for improving corrosion resistance performances of emeraldine base-coated aluminium samples in neutral environment. Applied Surface Science, 2008, 254: 1736-1743
    [91]徐溢,唐守渊,张晓凤.金属表面硅烷试剂膜结构及性能表征方法.光谱学与光谱分析, 2004, 24(4): 495-498
    [92]王雪明,李爱菊,李国丽,管从胜.硅烷偶联剂在防腐涂层金属预处理中的应用研究.材料科学与工程学报, 2005, 23(1): 147-150
    [93] F. Zucchi, A. Frignani, V. Grassi, G. Trabanelli, M. DalColle. The formation of a protective layer of 3-mercapto-propyl-trimethoxy-silane on copper. Corrosion Science, 2007, 49: 1570-1583
    [94] I. De Graeve, J. Vereecken, A. Franquet, T. Van Schaftinghen, H. Terryn. Silane coating of metal substrates: Complementary use of electrochemical, optical and thermal analysis for the evaluation of film properties. Progress in Organic Coatings, 2007, 59: 224–229
    [95] Laura Cecchetto, Alain Denoyelle, Didier Delabouglise, Jean-Pierre Petit. A silane pre-treatment for improving corrosion resistance performances of emeraldine base-coated aluminium samples in neutral environment. Applied Surface Science, 2008, 254: 1736-1743
    [96] Song Y W, Shan D Y, Han E H. Electrode position of hydroxyapatite coating on AZ91D magnesium alloy for bio-material application. Materials Letter, 2008, 62: 3276-3279
    [97] Zhang C Y, Zeng R C, Liu C L, et al. Comparison of calcium phosphate coatings on Mg-Al and Mg-Ca a lloys and their corrosion behavior in Hank's solution. Surface and Coatings Technology, 2010, 204(21-22): 3636-3640.
    [98] Zhang C Y, Zeng R C, L iu C L, et al. Prepara tion of calcium phosphate coatings on Mg-1.0Ca alloy. Transactions of Nonferrous Metals Society of China, 2010, 20: S655-659.
    [99]张春艳,高家诚,曾荣昌,等.镁合金AZ31表面Ca-P涂层在Hank‘s溶液中的腐蚀行为.硅酸盐学报, 2010, 38(5): 885-891.
    [100]张春艳,高家诚,曾荣昌,等.电化学沉积法制备镁基Ca-P生物陶瓷涂层的研究.功能材料, 2010, 41(6): 952- 956, 960
    [101]高亚丽,熊党生,王存山,等.医用镁合金激光熔覆羟基磷灰石涂层初探.特种铸造及有色合金, 2009, 29 (4): 305-307
    [102]张鑫明,刘成龙,曾荣昌.白蛋白作用下纯镁的腐蚀行为[J].重庆理工大学学报(自然科学版),2010,24(2):49-53
    [103]龙婷,尹强,孙智富.钢表面ZrO_2陶瓷纳米等离子喷涂[J].重庆工学院学报(自然科学版),2009,23(1):36-40
    [104]王振林.不锈钢表面羟基磷灰石涂层的溶胶凝胶法制备[J].重庆理工大学学报(自然科学版),2010,24(1):99-102
    [105] Wang H X, Guan S K,Wang X, et al. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapa tite by the pulsee lectrodeposition process. Acta Biomaterialia, 2010, 6(5): 1743-1748
    [106] Li J, Song Y, Zhang S, et al. In vitro responses of human bone marrow stromal cells to a fluor idated hydroxyapatite coated biodegradable Mg-Zn alloy. Biomaterials, 2010, 31(22): 5782-5788
    [107] Grobner J, Schmid-Fetzer R, Pisch A, et al. Phaseequ ilibria, calorimetric study and thermodynamic modeling of Mg-Li-Ca alloys. Thermochimica Acta, 2002, 389(1-2): 85-94.
    [108] Song G S, Kral M V. Character ization of cast Mg-Li-Ca alloys. Materials Characterization, 2005, 54 (4-5): 279-286.
    [109]肖秀峰,唐晓恋,高燕娇,等.工艺条件对电沉积磷酸钙盐组分和结构的影响.材料保护, 2005, 38(1): 29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700