粗晶粒镁合金高温快速塑性变形的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对粗晶粒铸轧AZ31和Mg-xAl系合金的高温快速变形性能和变形机制进行了研究。
     研究得出在475℃(12h) + 425℃(6h)的退火条件下,铸轧AZ31的晶粒尺寸由9.5μm长大到27.8μm。粗晶AZ31在450℃和10~(-3) s~(-1)条件下达到最大延伸率106.7%,由于晶界滑移对应变的贡献降低,延伸率总体低于细晶AZ31。在450℃和10~(-3) s~(-1)条件下的变形激活能为Q = 140.07 KJ/mol,接近Al在Mg中的扩散激活能。结合n≈3的应力指数,溶质牵制位错蠕变在高温低应力下对粗晶粒AZ31的延伸率起到重要作用。在相同应变率下,细晶AZ31的激活能较高,这是由于晶粒细小、晶界密度大,在变形过程中有利于动态再结晶形核,使动态再结晶倾向增加。
     用真空感应炉制得Mg-xAl (x = 2、3、4)系列铸锭,在400℃进行12 h的均匀化退火,并利用两辊可逆轧机制备3.0 mm厚的板材。研究退火对轧制板材晶粒尺寸的影响,得出在400℃进行60 min退火后,晶粒的平均尺寸较大。在此工艺下,得到粗晶粒Mg-2Al、Mg-3Al和Mg-4Al合金,平均晶粒尺寸分别为120.4μm、55.4μm和78.75μm。
     以热处理后Mg-xAl系列镁合金板材为研究材料,研究了溶质Al含量对Mg-xAl合金快速塑性变形塑性和变形机制的影响。在同一应变速率和温度下,峰值应力随着Al含量增加而增大。在10~(-3) s~(-1)和450℃条件下,Mg–2Al、Mg–3Al和Mg–4Al的延伸率分别为122.1%、143.7%和139.8%。在相同应变率下,变形激活能随着Al含量的增加而减小。Mg-xAl合金在高应变率((ε|') = 10~(-2) s~(-1))下的变形激活能接近Al原子在Mg基体中的扩散激活能Q = 141.34±10 kJ/mol,结合Mg-xAl合金在450℃的应力指数n≈3,判定Mg-xAl合金在450℃和10~(-2) s~(-1)条件下的变形机制为溶质牵制位错蠕变。
In this thesis, annealing conditions and high temperature quick plastic deformation and deformation mechanism of AZ31 and Mg-xAl alloys are investigated.
     Experimental data show that grain size of twin-roll casted AZ31 grow up from 9.5μm to 27.8μm at the annealing condition of 475℃( 12h ) + 425℃( 6h ). Coarse grained AZ31 reached the maximum elongation of 106.7% at 450℃and 10~(-3) s~(-1), which is less than fine grained material due to less contribution of grain boundary sliding. The coarse grained AZ31 alloy exhibits an activation energy of Q = 140.07 KJ/mol at 450℃and 10~(-3) s~(-1), which is similar to the diffusion energy of Al in Mg, Q = 143±10 KJ/mol. Combined with the stress exponent of n≈3, solute drag creep plays an important role during deformation at high temperature and low stress for Coarse grained AZ31. Under the same strain rate, fine grained AZ31 has higher activation energy than coarse grained material because that the high grain boundary density improves dynamic recrystallization.
     Mg-xAl ( x = 2、3、4 wt.% ) alloy ingot were made in vacuum furnace. Then the Mg ingot were hot rolled with an two roll reversible mill to produce plate with a thickness of 3.0 mm. The effects of annealing time on grain size of the rolled plate were studied. The average grain size reachs its maximum at 400℃for 60 min, under which condition, the average grain siz of Mg-2Al, Mg-3Al, and Mg-4Al are 120.4μm, 55.4μm, and 78.75μm, respectively.
     The effects of solute content of Al on quick plastic deformation were investigated for the Mg-xAl alloys. The peak tensile stress increases with an increase of Al content under constant temperature and strain rate.Elongations of Mg-2Al, Mg-3Al, and Mg-4Al are 122.1%、143.7% and 139.8% were consistently achieved at 10~(-3) s~(-1) and 450℃. The activation energy decreases with the increase of Al content under contant strain rate. The activation at high strain rate of (ε|') = 10~(-2) s~(-1) for the Mg-xAl alloy is similar to that for diffusion of Al atoms in Mg, Q = 141.34±10 kJ/mol. Combined with the stress exponent of n≈3 at 450℃, it is concluded that solute drag dislocation creep is the dominate deformation mechanism at the strain rate of 10~(-2) s~(-1) for the Mg - xAl alloys.
引文
[1]张津,张宗和等.镁合金及应用.北京:化学工业出版社, 2004.
    [2]曾荣昌,柯伟,徐永波,韩恩厚.镁合金的最新发展及应用前景.金属学报,2001,37(7): p. 674-675.
    [3]Yu Kun, Rui Shou-Tai, Song Jue-Min, Li Wen-Xian, Guo Long. Effects of grain refinement on mechanical properties and microstructures of AZ31 alloy. Transaction of Nonferrous Metals Society China, 2008, 18: p. 39-43.
    [4]周惦武,庄厚龙,刘金水等.镁合金材料的研究进展与发展趋势[J].河南科技大学学报,2004,25(3):p.15.
    [5]陈力禾,刘正.林立,梁立超.镁—汽车工业通向新世纪的轻量化之路.铸造, 2004, 53 (1): p. 5-11.
    [6]曲晓峰.轻质材料在汽车上的应用.中国机电工业, 2002, 7: p. 38-39.
    [7]葛龙.基于耐撞性仿真的轿车车身轻量化研究[D] .上海交通大学,车辆工程专业2003.p. 1.
    [8]张泰香,陈培磊,陈海军等.镁合金在汽车工业中的应用及其研究进展.铸造技术, 2008, 29 (4): p.531-535.
    [9]Kim M H, Park W W, You B S, Huang Y B, Kim W C. Effects of Protective Gases on the Oxidation Behavior of Mg-Ca Base Molten Alloys[J]. Materials Science Forum, 2003, 419-422:p. 575-580.
    [10]赵鸿等.镁合金应用的发展趋势及切削加工要点.工具技术, 2005(6): p. 30-32.
    [11]刘倩.熔体处理与电磁搅拌对镁铝合金组织性能的影响[D] : [硕士学位文].北京:清华大学机械工程系,2007.
    [12]徐河,刘静安,谢水生.镁合金制备与加工技术.北京:冶金工业出版社, 2007: p. 5.
    [13]李冠群,吴国华,樊昱,丁文江.主要合金元素对镁合金组织及耐蚀性能的影响.铸造技术, 2006, 27 (1): p.79-83.
    [14]Guangling Song, Amanda L., Bowles, et al. Corrosion resistance of aged die cast magnesium alloy AZ91D[J]. Materials Science and Engineering. 2004,A366: p. 75-82.
    [15]张诗昌,段汉桥,蔡启舟等.主要合金元素对镁合金组织和性能的影响.铸造,200,50(6): p.310-314.
    [16]Guangling Song,Andrej Atrens, Matthew Dargusch.Influence of microstructure on the corrosion of diecast AZ91D[J]. Corrosion Science 1999,(41):p.250-162.
    [17]孙场善,翁坤忠,袁广银.Sn对镁合金显微组织和力学性能的影响. [J].中国有色金属学报, 1999, 3: p.56-60.
    [18]Pekguleryuz M O, Avedesian M M. Mg Alloying, some Potentials for Alloy Development [ J]. Light Metals,1992,42(12): p. 678-685.
    [19]王斌,易丹青,罗文海,等.微量Sc元素对AZ91镁合金组织性能的影响[J].铸造, 2005, 5: p.459-461
    [20].卫爱丽,杨学军,赵浩峰等.合金元素对镁合金的性能影响研究.铸造设备研究,2005 (3): p. 16-17.
    [21]张波,杜文博,为玉绛,等.Zr对铸造MgZn5Nd3.5合金组织和性能的影响[J].特种铸造及有色合金, 2006, 2: p. 74-76.
    [22]陈振华等编著.镁合金.北京:化学工业出版社, 2004: p.35-36.
    [23]李鼎一.镁在汽车工业上之应用[J].钟福见译.金属工业(台湾),2002,36(1): p. 17-20.
    [24]王茵.有色轻合金在汽车工业中的应用与前景.现代机械,2004,3:63
    [25] Mordike B L,Ebert T. Magnesium properties-applications- potential. Mater Sci Eng,2001,A302: p. 37.
    [26]刘静安.镁合金加工技术发展趋势与开发应用前景[J].轻合金加工技术,2001,29,(11): p. 1-7.
    [27]王渠东,吕宜振,曾小勤,丁文,江卢晨.镁合金在电子器材壳体中的应用.材料导报,2000, 14 (6): p. 22-24.
    [28]黄少东,唐全波,赵祖德.用镁合金促进兵器装备轻量化[J].金属成形工艺,2002,20(5):p. 8-10. [29 ]Aghion E,Bronfin B,Eliezer D. The role of the magnesium industry in protecting the environment. Mater Proce Techn,2001, 117:p.381.
    [30]张珣.镁合金产业的现状与发展[J].世界有色金属,2002,(9): p. 13.
    [31]孟树昆.镁及镁合金应用进展.中国镁业发展高层论坛专题报告文集,2004: p. 79~115.
    [32]佟丽红.汽车制造业使用镁的现状与潜力[J].世界有色金属,2002,(8): p. 16-20.
    [33]张娅,马春江,卢晨.变形镁合金的塑性变形机制与动态再结晶.轻合金加工技术, 2003,31 (7): p. 35-39.
    [34]田素贵,杨景红,于兴福,孙根荣,金敬铉,徐永波,胡壮麒. AZ31镁合金蠕变初期的变形特征[J].金属学报, 2005; 41(4): p. 375-379.
    [35]严安庆,张佳,刘楚明,周海涛,江国金.镁合金热变形的研究现状[J].轻合金加工技术, 2006; 34(3): p. 1-6.
    [36]王智祥,刘雪峰,谢建新. AZ91镁合金高温变形本构关系[J].金属学报, 2008; 44(11): p. 1378-1383.
    [37]陈振华,刘俊伟,陈鼎,严红革.镁合金超塑性的变形机理、研究现状及发展趋势.中国有色金属学报, 2008, 18 (2): p. 193-196.
    [38]杨俊,刘玉珍,王孟平.铝-6%镁合金超塑性机理研究.机械工程材料, 1991, 82 (1): p. 8-11.
    [39] W. J. Kim, J. D. Park, U. S. Yoon. Superplasticity and superplastic forming of Mg-Al-Zn alloy sheets fabricated by strip casting method [J]. Journal of Alloys and Compounds, 2008; 464(1-2): p. 197-204.
    [40] R. S. Kottada, A. H. Chokshi. Grain Boundary Sliding during Difusion and Dislocation Creep in a Mg-0.7 Pct Al Alloy [J]. Metallurgical and Materials Transactions A, 2007; 38A: p. 1743-1749.
    [41].M.A.J. A. H. Cottrell. Distribution of Solute Atoms Round a Slow Dislocation. Proceedings of the Royal Society, 1949, 119A: p. 105-112.
    [42]张俊善.材料的高温变形与断裂.科学出版社, 2007, 1: p.77-79 .
    [43]E.M.T. O. D. Sherby. Influence of Grain Size, Solute Atoms and Second-phase Particles on Creep Behavior of Polycrystalline Solids. Materials Science and Engineering A, 2002, 322: p. 89-99.
    [44]G.A.H. E. M. Taleff, T. G. Nieh, D. R. Lesuer, and J. Wadsworth. Warm-Temperature Tensile Ductility in Al-Mg Alloys. Metallurgical and Materials Transactions A, 1998, 29A(3A): p. 1090-1091.
    [45]张诗昌,宗钦,胡衍生,程晓茹.高温低应力下AZ31镁合金的蠕变性能及蠕变机理[J].机械工程学报, 2009; 45(3): p. 291-295.
    [46] WATANABE H, TSUTSUI H, MUKAI T. Deformation mechanism in a coarse grained Mg-Al-Zn alloy at elevated temperature[J]. International Journal of Plasticity, 2001, 17:p. 387-397.
    [47]J Weertman. Steady-State Creep Through Dislocation Climb. Journal ofApplied Physics, 1957, 28: p. 362-364.
    [48]闫蕴琪,张廷杰,邓炬,周廉.镁合金超塑性研究现状与进展.金属热处理, 2003, 28 (10): p. 1-3.
    [49]曹剑. AZ31镁合金超塑性研究: [硕士学位论文].湖南:湖南大学, 2005.
    [50]HIROYUKI Watanabo,TOSHUI Mukai,MAMORU Mabuchi,et al. High-strain-rate superplasticity at low temperature in ZK61 magnesium alloy produced by powder metallurgy[J].Scripta Materialia,1999,41:p. 209—213.
    [51]Y. H. Wei, Q. D. Wang. Superplasticity and Grain Boundary Sliding in Rolled AZ91 Magnesium Alloy at High Strain Rates [J]. Mater. Sci. Eng., A, 2003; 360: p. 107-115.
    [52] J. A. Del-Valle, O. A. Ruano. Separate contributions of texture and grain size on the creep mechanisms in a fine-grained magnesium alloy [J]. Acta Mater., 2007; 55: p. 455-466.
    [53]曹剑,张福全,夏伟军,傅定发,陈振华,吴有伍. AZ31镁合金多阶段超塑性变形[J].轻金属, 2005; 2: p. 58-61.
    [54]于彦东,张凯锋,蒋大鸣,郑海荣,王长丽.轧制镁合金超塑性和超塑胀形[J].中国有色金属学报, 2003; 13(1): p. 71-75.
    [55]刘满平,马春江,王渠东,吴国华,朱燕萍,丁文江.工业态AZ31镁合金的超塑性变形行为[J].中国有色金属学报, 2002; 12(4):p. 797-801.
    [56] J. A. Del-Valle, O. A. Ruano. Superplasticity in a magnesium alloy prepared with bimodal grain size distributions developed by dynamic recrystallisation [J]. Materials Letters, 2008; 62: p. 3391-3394.
    [57] R. Verma, L. G. Hector, Paul E. Krajewski, E. M. Taleff. The Finite Element Simulation of High-temperature Magnesium AZ31 Sheet Forming [J]. JOM, 2009; 61(8): p. 29-37.
    [58] S. S. Vagarali, T. G. Langdon. Deformation mechanisms in h.c.p. metals at elevated temperatures-II. Creep behavior of a Mg-0.8%Al solid solution alloy [J]. Acta Mater., 1982; 30(6): p. 1157-1170.
    [59] T. Ito, J. Saeki, M. Otsuka. Superplastic-like behavior in coarse grained Mg-Al solid solutions [J]. J. Japan Inst. Metals, 2003; 67(2): p. 85-92.
    [60] H. Watanabe, H. Tsutsui, T. Mukai. Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperatures [J]. Int. J. Plast., 2001; 17(3): p. 387-398.
    [61]吴立鸿,王利国,王盼,关绍康. Mg-7.0A1-0.2Zn合金的超塑性及其变形机制[J].稀有金属材料与工程, 2010; 39(2): p. 194-198.
    [62]王瑜.铸轧AZ31镁合金高温拉伸性能[D].辽宁科技大学,材料加工工程专业2010:p. 25.
    [63]蒋冬梅,林栋梁.大晶粒Ni-45Al合金的超塑性[J] .金属学报.2003,39(1):p. 47-50.
    [64] Funamizu Y, Watanabe K. Trans. JIM 1972; 13: p. 278.
    [65] Mcnelley T R, Michel D J, Salama A. Scripta Metall 1989; 23: p. 1657.
    [66] Y.V.R.K.Prasad,T.Seshachbaryulu.Modelling of Hot Deformation for Microstructural Control [J]. Inter.mater.Rev,1998,43(6) :243-258
    [67]O.Sitdikov, R.Kaibyshev.Dynamic recrystallization in Pure Mgnesium[J]. Master.Trans,2001,42(9):1928-1937
    [68]艾秀兰,杨军,权高峰. AZ31镁合金铸坯均匀化退火.金属热处理, 2009, 34 (12): p. 23-26.
    [69]余琨,黎文献.Mg-Al-Zn系变形镁合金轧制及热处理后的组织和性能.金属热处理, 2002, 27 (5): p. 8-10.
    [70]陈孝先,李秋书,范艳艳.AZ31镁合金的研究现状.山西冶金, 2009, 117 (32): p.1-3.
    [71]张丁非,戴庆伟,胡耀波等.镁合金板材轧制成型的研究进展.材料工程, 2009: p.85-90.
    [72]张丁非,戴庆伟,胡耀波等.退火工艺对轧制AZ31镁合金组织和性能的影响.湘潭大学自然科学学报, 2005,27(4): p.57-61.
    [73] Mcqueen H J, et al.Role of the the Dynamic and Static Softening Mechanisum in Multistage Hot Woking [J].J.Applied Metalworking, January,1985,3(4): p. 410-420 .
    [74]胡赓祥,蔡珣,戎咏华.材料科学基础.上海:上海交通大学出版社,2007:p. 149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700