室温压缩粗镁直接熔炼AZ91镁合金的硬化及退火转变动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的快速发展,各个领域都在不断的探索和研发具备良好综合性能的材料。镁合金因其低密度、高的比强度和比刚度及其易于回收再利用等优良性能而成为研究领域的首选材料。AZ91镁合金除具备上述性能外,其价格低廉及具有良好的铸造性能,而成为常用的商业化镁合金。经塑性变形后的变形镁合金比铸造镁合金具有更优异的性能。
     本实验对经固溶处理后的AZ91镁合金进行室温压缩变形,然后再进行退火处理。利用扫描电镜、能谱仪、X-射线衍射仪等对其微观组织形貌、成分、结构及相组成进行分析,采用布洛维硬度计和数显显微硬度计从宏观及微观上对AZ91镁合金硬度进行分析,以研究室温压缩对AZ91镁合金微观组织和性能的影响,进一步研究退火对变形后合金显微组织、性能的影响及退火后变形和未变形AZ91镁合金β-Mg_(17)Al_(12)相析出动力学。
     实验结果表明:AZ91镁合金在室温压缩过程产生了大量孪晶,其中有很多交叉孪晶的交叉角度接近于90o;大量孪晶的存在为β-Mg_(17)Al_(12)相的析出提供了形核基底,也为静态再结晶提供了有利的形核条件;退火过程中β-Mg_(17)Al_(12)相优先沿晶界、孪晶界析出,尤其易在孪晶与晶界、孪晶交接处析出并长大;250℃退火时,随退火时间的延长,孪晶界逐渐变宽,同时析出相的排列与基体具有一定的方向性;变形量为8%时,试验退火条件下合金未发生再结晶;当变形量为10%时,在350℃退火时则发生明显静态再结晶;在250~350℃退火时,AZ91镁合金析出β-Mg_(17)Al_(12)相的激活能为23.8~37.9kJ/mol;退火后材料的硬度值受形变量、析出物数量、退火时间及其温度等因素影响,发生了很大变化。
Many fields have been looking for materials with better comprehensive properties. Magnesium alloy is the first choice with its excellent compreshensive property, such as low density, high specific strength and specific stiffness and easy recycle, etc. AZ91alloy is a commonly commercialized magnesium alloy, owing to his low cost and an excellent combination property. It is well known that magnesium alloy has a higher comprehensive properties after plastic deformation after being deformed.
     In this paper, the experimental samples are subjected to solution treatment, compression processing at room temperature and annealing. The microstructure, chemical compositions, rock-well hardness and micro-hardness of solid-solution, solution + compression, solution + compression + annealing AZ91 alloy were investigated by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), rock-well hardness and micro-hardness tester, respectively. And precipitation kinetics ofβ-Mg_(17)Al_(12) phase in deformed and non-deformed AZ91 alloys after annealing were also studied.
     The results shown that lots of twining would emerge as a result of compression at room temperature, most of which intersect with respect to each other at near 90o, serving as beneficial nucleation condition both forβ-Mg_(17)Al_(12) phase precipitation and static recrystallzation. Theβ-Mg_(17)Al_(12) phase precipitated preferentially at twin and grain bounbaries. In the annealing process, phase precipitation and growth were frequently observed at the intersection between twinning and original grain, or among various twinnings. The twin boundaries will get wider gradually with longer aging time and increasing temperature; Meanwhile, certain orientation relationships were also discovered between theβ-Mg_(17)Al_(12) phase precipitated in twinning and theα-Mg matrix under 250℃annealing.When the deformation was 8%, no recrystallzation occurred under (250~350)℃×2h annealing condition. When the deformed to 10%, static recrystallzation started considerably after annealing at 350℃. The activation energy forβ-Mg_(17)Al_(12) phase precipitation in AZ91 alloy was calculated to be 23.8~37.9kJ/mol using the JMAK equation, in accordance with our experimental data. The hardness of AZ91 alloy can be greatly related to compressing rate, precipitate amount, annealing temperature and time, etc.
引文
[1] Kojima Y. Progressive steps in the platform science and technology for advanced magnesium alloy. Materials Science Forum, 2003, 419~422(1): 3~20.
    [2]陈振华.变形镁合金.北京:化学工业出版社,2005.
    [3]宋鹏飞,王敬丰,潘复生.高强变形镁合金的研究现状及展望.兵器材料科学与工程,2010,33(4):85~90.
    [4]戴庆伟,张丁非,袁炜等.新型Mg-Zn-Mn变形镁合金的挤压特性与组织性能研究.材料工程,2008 (4):38~42.
    [5]王荣贵.我国变形镁合金开发的现状与发展.山西冶金,2009,32(2):1~5.
    [6] Da C, Blawert C, Dietzel W, et al. Surface modification of magnesium alloy AZ31 by hydrofluoric acid treatment and its effect on the corrosion behaviour. Thin Solid Films, 2010, 518(18): 5209~5218.
    [7]石雅静,李全安,任文亮等.耐热镁合金的开发与研究现状.轻合金加工技术,2009,37(5):1~6.
    [8] Stulikova I, Smola B, Pelcova J, et al. Phase transformation in creep resistant MgYNdScMn alloy. Zeitschrift Fur Metallkunde, 2005, 96(7): 823~827.
    [9]张金龙.耐热高强度变形镁合金研究:(硕士学位论文).西安:西安理工大学,2008.
    [10]李桂华,甘屹,齐从谦等.车身材料轻量化及其新技术的应用.材料开发与应用,2009,(2):45-48.
    [11]张远法.我国镁合金应用领域开发前景分析.中国新技术新产品,2010 (9):106.
    [12]刘静安,徐河.镁合金材料的应用及其加工技术的发展.轻合金加工技术,2007,35(8):1~5.
    [13]何庆彪,杜庆安,李浈等.航天器大型镁合金铸造结构件的研制.制造技术研究.2010(6).
    [14]王祝堂,李永革,欧盟对航空航天器变形镁合金应用的评估.轻合金加工技术,2010,38(7):8~13.
    [15] Ohyama R, Koike J, Kobayashi T, et al. Enhanced grain-boundary sliding at room temperature in AZ31 magnesium alloy. Materials Seience Forum, 2003, 419~422(1): 237~241.
    [16] Huang K J, Wang C S, Xie C S. Laser cladding of Zr52.5Cu17.9Ni14.6Al10Ti5/TiC composite coating on AZ91D magnesium alloy for improvement of wear resistance. Advanced Materials Research, 2009, 66: 206~209.
    [17] Galiyev A, Sitdikov O, Kaibyshev R, Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy. Materials Transactions, 2003, 44(4): 426~235.
    [18] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materials, 2001, 49(7): 1199~1207.
    [19] Li L X, Lou Y. Microstructure evolutions during the hot extrusion process of AZ31B magnesium alloy. Chinese Journal of Mechanical Engineering, 2009, 22(3): 369~375.
    [20] Nan Z Y, Ishihara S, Goshima T. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution. International Journal of Fatigue, 2008, 30(7): 1181~1188.
    [21] Bhuiyan M S, Mutoh Y, Murai T. Corrosion fatigue behavior of extruded magnesium alloy AZ80~T5 in a 5% NaCl environment. Engineering Fracture Mechanics, 2010, 77(10): 1567~1576.
    [22]李冠群,吴国华,樊昱.Al/Zn比对镁合金组织、力学性能及耐蚀性的影响.铸造技术,2005,26(10):922~926.
    [23] Zhang J, Guo Z X, Pan F S, et al. Effect of composition on the microstructure and mechanical properties of Mg-Zn-Al alloys. Journal of Materials Science Engineering A, 2007, 456(1~2): 43~51.
    [24] Zhang J, Li Z S, Guo Z X, et al. Solidification microstructural constituent and its crystallographic morphology of permanent-mould-cast Mg-Zn-Al alloys. Transactions Nonferrous Metal Society China, 2006, 16(1~2): 452~458.
    [25]蒋德平,龙思远,朱志兵等.铝、锌及热处理对Mg-Al-Mn合金组织及力学性能的影响.重庆大学学报(自然科学版),2006,29(12):76~79.
    [26]夏鹏举,蒋百灵,张菊梅等.Mg-Al系镁合金离异共晶β相的研究.特种铸造及有色合金,2007,27(5):360~362.
    [27]唐伟,韩恩厚,徐永波.Al和Ca对变形镁合金性能的影响.材料研究学报,2005,19(5):471~477.
    [28] Zhang G Q, Long S Y, Cao F H. Effects of Aluminum Content on the Microstructure and Mechanical Properties of AZ Magnesium Alloys. Special Casting & Nonferrous Alloys, 2009, 29(9): 848~849.
    [29]王猛,卢治森,刘启文等.轻金属材料加工手册.北京:冶金工业出版社,1979.
    [30]余琨,黎文献,李松瑞.变形镁合金材料的研究进展.轻金属加工技术,2001,29(7):7.
    [31] Kida Y, Tamura Y, Kono N, et al. The effect of manganese on the precipitation of Mg17Al12 phase in magnesium alloy AZ91. Journal of Materials Science, 2008, 43(4): 1249~1258.
    [32] Uematsu Y, Tokaji K, Manabe T, et al. Fatigue behaviour of Mg2Si-participate reinforced magnesium alloy composites. Nihon Kikai Gakkai Ronbunshu, 2007, 73(2): 252~257.
    [33] Tian J, Li W F, Han L, et al. Creep behavior of an AZ91 magnesium alloy reinforced with aluminum silicate short fibers. Advanced Materials Research, 2010, 97~101: 492~495.
    [34]孟强,蔡庆伍,江海涛等.异步轧制对AZ31镁合金静态再结晶及晶粒细化的影响.北京科技大学学报,2011,33(1):47~52.
    [35] Yoshikawa T, Tokuda M, Inaba T, et al. Plastic deformation of AZ31 magnesium alloy under various temperature conditions. Society of Materials Science Japan, 2008, 57(7): 688~695.
    [36]夏伟军,蔡建国,陈振华等.异步轧制AZ31镁合金的微观组织与室温成形性能.中国有色金属学报,2010,20(7):1247~1252.
    [37]陈长江,李静媛,黄东男等.AZ91镁合金挤压组织与性能的试验研究.轻合金加工技术,2009,37(3):27~30.
    [38] Tian S G, Wang L, Shon K Y. Microstructure and properties of hot extruded AZ31-0.25%Sb Mg-alloy. Transactions of the Nonferrous Metals Society of China, 2008, 18(1): 17~21.
    [39] Zhang Z M, Xu H Y, Li B C. Corrosion properties of plastically deformed AZ80 magnesium alloy. Nonferrous Metals Society of China, 2010, 20(2): 697~702.
    [40]曹喜娟,耿莹晶,陈晋生.热处理对ZA52-xNd镁合金组织及性能的影响.铸造,2010,59(7):717~720.
    [41] Zhu Q, Long S Y, Cao F H, et al. Effects of hot extrusion and solution treatment on microstructure and properties of AZ61 magnesium alloy. Special Casting & Nonferrous Alloys, 2009, 29(7): 674~676.
    [42]李学哲,陈立佳,马春艳.热处理对挤压变形AZ81镁合金疲劳行为的影响.材料热处理学报,2008,29(2):47~51.
    [43]程晓农,汝金明,莫纪平等.固溶-大应变-后续热处理态AZ31镁合金的组织和性能.稀有金属材料与工程,2009,38(11):1950~1953.
    [44]程永奇,陈振华,夏伟军.退火处理对等径角轧制AZ31镁合金板材组织与性能的影响.材料热处理学报,2007,28(5):90~95.
    [45] Garce′s G, Rodriguez M, Agnew S, et al. Development of a Full-field Crystal Plasticity Model for Simulation of Plasticity in Wrought Magnesium Alloys. Magnesium. 8th International Conference on Magnesium Alloys & their Applications, 2010: 651~657.
    [46]于翔,丁培道,彭健.AZ61B镁合金热变形动力学的研究.材料与冶金学报,2004,3(1):77~80.
    [47]李楠,刘天模,刘宇等.室温压缩AZ31镁合金的再结晶动力学.机械工程材料,2008,32(11):10~12.
    [48]刘庆.镁合金塑性变形机理研究进展.金属学报,2010,46(11):1458~1472.
    [49] Beer A G. The role of strain on the recrystallization behaviour of hot worked and annealed magnesium alloy Mg-3Al-1Zn. Symposium sponsored by the Magnesium Committee of the Light Metals Division of The Minerals, Metals & Materials Society (TMS). Magnesium Technology, 2010: 239~244.
    [50] Duly D, SimoN J P, Brechet Y. On the competition between continuous and discontinuous precipitations in binary Mg-Al alloys. Acta Metall Mater, 1995, 43(1): 101~106.
    [51]罗承萍,肖晓玲,刘江文.AZ91Mg-Al合金中γ-Mg17All2析出相的多重位向关系及{112}γ伪孪晶关系.金属学报,2002,38(7):709~714.
    [52]周玉,武高辉.材料分析测试技术-材料X射线衍射与电子显微分析.哈尔滨:哈尔滨工业大学出版社,2007.
    [53] Avrami M. Kinetics of phase change III-granulation phase change and microstructure. Journal of Che Phys, 1941, 9: 177~189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700