热挤压Mg-Zn-Zr-Y合金的低周疲劳行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有密度低、比强度高、阻尼性能良好等优良性能,近年来,镁合金尤其是采用热挤压技术制备的变形镁合金已经得到越来越多的关注。为了研究稀土元素Y以及不同热处理对热挤压Mg-7%Zn-0.6%Zr系镁合金的疲劳行为的影响,对挤压态、时效态和固溶+时效态的Mg-7%Zn-0.6%Zr(-0.5%Y)合金进行了室温低周疲劳实验。
     实验结果表明,不同处理状态的热挤压Mg-7%Zn-0.6%Zr(-0.5%Y)合金表现为循环应变硬化和循环稳定。稀土元素Y的添加可以提高挤压态Mg-7%Zn-0.6%Zr合金在较高外加总应变幅下的循环变形抗力,可以提高时效态合金在绝大多数外加总应变幅下的循环变形抗力,可以提高固溶+时效态合金在各个外加总应变幅下的循环变形抗力。时效处理可以提高热挤压Mg-7%Zn-0.6%Zr(-0.5%Y)合金在每个外加总应变幅下的循环变形抗力。固溶+时效处理对热挤压Mg-7%Zn-0.6%Zr合金的循环变形抗力的影响较为复杂,但可以提高热挤压Mg-7%Zn-0.6%Zr-0.5%Y合金在绝大多数外加总应变幅下的循环变形抗力。稀土元素Y的添加可以明显提高挤压态和固溶+时效态Mg-7%Zn-0.6%Zr合金的低周疲劳寿命,同时可以提高时效态Mg-7%Zn-0.6%Zr合金在较低外加总应变幅下的低周疲劳寿命。时效处理可以改善热挤压Mg-7%Zn-0.6%Zr合金在较高外加总应变幅下的低周疲劳寿命,但会降低热挤压Mg-7%Zn-0.6%Zr -0.5%Y合金的低周疲劳寿命。固溶+时效处理可以提高热挤压Mg-7%Zn-0.6%Zr (-0.5%Y)合金在较高外加应变幅下的低周疲劳寿命。对于不同处理状态的热挤压Mg-7%Zn-0.6%Zr(-0.5%Y)合金而言,其载荷反向周次与弹性应变幅之间服从Basquin公式,同时与塑性应变幅之间服从Coffin-Manson公式。在外加总应变控制的低周疲劳加载条件下,不同加工处理状态的热挤压Mg-7%Zn-0.6%Zr(-0.5%Y)合金的疲劳裂纹均以穿晶方式于疲劳试样表面萌生,且以穿晶方式进行扩展。
Due to such excellent properties as low density, high specific strength and good damping capability, magnesium alloys especially wrought magnesium alloys prepared with hot extrusion technology have received more and more attention in recent years. In order to study the influence of rare earth element Y and different heat treatments on the fatigue behavior of hot-extruded Mg-7%Zn-0.6%Zr series magnesium alloys, the low-cycle fatigue tests for the Mg-7%Zn-0.6%Zr(-0.5%Y) alloys with as-extruded, aging as well as solid-solution plus aging states were performed at room temperature.
     The experimental results indicate that the cyclic stress response behavior of the hot-extruded Mg-7%Zn-0.6%Zr(-0.5%Y) alloys with different processing states exhibits both cyclic strain hardening and cyclic stability. The addition of rare earth element Y can enhance the cyclic deformation resistance of as-extruded Mg-7%Zn-0.6%Zr alloy at higher imposed total strain amplitudes, increase the cyclic deformation resistance of the alloy with aging states at most applied total strain amplitudes, and improve the cyclic deformation resistance of the alloy with solid-solution plus aging states at various imposed total strain amplitudes. The aging treatment can improve the cyclic deformation resistance of the hot-extruded Mg-7%Zn-0.6%Zr(-0.5%Y) alloys at each imposed total strain amplitude. The solid-solution plus aging treatment has complicated influence on the cyclic deformation resistance of the hot-extruded Mg-7%Zn-0.6%Zr alloy, but can enhance the cyclic deformation resistance of the hot-extruded Mg-7%Zn-0.6%Zr-0.5%Y alloy at most imposed total strain amplitudes. In addition, the addition of rare earth element Y can prolong the low-cycle fatigue lives of the hot-extruded Mg-7%Zn-0.6%Zr alloy with both as-extruded and solid-solution plus aging states, and can also enhance the low-cycle fatigue lives of the alloy with aging state at lower imposed total strain amplitudes. The aging treatment can improve the low-cycle fatigue lives of the hot-extruded Mg-7%Zn -0.6%Zr alloy at higher total strain amplitudes, but will reduce the low-cycle fatigue lives of the hot-extruded Mg-7%Zn-0.6%Zr-0.5%Y alloy. The solid-solution plus aging treatment can enhance the fatigue lives of the hot-extruded Mg-7%Zn-0.6%Zr(-0.5%Y) alloys at higher applied total strain amplitudes. For the hot-extruded Mg-7%Zn-0.6%Zr(-0.5%Y) alloys with different processing states, the relationship between the elastic strain amplitude and reversal cycles to failure is linear, and can be well described by the Basquin equation. Meanwhile, the relationship between the plastic strain amplitude and reversal cycles to failure also exhibits a linear behavior, and obeys the Coffin-Manson equation. Under the low-cycle fatigue loading condition with total strain control mode, the fatigue cracks initiate in a transgranular mode at the free surface of fatigue specimens, and propagate transgranularly for the hot-extruded Mg-7%Zn-0.6%Zr(-0.5%Y) alloys.
引文
[1]麻彦龙,潘复生,左汝林.高强度变形镁合金ZK60的研究现状.重庆大学学报, 2004, 27(9): 80~85.
    [2]闫丽媛,张宝红,张治民.热挤压工艺对ZK60合金组织性能的影响.热加工工艺, 2009, 38(3): 28~31.
    [3] Colleen J B, Mark A G. Current wrought magnesium alloys: strengths and weaknesses. Journal of the Minerals, Metals and Materials Society, 2005, 57(5): 46~49.
    [4]丁文江,卞曙光,董瀚等.镁合金科学与技术.北京:科学出版社, 2006: 10~15.
    [5]陈振华.变形镁合金.北京:化学工业出版社, 2005: 17~23.
    [6] Eliezer D, Aghion E, Froes F H. Magnesium science, technology and applications. Advanced Performance Materials, 1998, 5(3): 201~212.
    [7]黄晓锋,朱凯,曹喜娟.主要合金元素在镁合金中的作用.铸造技术, 2008, 29(11): 1574~1578.
    [8]郭会廷,夏兰廷.合金元素对镁及镁合金力学性能强化的研究.铸造设备研究, 2007(2): 40~43.
    [9]袁武华,张召春,郭强等.固溶处理对ZK60合金组织及性能的影响.热加工工艺, 2006, 35(2): 22~24.
    [10] Yang M B, Cheng L, Shen J et al. Effect of Ca addition on the as-cast microstructure and creep properties of Mg-5Zn-5Sn magnesium alloy. Rare Metals, 2009, 28(6): 576~581.
    [11] Anton G, Menahem B, Alexander K. High temperature phase stabilized microstructure in Mg-Zn-Sn alloys with Y and Sb additions. Journal of Materials Science, 2007, 42(24): 10014~10022.
    [12] Harosh S, Miller L, Levi G et al. Microstructure and properties of Mg-5.6%Sn-4.4%Zn-2.1%Al alloy. Journal of Materials Science, 2007, 42(24): 9983~9989.
    [13] Peng Z K, Zhang X M, Chen J M et al. Grain refining mechanism in Mg-9Gd-4Y alloys by zirconium. Materials Science and Technology, 2005, 21(6): 722~726.
    [14]段红玲,张丁非,戴庆伟等.镁合金强化研究的发展现状.材料导报, 2007, 21(5A): 310-312.
    [15] Wang Y X, Zeng X Q, Ding W J et al. Grain refinement of AZ31 magnesium alloy by titanium and low-frequency electromagnetic casting. Metallurgical and Materials Transactions A, 2007, 38(6): 1358~1366.
    [16] Kubota K, Mabuchi M, Higashi K. Review processing and mechanical properties of fine-grained magnesium alloys. Journal of Materials Science, 1999, 34(10): 2255~2262.
    [17]张治民.镁合金形变强化研究与及应用.中西部第三届有色金属工业发展论坛, 2009: 365~367.
    [18] Yu Z H, Yan H G, Chen J H et al. Effect of Zn content on the microstructures and mechanical properties of laser beam-welded ZK series magnesium alloys. Journal of Materials Science, 2010, 45(14): 3797~3803.
    [19] Morozova G I, Tikhonova V V, Lashko N F. Phase composition and mechanical properties of cast Mg-Zn-Zr alloys. Metal Science and Heat Treatment, 1978, 20(8): 657~660.
    [20]张少卿. MB15镁合金的相组成及其微观形态.金属学报, 1989, 25(5): 346~351.
    [21] Lin J B, Peng L M, Wang Q D et al. Anisotropic plastic deformation behavior of as-extruded ZK60 magnesium alloy at room temperature. Science in China Series E: Technological Sciences, 2009, 52(1): 161~165.
    [22] Galiyev A, Kaibyshev R, Gottstein G et al. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia, 2001, 49(7): 1199~1207.
    [23] Gr?bner J, Mirkovic D, Ohno M et al. Experimental investigation and thermodynamic calculation of binary Mg-Mn phase equilibria. Journal of Phase Equilibria and Diffusion, 2005, 26(3): 234~239.
    [24]王玲,赵浩峰,孙磊等. Mg-Mn合金在力学环境下的行为研究.铸造设备与工艺, 2009(6): 20~21.
    [25]王登峰,张金山,杜宏伟等.镁锰合金的晶粒细化及其耐蚀性的研究.铸造设备研究, 2005(1): 12~14.
    [26] Czerwinski F, Lipiec A Z. The melting behaviour of extruded Mg-8%Al-2%Zn alloy. Acta Materialia, 2003, 51(11): 3319~3332.
    [27]黄海,黄维刚. AZ61镁合金的动态力学性能与显微分析.材料工程, 2009(11): 51~54.
    [28] Song J M, Lin Y H, Su C W. Mechanical responses of superlightβ-based Mg-Li-Al-Zn wrought alloys under resonance. Metallurgical and Materials Transactions A, 2009, 40(5): 1026~1030.
    [29]李红斌.新型Mg-Li-Al-Mn合金显微组织和力学性能.热加工工艺, 2009, 38(10): 12~15.
    [30]李姗,王伯健.变形镁合金的研究与开发应用.热加工工艺, 2007, 36(6): 65~68.
    [31]黄光胜,汪凌云,范永革.变形镁合金热挤压组织与性能研究.中国材料研讨会论文集, 2002: 666~669.
    [32] Hsiang S H, Kuo J L. An investigation on the hot extrusion process of magnesium alloy sheet. Journal of Materials Processing Technology, 2003, 140(2): 6~12.
    [33]彭建,宋成猛,刘虹等.挤压工艺对ZM21镁合金显微组织和性能的影响.热加工工艺, 2009, 38(11): 36~39.
    [34]卢志文,汪凌云,潘复生.变形镁合金及其成形工艺.材料导报. 2004, 18(9): 39~46.
    [35]李艳辉,李保成,尹从娟.挤压比和挤压温度对AZ31镁合金组织性能的影响.金属世界, 2008(3): 10~12.
    [36] Tsutomu M, Shin-ichi M, Susumu M. Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions. Journal of Materials Processing Technology, 2003, 141(2): 207~212.
    [37]金正力,王渠东,郑江等. Y含量对Mg-Zn-Zr合金组织和性能的影响.特种铸造及有色合金, 2009, 29(7): 656~659.
    [38]李亚国,段劲华,刘海林等.钇稀土在Mg-Zn-Zr镁合金中的强化作用.现代机械, 2003(5): 86~88.
    [39]王斌,方西亚,易丹青.稀土元素钇和铈对Mg-Zn-Zr系合金组织和性能的影响.机械工程材料, 2005, 29(12): 17~20.
    [40]周海涛,曾小勤,刘文法等.稀土铈对AZ61变形镁合金组织和力学性能的影响.中国有色金属学报, 2004, 14(1): 99~104.
    [41] Ma C J, Liu M P, Wu G H et al. Tensile properties of extruded ZK60-RE alloys. Materials Science and Engineering A, 2003, 349(1-2): 207~212
    [42] G(?)rtnerováV, TrojanováZ, J(?)ger A et al. Deformation behaviour of Mg-0.7wt.% Nd alloy. Journal of Alloys and Compounds, 2004, 378(1-2): 180~183.
    [43] Suzuki M, Kimura1 T, Koike J et al. Strengthening effect of Zn in heat resistant Mg-Y-Zn solid solution alloys. Scripta Materialia, 2003, 48(8): 997~1002.
    [44] Begum S, Chen D L, Xu S et al. Strain-controlled low-cycle fatigue properties of a newly developed extruded magnesium alloy. Metallurgical and Materials Transactions A, 2008, 39(12): 3014~3026.
    [45] Chen L J, Wang C Y, Wu W et al. Low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy. Metallurgical and Materials Transactions A, 2007, 38(13): 2235~2241.
    [46] Bhambri A K, Kattamis T Z. Cast microstructure of a grain-refined and fatigue behavior Mg-Zn-Zr alloy. Metallurgical and Materials Transactions B, 1971, 2(7): 1869~1874.
    [47] Ken G, Gerhard B, Hans J M et al. Environmentally influenced microstructurally small fatigue crack growth in cast magnesium. Materials Science and Engineering A, 2005, 396(1-2): 143~154.
    [48] Eisenmeier G, Holzwarth B, Hoppel H W et al. Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91. Materials Science and Engineering A, 2001, 319-321: 578~582.
    [49]张立鹏,杨友,王学慧. Si、Ca和Ce混合添加对压铸镁合金疲劳性能的影响.特种铸造及有色合金, 2009, 29(10): 927~930.
    [50]陈华,刘勇兵,杨晓等.稀土元素对AZ91D压铸镁合金高周疲劳性能的影响.金属热处理, 2006, 31(7): 18~22.
    [51]秦淑颖,刘建超,崔红等.富Ce稀土对AZ91D镁合金高周疲劳性能的影响.特种铸造及有色合金, 2007, 27(10): 750~752.
    [52]杨友,刘勇兵.含铈压铸AZ91D镁合金高周疲劳行为.中国稀土学报, 2006, 24(5): 605~609.
    [53]王向明,王海艳,农登等. Sr对AZ91镁合金热稳定性及疲劳性能的影响. 2007, 1(4): 290~294.
    [54] Zainuddin B S, Yukio M, Yasunobu H et al. Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys. International Journal of Mechanical Sciences, 2006, 48(2): 198~209.
    [55] Sabrina A K, Yukio M, Yoshiharu M et al. Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys. Materials Science and Engineering A, 2006, 420(1-2): 315-321
    [56] Bag A, Zhou W. Tensile and fatigue behavior of AZ91D magnesium alloy. Journal of Materials Science Letters, 2001, 20(5): 457~459.
    [57]吴耀达,杨友.热处理对AZ91D铸造镁合金疲劳性能的影响.铸造, 2009, 58(4): 383~386.
    [58]刘文才,董杰,张平等.喷丸强化对ZK60镁合金高周疲劳性能的影响.中国有色金属学报, 2009, 19(10): 1733~1740.
    [59] Raske D T, Morrow J. Mechanics of materials in low cycle fatigue testing. ASTM STP 465. Philadelphia: American Society for Testing and Materials, 2009, 40: 1727~1740.
    [60] Xu D K, Han En Hou, Liu L et al. Influence of higher Zn/Y ratio on the microstructure and mechanical properties of Mg-Zn-Y-Zr alloys. Metallurgical and Materials Transactions A, 2009, 40(7): 1727~1740.
    [61] Xu D K, Liu L, Xu Y B, et al. Effect of microstructure and texture on the mechanical properties of the as-extruded Mg-Zn-Y-Zr alloys. Materials Science and Engineering A, 2007, 443(1-2): 248~256.
    [62] Zhang Y, Zeng X Q, Liu L F et al. Effects of yttrium on microstructure and mechanical properties of hot extruded Mg-Zn-Y-Zr alloys. Materials Science and Engineering A, 2004, 373(1-2): 320~327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700