挤压工艺对血管支架用Mg-Zn-Y-Nd合金组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过正挤压工艺和往复挤压工艺对铸态Mg-Zn-Y-Nd合金进行加工,采用OM、XRD、SEM&EDS、拉伸实验、电化学实验、失重分析等测试手段,研究了正挤压温度、挤压比及往复挤压道次对Mg-Zn-Y-Nd合金显微组织、力学性能和腐蚀性能的影响,并探讨往复挤压工艺参数对合金组织和性能的影响机理,为Mg-Zn-Y-Nd合金应用于血管支架材料的加工方法提供了依据。
     研究结果表明:正挤压工艺加工的合金,由于发生不完全动态再结晶,显微组织不均匀,第二相颗粒尺寸大小不一,形貌多呈短杆状分布在晶界处,具体的显微组织特征随挤压工艺参数不同而有所差异。
     在相同挤压比条件下,随着正挤压温度的升高,晶粒尺寸逐渐长大,在挤压比为56的条件下,当正挤压温度为270℃时,晶粒尺寸为5~8μm,320℃时合金的晶粒尺寸为10~13μm,当正挤压温度达到370℃时,合金的晶粒尺寸为15~20μm;第二相颗粒尺寸略有长大,体积分数逐渐减小。
     在相同挤压温度条件下,不同挤压比对应合金的晶粒大小有所不同,随着挤压比的增加,合金的晶粒尺寸略有减小,但是变化不大,当挤压比增加到一定数值后,晶粒尺寸变化不再明显。
     Mg-Zn-Y-Nd合金经过往复挤压后,随着往复挤压道次的增加,合金的显微组织逐渐趋于均匀,晶粒尺寸逐渐减小,纳米级第二相颗粒均匀分布在晶粒内部;其中,往复挤压1道次合金的显微组织不均匀,细晶粒尺寸约1~3μm,粗晶粒尺寸约4~7μm;而经过2道次和4道次往复挤压后的合金,其晶粒尺寸约1μm,明显细化,显微组织为均匀的等轴晶组织;第二相发生明显破碎,沿着晶界呈断续状分布,同时,有些第二相形成团簇状分布,固溶析出的纳米级颗粒均匀分布在晶粒内部,这些第二相的尺寸约为200nm。
     力学性能测试结果表明:在正挤压工艺条件下,当正挤压温度为320℃、挤压比为36时,合金的综合力学性能较好,抗拉强度值为268MPa,屈服强度值为212MPa,伸长率为34.5%;在往复挤压工艺条件下,经过2道次挤压的合金,其力学性能较好,合金的抗拉强度为316MPa,屈服强度值为238MPa,伸长率为30.7%;与铸态合金的力学性能(抗拉强度209MPa,屈服强度105MPa,伸长率8%)相比,经过正挤压和往复挤压工艺加工的合金,力学性能都得到了明显的改善,满足其作为血管支架材料的性能要求。
     电化学实验结果表明:在相同挤压比的条件下,随着正挤压温度的升高,合金的白腐蚀电位逐渐升高,腐蚀电流密度随之降低;当正挤压温度为370℃条件下,在挤压比为56时,合金有较好的电化学腐蚀性能,自腐蚀电位为-1.705V,腐蚀电流密度为1.375e-5A·cm-2;不同道次往复挤压工艺加工的合金,随着往复挤压道次的增加,合金的腐蚀电位值逐渐增高,往复挤压4道次合金的电化学腐蚀性能较好,腐蚀电位为-1.723V,腐蚀电流密度为5.775e-5A·cm-2。结果表明往复挤压4道次合金的腐蚀电位虽然与挤压态合金相比数值要低,但是腐蚀电流密度与挤压态相比降低了一个数量级,因此往复挤压工艺加工的合金耐腐蚀性能要高于挤压态合金。
     失重分析结果表明:经过往复挤压工艺加工的Mg-Zn-Y-Nd合金在模拟体液中浸泡24h后,表面腐蚀形貌呈现均匀腐蚀特征,这是由于往复挤压后合金的晶粒组织细化、晶界处形成大的网格状第二相以及纳米相均匀分布在晶粒内部所致;而在相同的浸泡时间内,铸态合金和正挤压工艺加工的合金都表现出不同程度的点蚀现象。因此,往复挤压工艺为镁合金用于血管支架的制备提供了可行的方法。
In this study, hot extrusion and cyclic extrusion compression (CEC) were used to treat cast Mg-Zn-Y-Nd alloy, the effect of hot extrusion temperature, extrusion ratio and CEC passes on the microstructure, mechanical properties and corrosion properties of alloy were researched by OM SEM&EDS XRD、electrochemical test and tensile test. At the same time, the influence mechanism was studied, which provided theoretical ground for Mg-Zn-Y-Nd alloy as vascular stent application.
     The results show that:The microstructure of hot extrusion alloy was heterogeneous because of incompletely recrystallized alloys.The second phase distributed along grain boundaries with rod shape and some particles gathered at the junction of three grains. The microstructure characteristics of alloy varied with extrusion process parameters.
     The grain size of alloy grew up gradually with the increase of extrusion temperature at the same extrusion ratio condition. When the extrusion temperature is270℃, grain size of alloy is about5~8μm,10~13μm at320℃and15~20μm at370℃. The second phase particles size grew up slightly and volume fraction decreased gradually.
     Different extrusion ratio corresponding to the grain size is different at the same extrusion temperature conditions. The grain size decreases slightly with increasing extrusion ratio, but the change is not obvious when the extrusion ratio increases to a certain value.
     The microstructure of CEC treated Mg-Zn-Y-Nd alloy became finer and more homogenous due to the dynamic recrystallization occurred during the deformation with the increase of CEC pass and some nano-particles uniformly precipitated in grains. After CEC1pass treatment, microstructure of alloy was heterogeneous. Coarse grains with4~7μm in size were surrounded by fine recrystallized grains with1~3μm in size. But the grain size was refined to about1μm after CEC2passes and4passes treated alloy and the microstructure was uniform equiaxed. The second phase distributed at grain boundaries with big grid shape. Some particles were brittle and formed into a cluster. At the same time some nano-particles which came from the cluster phase uniformly precipitated in grains. The nano-particles' size was about200nm.
     The mechanical property results show that:The extruded alloy obtained good comprehensive mechanical properties when the extrusion temperature was320℃and extrusion ratio was36. The ultimate tensile strength(UTS), yield strength(YS), elongation(δ) of alloy were268MPa,212MPa and34.5%respectively. After CEC2passes treatment, Mg-Zn-Y-Nd alloy had good mechanical properties with UTS316MPa, YS238MPa and830.7%. As a result, the hot extruded and CEC treated alloy improved mechanical property compared with cast alloy(UTS209MPa, YS105MPa and δ8%). Therefore, the mechanical poperties of extruded alloy meets the performance requirements as vascular stent materials.
     The electrochemical measurements results show that:In the same extrusion ratio conditions, the corrosion potential of alloy increased and corrosion current density decreased with the increase of extrusion temperarure.The corrosion potential and corrosion current density values of extruded alloy were-1.705V and1.375e-5A·cm-2respectively when the extrusion temperature was370℃and extrusion ratio was56. The corrosion potential values of CEC treated alloy increased with the increase of CEC pass. After CEC4passes treatment, the corrosion potential values of alloy was-1.723V and corrosion current density decreased to5.775e-5A·cm-2. The corrosion potention of CEC treated alloy is lower but corrosion current density dereased a magnitude than hot extruded alloy. Therefore, the corrosion resistance of CEC treated alloy is better than hot extrusion alloy.
     The immersion test results show that:Mg-Zn-Y-Nd alloy with different conditions were immersed in SBF solution at37℃for24h. The macrography of the CEC treated samples exhibited uniform corrosion due to the grain refinement, grid second phase distributed at grain boundaries and nano-sized particles distribution in grains. However, the as cast and extruded alloy suffered from pitting corrosion. So the CEC processing will be a promise candidate process for the vascular stent.
引文
[1]胡大一,马长生.心脏病学实践2009:新进展与临床案例[M].北京:人民卫生出版社,2009.5
    [2]世界卫生组织编著.2000年世界卫生报告(王汝宽等,译者)[M].北京:人民卫生出版社,2000
    [3]Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty [J]. N Engl J Med,1987,316 (12):701-706
    [4]Gruntzig A. Transluminal dilatation of coronary artery stenosis [J]. Lancet,1978,1(8058): 263-266
    [5]Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys:a new principle in cardiovascular implant technology? [J]. Heart,2003,89 (6):651-656
    [6]王志浩.血管支架Ti-O膜表面改性研究[D].[硕士学位论文].成都:西南交通大学,2007
    [7]Schatz R A. A view of vascular stents [J]. Circulation,1989,79(2):445-457
    [8]Wong S C, Schatz R A. Developmental background and design of the Palmaz-Schatz coronary stents. In:Herrmann Jr HC, Hirshfeld JW, editors. Clinical use of the Palmaz-Schatz intracoronary stent [M]. New York:Futura Publishing Company, Inc.1993: 3-19
    [9]Gopinath Mani, Marc D Feldmanb, Devang Patel, et al. Coronary stents:A materials perspective [J]. Biomaterials,2007,28 (9):1689-1710
    [10]杨水祥,王萍.冠状血管内生物可吸收支架的最新进展[M].医学信息手术学分册,2007,20(7)
    [11]Peuster M, Hesse C, Schloo T, et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta [J]. Biomaterials,2006,27 (28):4955-4962
    [12]Peuster M, Wohlsein P, Brugmann M, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into new zealand white rabbits [J]. Heart,2001,86(5):563-569
    [13]王海舟.铁合金分析[M].北京:科学出版社,2003:18-20
    [14]Zartner P, Cesnjevar R, Singer H, et al. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby [J]. Catheter Cardiovasc Interv, 2005,66 (4):595-596
    [15]Ulrich Zimmermann, Thomas Bartel, Raimund Erbel. A rare case of acute 'infective' myocardial infarction triggered by acute parvovirus B19 myocarditis Achim Gutersohn [J]. Nature Clinical Practice Cardiovascular Medicine,2005,2:167-171
    [16]Bosiers M, Peeters P, Deloose K, et al. First experience using the Edwards self expanding Life Stent in the SFA indication [J]. Controversies and Updates in Vascular Surgery,2005,7: 303-304
    [17]Gastaldi D, Sassi V, Petrini L, et al. Continuum damage model for bioresorbable magnesium alloy devices—Application to coronary stents [J]. Journal of Mechanical Behaviour of Biomedical Materials,2011,4 (3):352-365
    [18]Di Mario C, Griffiths H, Goktekin O, et al. Drug-eluting bioabsorbable magnesium stent [J].Interv Cardiol,2004,17 (6):391-395
    [19]Ormiston J A, Serruys P W S. Bioabsorbable coronary stents [J]. Circ. Cardiovasc. Interv, 2009,2:255-260
    [20]Hermawan H, Dube D, Mantovani D. Developments in metallic biodegradable stents [J]. Acta. Biomater,2010,6 (5):1693-1697
    [21]Fischman D L, Leon M B, Goldberg S. A randomized comparison of coronary artery-stent placement and balloon angioplasty in the treatment of coronary artery disease [J]. N. Engl. J. Med,1994,331 (8):496-501
    [22]Serruys P, De Jaegere P, Kiemeneij F, et al.A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease [J]. N. Engl. J. Med,1994,331 (8):489-495
    [23]Spaulding C, Daemen J, Boersma E, et al. A pooled analysis of data comparing sirolimus-eluting stents with bare-metal stents [J]. N. Engl. J. Med,2007,356(10):989-997
    [24]Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys:a new principle in cardiovascular implant technology? [J]. Heart,2003,89 (6):651-656
    [25]Peuster M, Hesse C, Schloo T, et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta [J]. Biomaterials,2006,27 (28):4955-4962
    [26]Peuster M, Wohlsein P, Briigmann M, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal results 6-18 months after implantations into New Zealand white rabbits [J]. Heart,2001,86(5):563-569
    [27]Waksman R, Pakala R, Baffour, R. Short-term effects of biocorrodible iron stents in porcine coronary arteries [J]. Interv. Cardiol,2008,21 (1):15-20
    [28]Hermawan H, Dube D, Mantovani D. Iron-manganese:new class of metallic degradable biomaterials prepared by powder metallurgy [J]. Powder. Metall,2008,51 (1):38-45
    [29]Hermawan H, Purnama A, Dube D, et al. Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies [J]. Acta. Biomater,2010,6 (5):1852-1860
    [30]Colombo A, Karvouni E. Biodegradable stents:"fulfilling the mission and stepping away" [J]. Circulation,2000,102 (4):371-373
    [31]Muller H. Development of metallic bioabsorbable intravascular implants, In:N Chakf, B Durand, ESVB 2009 New Technologies in Vascular Biomaterials, Connecting Biomaterials to Arterial Structures [J]. Europrot. Strasbourg. France,2009:23-32 (Chapter 3)
    [32]Erne P, Schier M, Resink T J. The road to bioresorbable stents: reaching clinical reality? [J]. Cardiovasc. Intervent. Radiol,2006,29(1):11-16
    [33]Saris N E, Mervaala E, Karppanen H, et al. Magnesium-an update on physiological, clinical and analytical aspects [J]. Clin. Chim. Acta,2000,294 (1-2):1-26
    [34]Erbel R, DiMario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioadsorbable magnesium stents:a perspective, non-randomised multicentre trial [J]. Lancet,2007,369 (8576):1869-1875
    [35]Peeters P, Bosiers M, Verbist J, et al. Preliminary results after application of adsorbable metal stents in patients with critical limb ischemia [J]. J. Endovasc. Ther,2005,12 (1): 1-5
    [36]Bosiers M. Ams insight adsorbable metal stent implantation for treatment of below-the-knee critical limb ischemia:6-month analysis [J]. Cardiovasc. Intervent. Radiol,2009,32(3): 424-435
    [37]Maeng M, Jensen J O, Falk E, et al. Negative vascular remodelling after implantation of bioadsorbable magnesium alloy stents in porcine coronary arteries:a randomised comparison with bare-metal and sirolimus-eluting stents [J]. Heart,2009,95 (3):241-246
    [38]Song G. Control of biodegradation of biocompatable magnesium alloys [J]. Corros. Sci, 2007,49 (4):1696-1701
    [39]Witte F, Fischer J, Nellesen J, et al. In vitro and vivo corrosion measurements of magnesium alloys [J]. Biomaterials,2006,27 (7):1013-1018
    [40]Witte F, Hort N, Vogt C, et al. Degradable biomaterials based on magnesium corrosion [J]. Curr. Opin. Solid. State. Mater. Sci,2008,12(5-6):63-72
    [41]Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys [J]. Biomaterials,2009,30 (4):484-498
    [42]Albiero R, Adamian M, Kobayashi N, et al. Short and intermediate-term results of 32P radioactive beta-emitting stent implantation in patients with coronary artery disease:the Milan Dose-Response Study [J]. Circulation,2000,101 (1):18-24
    [43]Witte F, Kaese V, Haferkamp H. In vivo corrosion of four magnesium alloys and associated bone response [J]. Biomaterials,2005,26 (17):3557-3563
    [44]Peuster M, Hesse C, Schloo T, et al. Long term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta [J]. Biomaterials,2006,27 (28):4955-4962
    [45]邓英剑.激光切割及其在切割陶瓷材料中的应用[J].机械,2004,31(3):55-60
    [46]李伟.生物可降解稀土镁合金血管支架无缝管材的制备技术及性能研究[D].[博十学位论文].重庆:重庆大学,2011
    [47]于振涛.一种医用镁合金细径薄壁管材的温态拉拔加工方法[P].中国专利,CN200810150415.1,2008-12-17
    [48]于洋,张文丛.一种镁合金毛细管的塑性加工方法[P].中国专利,CN201010564653.4,2011-05-25
    [49]李海江.镁合金挤压成形工艺及数值模拟的研究[D].[硕士学位论文].长沙:华中科技大学,2003
    [50]梁书锦,王欣,刘祖岩等.AZ31镁合金不同温度挤压后组织性能研究[J].稀有金属材料与工程,2009,38(7):1276-1279
    [51]马宁宁.应变速率对挤压变Mg-Zn-Nd合金拉伸性能的影响[D].[硕士学位论文].沈阳: 沈阳工业大学,2007
    [52]戴庆伟,张丁非,袁炜等.新型Mg-Zn-Mn变形镁合金的挤压特性与组织性能研究[J].材料工程,2008(4):38-42
    [53]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J].Prog. Mater. Sci,2000,45 (2):103-189
    [54]Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals [J]. Manuf. Technol,2008,57 (2):716-735
    [55]Zhu Y T, Langdon T G. The fundamentals of nanostructured materials processed by severe plastic deformation [J].J. Mater. Sci,2004,56 (10):58-63
    [56]Richert J, Richert M. New possibilities for intense plastic deformation of aluminium alloys on a special CEC press [J]. Material. Forming,2008,1 (1):479-482
    [57]Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement [J]. Prog. Mater. Sci,2006,51 (7):881-981
    [58]Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing:Fundamentals and applications [J]. Prog. Mater. Sci,2008,53 (6):893-979
    [59]Beygelzimer Y, Varyukhin V, Synkov S, et al. Useful properties of twist extrusion [J]. Mater. Sci. Eng.A,2009,503 (1-2):14-17
    [60]Pardis N, Ebrahimi R. Deformation behavior in Simple Shear Extrusion (SSE) as a new severe plastic deformation technique [J]. Mater. Sci. Eng. A,2009,527 (1-2):355-360
    [61]Talebanpour B, Ebrahimi R, Janghorban K. Microstructural and mechanical properties of commercially pure aluminum subjected to Dual Equal Channel Lateral Extrusion [J]. Mater. Sci. Eng. A,2009,527 (1-2):141-145
    [62]郭炜,王渠东.大塑性变形制备超细晶复合材料的研究进展[J].锻压技术,2010,35(1):4-8
    [63]Richert J, Richert M, Zasadzinski J A. Korbel Patent [P].美国专利,123026,1979
    [64]Lin Jin-bao, Wang Qu-dong, Chen Yong-jun, et al. Microstructure and texture characteristics of ZK60 Mg alloy processed by cyclic extrusion and compression [J]. Trans. Nonferrous. Met. Soc. China,2010,20 (11):2081-2085
    [65]陈勇军,王渠东,彭建国.大塑性变形制备超细晶材料的研究、开发与展望[J].材料导报,2005,19(4):77-81
    [66]张晓宁.ZK60镁合金往复挤压工艺及其热稳定性的研究[D].[硕十学位论文].哈尔滨:哈尔滨工业大学,2010
    [67]Richert M, Richert J, Zasadzinski J. Effect of large deformation on the microstructure of aluminum alloys [J]. Mater. Chem. Phys,2003,81 (2-3):528-530
    [68]] Richert M, Stuwe H P, Zehetbauer M J. Working hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression [J]. Mater. Sci. Eng. A, 2003,355 (1-2):180-185
    [69]J.W.Yeh. U.S.Patent [P]美国专利,5571348.1996
    [70]Zughaer H J, Nutting J. Deformation of sintered copper and 50Cu-50Fe mixture to large strains by cyclic extrusion and compression [J]. Mater. Sci. Techn,1992,8(12):1104-1107
    [71]Shih-Wei Lee, Jien-Wei Yeh, et al. An Mg-Al-Zn alloy with very high specific strength and superior high-strain-rate superplastic processed by reciprocating extrusion [J]. Advanced. Engineering. Materials,2004,12 (6):948-952
    [72]Saito Y, Utsunomiya H, Tsuji N, et al. Ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process [J]. Acta. Materialia,1998, 47 (2):579-583
    [73]Shiying Yuan, Jienwei Yeh, Chunhuei Tsan. Improved Microstructure and Mechanical Properties of 2024 Aluminum Alloy Produced by Reciprocating Extrusion Method [J]. Materials. Transactions. JIM,1999,40 (3):2333-2411
    [74]郭学锋.细晶镁合金制备方法及组织与性能[M].北京:冶金工业出版社,2010:18-20
    [75]王渠东,林金保等.往复挤压变形对ZK60镁合金力学性能的影响[J].金属学报,2008,1(44):55-58
    [76]胡赓祥,蔡殉.材料科学基础[M].上海:上海交通大学出版社,2000.167-168
    [77]石海芳.材料力学性能[M].北京:北京大学出版社,2010:47-48
    [78]Hiroyuki Watanabe, et al. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization [J]. Materials. Transactions,2011,42 (7):1200-1205
    [79]林金宝.往复挤压ZK60与GW102K镁合金的组织演变及强韧化机制研究[D].[博士学位论文].上海:上海交通大学,2008
    [80]Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? [J]. Biomaterials,2006,27 (15):2907-2915
    [81]宋光玲.镁合金腐蚀与防护[M].北京:化学工业出版社,2006:43-44
    [82]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006:312-313
    [83]Chang J W, Fu P H, Guo X W, et al. The effects of heat treatment and Zirconium on the corrosion behavior of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy [J]. Corr. Sci,2007,49 (6): 2612-2627.
    [84]Alvarez-Lopez M, Pereda M D, Valle J A, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids [J]. Acta. Biomater,2010,6 (5):1763-1771
    [85]Hamu G B, Eliezer A, Gutman E M. Electrochemical behavior of magnesium alloys strained in buffer solutions [J]. Electrochim. Acta,2006,52 (1):304-313
    [86]Koike J, Ohyama R, Kobayashi T, et al. Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K [J]. Mater. Sci. Forum,2003,44 (4):445-451

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700