船体结构低周疲劳损伤极限强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前为止,重大损伤(碰撞与触礁等)对极限强度的影响已经进行了大量的研究,但是近年来海难事故的频繁发生,使得另一种损伤现象_一低周疲劳及其损伤对极限强度的影响引起船舶业界人士的注意。与碰撞与触礁现象不同,疲劳损伤的影响不是瞬时的,而是随时间增长不断累积的,和腐蚀一样,疲劳是影响强度的重要时间因素之一。传统的疲劳强度评估中的疲劳载荷基于设计波法,循环应力范围较小,由此引发的高周疲劳损伤较小,因而疲劳损伤对极限强度的影响通常被忽略。但是研究发现,低周疲劳损伤对船舶结构剩余强度的影响要远大于高周疲劳损伤,因此准确评估船舶在制造以及使用过程中产生的低周疲劳损伤对极限强度的削弱作用是十分重要的。同时,低周疲劳为高应力幅应变疲劳,疲劳循环应力幅接近材料的屈服极限,循环寿命低于104次,因此低周疲劳强度本身也是衡量船舶结构承载能力一个重要的方面。
     随着现代化船舶设计及建造技术的发展,低周疲劳损伤对剩余强度的影响日益受到研究人员的重视,建立合适的计算模型,分析船舶结构极限承载能力随着疲劳损伤的衰减规律,是进一步进行船舶结构可靠性分析以及风险分析的基础。能够精确地计算船舶结构剩余强度,则可以预报新船在未来运营中的剩余强度变化过程,得到营运过程中老龄船舶结构的真实承载能力,同样也可作为船舶营运时强度监控系统的理论依据。
     本文目的是综合分析当前含低周疲劳损伤结构剩余强度的研究概况,对含疲劳损伤船舶结构剩余强度的评估方法做一较为深入系统的研究,综合考察低周疲劳损伤缺陷对典型船舶单元结构极限强度的影响,给出带损伤构件剩余强度计算方法,为船体板架以及船体梁的剩余强度评估提供基础。围绕这一目的,本文具体研究内容如下:
     (1)系统归纳和总结了含疲劳损伤结构剩余强度的研究方法和研究进展;在吸收前人研究结果的基础上,找到合理地解决含低周疲劳损伤船舶结构剩余强度的分析方法:
     (2)分析船舶结构发生低周疲劳损伤的原因,准确计算统计波浪载荷下低周疲劳载荷,建立低周疲劳强度评估准则,得到合理的疲劳强度分析流程:在理论分析方面,基于连续介质损伤力学原理,从热力学角度给出低周疲劳损伤的力学定义,建立低周疲劳强度及损伤模型,将计算结果与试验结果做一比较,为进一步分析低周疲劳损伤对剩余强度的影响奠定基础;
     (3)采用虚拟无损单元的张量形式推导含损伤板的剩余强度,得到具有低周疲劳损伤板剩余强度的通用张量表达式;用有限元数值计算方法对含低周疲劳损伤板的剩余强度进行参数化分析,考察由于损伤引起材料特性、结构几何尺寸变化对板的极限强度的影响,在此基础上对张量表达式进行标量简化,得到船舶正交异性无加筋板结构剩余强度经验公式;
     (4)在平板分析结论的基础上,使用虚拟无损单元对含低周疲劳损伤加筋板单元剩余强度进行参数化有限元数值分析计算,将无加筋平板剩余强度的经验公式推广到加筋板,得到船舶加筋板结构剩余强度经验公式;
     (5)对现有船舶整体结构剩余强度评估方法进行总结,在评估方法中考虑低周疲劳因素的影响,利用加筋板剩余强度分析结论,评估低周疲劳损伤对船体板架和船体梁结构剩余强度的影响。
     综上所述,本文基于损伤力学热力学和塑性力学理论,对低周疲劳损伤及其对船舶结构剩余强度的影响进行研究,结合数值分析结果,建立能够合理分析低周疲劳损伤对结构剩余强度影响的评估方法。分析表明,低周疲劳损伤的存在极大削弱了结构的剩余强度,低周疲劳的影响在船舶工程结构强度评估中应该受到足够的重视。同时,船舶结构中损伤分布的数量和分布位置是随机的,本文的损伤剩余强度理论为疲劳随机损伤和风险分析奠定了基础。
There have been amount of studies about the effects of crash, aground and other serious damage on ultimate strength, and recently another damage influence, low cycle fatigue, has been brought to forefront by researchers. As the same with corrosion, fatigue is one of the most important time influences over strength. Traditional fatigue assessment method of ship structures is about high cycle fatigue, caused by repeated wave loadings, which damage has less effect on ultimate strength and thus be neglected. However, low cycle fatigue damage will decrease ultimate strength more than high cycle fatigue damages, so it is of crucial importance to estimate the cumulative low cycle fatigue damage effects on residual ultimate strength of aging ship's structures. Meanwhile, because low cycle fatigue stress amplitude is closed to material's yield stress and failure cycle number is lower than 104, itself also is an important assessment criterion of ship structures carrying capacity.
     As the development of modernized skills of design and construction of ships, more attention are paid to estimate the effect of low cycle fatigue damage on residual ultimate strength. For further study of ship structures'reliability and risk assessment, building its assessment models are also foundation to analyze the degradation rules of residual ultimate strength. The degradation models can be used to predict newer ship's residual ultimate strength, obtain the actual carrying capacity of aging ship structures, and also can be used as theoretical assistant of strength monitoring system in service.
     So this thesis aims at comprehensively reviewing the study process of residual ultimate strength assessment of low cycle fatigue damaged ship structures, discussing the analysis methods, investigating the effects of damages on the ultimate strength of typical ship structural elements, providing reasonable assessment methods and presenting residual ultimate strength assessment systems of complex ship structures and ship hull girders. In this thesis, to achieve this purpose, efforts and contributions have been made as the following:
     (1) Systematically summarizing current study methods and progress on residual ultimate strength of damaged ship structures; establishing reasonable assessment systems to analyze the effect of damages on residual ultimate strength;
     (2) Conducting reasons caused ship structures'low cycle fatigue damages, calculating low cycle fatigue stress amplitude, and establishing failure criterion and assessment procedure of low cycle fatigue; based on thermodynamic theory of continuum damage mechanics, defining damage variables with mechanical definition, building low cycle fatigue strength and damage models, and validating them with experiment results for next analysis of residual ultimate strength;
     (3) Taking damaged unstiffened plates as fictitious undamaged elements, and deriving general tensor expressions of ultimate strength of plate structures with low cycle fatigue damages; conducting finite elements analysis in order to assess low cycle fatigue damage's effect on material characters, structural extent and other factors which deteriorate ultimate strength, then obtaining empirical formula of ultimate strength of unstiffened damaged plates by simplifying tensor expressions;
     (4) On basis of conclusions about residual ultimate strength of unsitffend plate structures, taking damaged stiffened plates as fictitious undamaged elements, and expanding empirical formula of unstiffened plates to stiffened plates; conducting finite element analysis to verifying the empirical formula of ultimate strength of stiffened damaged plates;
     (5) Summarizing present ship hull girder residual ultimate strength methods, improving direct calculation method considering fatigue damages, and estimating local components' low cycle fatigue damage effects of on ship hull girder structures.
     From the foregoing, in this paper based on theories of continuum damage mechanics and plastic mechanics, it is studied the effects of low cycle fatigue damages on residual ultimate strength of aging ship structures. Combined with FE analysis results, assessment methods have been derived and it is indicated that low cycle fatigue damages will deteriorate ultimate strength seriously. Besides, since the damage positions and amounts are random and the deterministic models in this paper can be the foundation of random fatigue damage and risk assessment for next studies.
引文
[1]胡毓仁,陈伯真.船舶及海洋工程结构可靠性分析.北京:人民交通出版社,1997.
    [2]张淑茳,史冬岩.海洋工程结构的疲劳与断裂.哈尔滨:哈尔滨工程大学出版社,2005.
    [3]Hughes O. F.. Ship structural design:a rationally-based, computer-aided, optimization approach. New York:A Wiley-Interscience Publication,1983.
    [4]黄震球.船舶强度研究中的几个问题.武汉造船,1999,3:1-5.
    [5]Xue K. G., TorgeirM.. Long-term fatigue damage of ship structures under nonlinear wave loads. Marine Technology,2002,39(2):85-104.
    [6]魏东.舰船结构损伤剩余强度计算与安全评估(博士学位论文).上海:上海交通大学,1999.
    [7]Bily M.. Cyclic deformation and fatigue of metals. Elsevier:Amsterdam, Germany,1993.
    [8]Petinov S.V.. Fatigue analysis of ship structures, Backbone Books, NJ, USA,2003.
    [9]Ellyin F.. Fatigue damage, crack growth and life prediction. Chapman & Hall, London, UK,1997.
    [10]Kjellander S. L.. Hull damage on large Swedish-built ships. Styrelsen for teknisk utveckling, Report No.70-1272/U981, Stockholm, Sweden,1972.
    [11]Proceedings of the 7th international ship structures congress. Paris,1979.
    [12]Xue J., Pittaluga A., Cervetto D.. Fatigue damage calculation for oil tanker and container ship structures. Marine Structures,1994,7:499-535.
    [13]Hansen P.F., Winterstein S. R.. Fatigue damage in the side shells of ships. Marine Structures,1995,8:631-655.
    [14]Schulte-Strathaus R.. Fatigue database development and analysis. SMP-1-1, Department of naval architecture and offshore engineering, University of California, Berkeley, 1991.
    [15]Fricke W., Scharrer M., Selle H. V.. Integrated fatigue analysis of tanker structures. The 6th international symposium on practical design of ships and mobile units (PRADS'95),1995,2:910-921.
    [16]Det Norske Veritas. Fatigue Assessment of Ship Structure. Classification Notes No. 30.7,2003.
    [17]徐灏.疲劳强度.北京:高等教育出版社,1988.
    [18]Klesnel M., Lukas P.. Fatigue of materials. Elsevier Science Publishing CO.,1980.
    [19]赵少汴,王忠保.抗疲劳设计:方法与数据.北京:机械工业出版社,1997.
    [20]Coffin L. F.. A study of effects of cyclic thermal stresses on a ductile metal. Transactions of the American Society of Mechanical Engineers,1954,76:931-950.
    [21]Manson S. S.. Behavior of materials under conditions of thermal stress. National Advisory Commission on Aeronautics, Report 1170, Cleveland:Lewis Flight Propulsion Laboratory,1954.
    [22]Dunham F. W.. Fatigue testing of large-scale models of submarine structural details. Marine Technology,1965,299-307.
    [23]第五届国际船舶结构会议论文集.第六机械工业部第七研究院第○二研究所编,1977.
    [24]Wohler A.. Uber die festigkeitversuche mit eisen und stahl. Zeitschrift fur Bauwesen, Vol. Ⅷ, Ⅹ, ⅩⅢ, ⅩⅥ, and ⅩⅩ,1860/70.
    [25]Jordan C. R., Cochran C. S.. In-service performance of structural details. SSC-272,1978.
    [26]Jordan C. R., Cochran C. S.. Further survey of in-service performance of structural details. SSC-294,1980.
    [27]Munse W. H., Wilbur T. W., Tellalian M. L., Nicoll K., Wilson K.. Fatigue characterization of fabricated ship detail for design. SSC-318,1982.
    [28]Petershagen H.. Fatigue problems in ship structures. In:Advance in Marine Structures, Ed. By C. S. Smith and J. D. Clarke, Proceeding of an International Conference,1986, 281-304.
    [29]Stambaugh K. A., Leeson D. H., Lawrence F., Hou C. Y., Grzegorz B.. Reduction of S-N curves for ship structural details. SSC-369,1992.
    [30]Hobbacher A., Haagensen P., etc. Fatigue design of welded joints and components: recommendations of IIW joint working group ⅩⅢ-ⅩⅤ. The International Instigute of Welding, Abington:Abington Publishing,1996.
    [31]Palmgren A.. Die lebanstaver von kugellagern. ZVDI,1924, Vol.68:339.
    [32]Miner M. A.. Cumulative damage in fatigue. Journal of Applied Mechanics,1945,12: A-159.
    [33]Jerome S. P., Dinsenbacher A., Jeffrey E. B.. A method for estimating lifetime loads and fatigue lives for Swath and conventional monohull ships. Naval Engineers Journal, 1983,63:85.
    [34]樊建平,章建军,陈传尧.延性材料损伤模型及其实验验证.华中科技大学学报(自然科学版),2002,Vol.30(1):78-80.
    [35]Manson S. S., Freche J. C., Ensign S. R.. Application of a double linear damage rule to cumulative fatigue. In Fatigue Crack Propagation. Philadelphia:ASTM STP 415,1967, 384-412.
    [36]叶笃毅,王德俊,童小燕,姚磊江.一种基于材料韧性耗散分析的疲劳损伤定量分析方法.实验力学,1999,14(1):80-88.
    [37]Chaboche J.L., Lesne P.M.. A non-linear continuous fatigue damage model. Fatigue & Fracture of Engineering Materials & Structures,1988, Vol.11 (1):1-17.
    [38]Niu X., Li G. X., Lee H.. Hardening law and fatigue damage of a cyclic hardening metal. Engineering fracture mechanics,1987, Vol.26(2):163-170.
    [39]Vedeler G.. To what extrent do brittle fracture and fatigue interest shipbuilders today. Houdremont Lecture, Sveiseteknikk,1962, (3).
    [40]Vasta J., Palermo P. M.. An engineering approach to low-cycle fatigue of ship structures. Trans. SNAME,1965,74:178-215.
    [41]Clarke J. D.. Prediction of fatigue cracking in warship hulls. PRADS'87, Trondheim, Norway,1987,718-728.
    [42]Clarke J. D.. Fatigue crack initiation and propagation in warship hulls. In Smith C S and Dow R S (eds), Advances in Marine Structures. Elsevier Science Publishers Ltd, 1991,42-60.
    [43]Wirsching P. H., Chen Y. N.. Considerations of probability-based fatigue design for marine structures. Marine Structure,1988,1:23-45.
    [44]Kilpatrick I.M.. The fatigue characteristic of submarine structures subjected to external pressure vycling. In:Advance in Marine Structures, Ed. By C. S. Smith and J. D. Clarke, Proceeding of an International Conference,1986,305-324.
    [45]Chen Y. K., Chou J. W., Kumar T. A.. Validation of fatigue life prediction using containership hatch-corner strain measurements. Trans. SNAME,1986,94:255-282.
    [46]Wolfgang F., Hans P.. Application of the cyclic strain approach to the fatigue failure of ship structural details. Journal of the Ship Research,1987,31(3):177-185.
    [47]Bhuyan G., Vosikovsky O.. Prediction of fatigue crack initiation lives for welded plate T-joints based on the local stress-strain approach. International Journal of Fatigue, 1989,11 (3):153-159.
    [48]陈良增,陈孝渝.潜艇结构低周疲劳性能试验研究.舰船科学技术,1991,Vol.2:19-20.
    [49]崔维成,蔡新刚,冷建兴.船舶结构疲劳强度校核研究现状及我国的进展.船舶力学,1998,Vol.4(2):63-81.
    [50]石德新,王晓天,唐立强,耿峰.潜艇结构材料低周疲劳的损伤力学分析.哈尔滨工程大学学报,1999,Vol.20(4):1-7.
    [51]李春林.几种潜艇耐压壳体用钢的低周疲劳性能研究.1999,28-37.
    [52]Rye A.M.. Fatigue damage analysis by use of cyclic strain approach. Ship Technology Research,1996,43:155-163.
    [53]Vasudevan A. K., Sadananda K.. Fatigue crack growth in advanced materials. Oxford UK: Proceedings of the 6th international conference on fatigue and fatigue threshold Vol.1: 473-478.
    [54]王晓天,黄小平,耿峰,石德新.高强度材料402钢的低周疲劳性能实验研究.哈尔滨工程大学学报,2000,Vol.21(3):75-77.
    [55]黎之奇,柳舂图,崔民子,阚常珍.海洋平台用钢的焊接疲劳性能分析.机械强度,2000,Vol.22(4):264-266.
    [56]崔维成,刘涛,祁恩荣,徐向东.散货船疲劳强度校核的确定性方法.船舶力学,2000,Vol.4(1):36-49.
    [57]Urm H. S., Yoo I. S., Heo J. H., et al.. Low cycle fatigue strength assessment for ship structures [A].9th Symposium on Practical Design of Ships and Other Floating Structures, Germany [C],2004:774-781.
    [58]韩芸,崔维成,黄小平,吴有生.大型船舶结构的疲劳强度校核方法[J].中国造船,2007,48(2):60-67.
    [59]Lotsberg I.. Assessment of fatigue capacity in the new bulk carrier and tanker. Marine Structure.2006,19:83-96.
    [60]ABS. Rules for building and classing steel vessels. Pt.5. Sect.2, A2AA. Guide for fatigue strength assessment of Tanker, and 3AA:dto. for bulk carriers, American Bureall of Shipping,1996.
    [61]DNV. Fatigue assessment of ship structures. Tech. Rep. DNVC 93-0432, Det Norske Veritas, 1995.
    [62]GL. Rules for classification and construction. Ⅰ-Ship Technology, Part Ⅰ-Seagoing Ship. Chapter 1-Hull Structures, Section 20 FatigueStrengt, Germanischer Lloyd,1997.
    [63]LR. ShioRight FDA, fatigue design assessment Procedure, Structural detail design guide. Lloy's Register Shipping,1996.
    [64]中国船级社CCS.船体结构疲劳强度指南,2007.
    [65]Fricke W., et al.. Comparative fatigue strength assessment of a structural detail in a containership using various approaches of classification societies. Marine Structures,2002,15(1):1-13.
    [66]IACS. Guidelines for Assessment of the fatigue Design of Ship Structures. Paris La Defence,1998.
    [67]IACS. Development of IACS common rules for the structural design of double skin bulk carriers. Joint Bulker Project Workshop. Humburg,2004.
    [68]IACS. Common structural rules for double hull oil tankers, International Association of Classification Societies, London,2006.
    [69]IACS. Common structural rules for bulk carriers, International Association of Classification Societies, London,2006.
    [70]Yao T.. Hull girder strength. Marine structures,2003,16:1-13.
    [71]郭吕捷,周炳焕.营运船舶总纵剩余强度评估和预报.大连理工大学学报,1998,Vol.38(4):414-418.
    [72]魏东,张圣坤,周继胜.考虑腐蚀与疲劳损伤的船体总纵极限强度与可靠性分析.中国造船,1999,No.147:43-50.
    [73]Paik J. K., Thayamballi A. K.. Ultimate strength of aging ships. Proc. Instn. Mech. Engrs. Journal of Engineering for the Maritime Environment,2002, Vol.216 Part M: 57-77.
    [74]Akpan U.O.,Koko T. S., Ayyub B.,Dunbar T. E..Risk assessment of aging ship hull structures in the presence of corrosion and fatigue. Marine Structures,2002, Vol.15: 211-231.
    [75]王芳,黄小平,崔维成.具有中心穿透裂纹缺陷的矩形板极限拉伸强度分析.中国造船,2006,V01.47(1):12-18.
    [76]Paik J. K.. Ultiamte limit state performance of oil tanker structures designed by IACS common structural rules. Thin-walled Structures,2007, Vol.45:1022-1034.
    [77]Incecik A.. Computation of ultimate strength of locally corroded unstiffened plates under uniaxial compression. Marine Structures,2007, Vol.20:100-114.
    [78]Hussein A. W., Soares C. G.. Reliability and residual strength of double hull tankers designed according to the new IACS common structural rules. Ocean Engineering,2009, Vol.36 (17-18):1416-1459.
    [79]Paik J. K.. Residual ultimate strength of steel plates with longitudinal cracks under axial compression-nonlinear finite element method investigations. Ocean Engineering, 2009, Vol.36:266-276.
    [80]王东海,庄惠忠,任慧龙,戴仰山.船体结构在非线性波浪载荷作用下疲劳累积损伤计算.中国造船,1999,144:59-67.
    [81]Kazuo T., Takeshi H., Kuniaki M.. A prediction model for extremely low cycle fatigue strength of structural steel. International Journal of fatigue,2007,29:887-896.
    [82]Sarkani S., Michaelov G., Kihl D.P.. Stochastic fatigue damage accumulation in a T-welded joint accounting for the residual stress fields. International journal of fatigue,2001, Vol.23:71-78.
    [83]张健,卞鸣煜,冷建兴,孙培林.T型焊接接头疲劳性能研究.船舶工程,2009,V01.31(2):60-63.
    [84]郭爱宾,邵文蛟.船舶结构疲劳强度分析中的几个问题.中国造船,2000,41(1):52-59.
    [85]余小川,唐永生,李润培,杜忠仁.8530TEtj集装箱船船舯上甲板角隅疲劳寿命预估.中国造船,2006,47(4):101-1055.
    [86]张国栋,苏彬,王泓,钟斌,许超.一种确定低周应变疲劳应变一寿命曲线的方法.航空动力学报,2006,V01.21(5):867-873.
    [87]Murakami Y., Miller K.J.. What is fatigue damage? A view point from the observation of low cycle fatigue process. International journal of fatigue,2005, Vol.27: 991-1005.
    [88]葛菲,戴仰山,张海彬,戴愚志.船体总纵弯曲时计及多种应力组合的累积损伤简化计算方法.哈尔滨工程大学学报,2003,V01.24(2):123-127.
    [89]张圣坤,唐文勇.载荷的概率组合及其在船舶工程中的应用.上海交通大学学报,1998,Vol.32(11):121-125.
    [90]任慧龙,宋竞正,戴仰山.关于船舶规范中计算载荷的分析.中国造船,1995,Vol.129(2):32-40.
    [91]纪卓尚.船舶制造工艺力学.北京:国防工业出版社,2005.
    [92]Rahman M. K.. Ultimate strength estimation of ships' transverse frames by incremental elastic-plastic finite element analysis. Marine Structures,1998, Vol.11:291-317.
    [93]王军.损伤力学的理论及应用.北京:科学出版社,1997.
    [94]Krajcinovic D.. Continuum damage mechanics theory and applications. Wien:Springer-Verlag,1987.
    [95]施明泽,黄志强.关于低周疲劳损伤演变规律的探讨.浙江大学学报,1993,Vol.27(2):208-213.
    [96]Xue L.. A unified expression for low cycle fatigue and extremely low cycle fatigue and its implication for monotonic loading. International journal of fatigue,2008, Vol.30:1691-1698.
    [97]陈超核.船体结构疲劳强度分析直接计算法.暨南大学学报(自然科学版),2005,Vol.26(1):141-144.
    [98]机械设计手册编委会.机械设计手册(疲劳强度设计分册).北京:机械工业出版社,2007.
    [99]Castiglioni C. A., Pucinotti R.. Failure criteria and cumulative damage models for steel components under cyclic loading. Journal of construction steel research,2009, Vol.65:751-765.
    [100]Paris P., Erdogan F..A critical analysis of crack propagation laws. Journal of Basic Engineering, Series D,1963,.85D (4):528-534.
    [101]李庆芬,胡胜海,朱世范.断裂力学及其应用.哈尔滨:哈尔滨工程大学出版社,1998.
    [102]Kachanov L. M.. Time of the rupture process under creep condition. IZV. Akad Nauk. U. S. S. ROtd. Tekhn.1958, Nauk 8,26-31.
    [103]Lemaitre J.. Evaluation of dissipation and damage in metals submitted to dynamic loading. Proc. ICM-1, Kyoto, Japan,1971
    [104]Murakami S., Ohno N.. A continuum theory of creep and creep damage. Proc.3rd IUTAM symposium on creep in structures. A.R.S. Ponter and D. R. Hayhurst Springer. Berlin, 422-444,1981.
    [105]Lemaitre J..预估结构中的塑性破坏或蠕变疲劳破坏的损伤模型,余天庆译.固体力学学报,1981,No.4.
    [106]Lemaitre J., Chaboche J.L.. A nonlinear model of creep-fatigue damage accumulation and interaction. Proc. TUTAM symposium of mechanics of visco-elasticity media and bodies. Gotenbourg, Sweden, Springer-Verlag,1974.
    [107]Krajcinovic D., Lemaitre J.. Continuum damage mechanics:theory and applications. Springer Verlag New York-Wien,1987.
    [108]刘建伟.疲劳累积损伤理论发展概述.山西建筑,2008,Vol.34(23):76—78.
    [109]余天庆,钱济成.损伤理论及其应用.北京:国防工业出版社,1993.
    [110]Lemaitre J., Chaboche J. L.. Mechanics of solid materials. Cambridge University Press, 1994.
    [111]楼志文.损伤力学基础.西安:西安交通大学出版社,1991.
    [112]李兆霞.损伤力学及其应用.北京:科学出版社,2002.
    [113]李灏.损伤力学基础[M].山东:山东科学技术出版社,1992.
    [114]Seweryn A., Bucyznski A., Szusta J.. Damage accumulation model for low-cycle fatigue. International Journal of fatigue,2008,30:756-765.
    [115]崔天燮,郑修麟.应力比对焊接接头疲劳寿命的影响.抚顺石油学院学报,1988,1,81-85.
    [116]管德清,汪广海.一般应力比时焊接节点的疲劳强度估算方法.应用力学学报,1997,Vol.14(1):54-59.
    [117]Cui W.C., Mansour A. E.. Effects of welding distortions and residual stresses on the ultimate strength of long rectangular plates under uniaxial compression, Marine Structures,1998, Vol. (11):251-269.
    [118]Bauchinger, J.. Ueber die veranderungen der elastizitatsgrenze erwarman abkuhlen und durch oftmals wiederholte belastung, Mitt:Mech- Tech Lab., ⅩⅢ Munchen,1886.
    [119]Paik J. K., Ge W., Thayamballi A. K., Lee J. M., Park Y. I., Paik P. Josko.. Time-dependent risk assessment of aging ships accounting for general/pit corrosion, fatigue cracking and local denting damage. SNAME 2003 Annual Meeting, San Francisco, CA, ETATS-UNIS, 2003.
    [120]胡勇,崔维成.无加筋平板极限强度的简化解析法与规范公式的比较,中国造船,2003,Vol.44(2):8-16.
    [121]Fujikubo M., Yao T., Khedmati M. R., Harada M., Yanagihara D.. Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure part 1:continuous plate. Marine Structures,2005, Vol. (18):383-410.
    [122]陈铁云,王德禹,黄震球.船舶结构终极承载能力.上海:上海交通大学出版社,2005.
    [123]田雨,纪卓尚.低周疲劳损伤对老化船舶结构剩余极限强度的影响.中国造船,2010,Vol.51(1):115-121.
    [124]贡金鑫,王海超,赵国藩.结构疲劳累积损伤与极限承载能力可靠度.大连理工大学学报,2002,42(6):714-718.
    [125]Clarkson J.. Tests of flat plated grillages under uniform pressure. Transaction of RINA,105,1963,467-484.
    [126]ANSYS. User's manual (version 7.0). ANSYS Inc.,2003.
    [127]Paik J. K., Kim B. J., Seo J. Kwan.. Methods for ultimate limit state assessment of ships and ship-shaped offshore structures:part I-unstiffened plates. Ocean Engineering, 2008, Vol. (35):261-270.
    [128]徐向东,崔维成.加筋板格屈曲及极限强度分析.中国造船,1999,144(1):69-76.
    [129]Smith C.. S., Davidson P. C., Chapman J. C., Dowling P. J.. Strength and stiffness of ships'plating under in-plane compression and tension. RINA transactions,1988, Vol.130:277-296.
    [130]Paik J. K., Kim B. J., Seo J. Kwan.. Methods for ultimate limit state assessment of ships and ship-shaped offshore structures:part Ⅱ-stiffened panels. Ocean Engineering, 2008, Vol. (35):271-280.
    [131]Fujikubo M., Yao T., Khedmati M. R., Harada M., Yanagihara D.. Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure part 2:continuous stiffened panel. Marine Structures,2005, Vol. (18):411-427.
    [132]张瑞友.船体结构中疲劳裂纹的分析与修复.中国修船,2003,第6期,21-23.
    [133]Yao T.. Ultimate longitudinal strength of ship hull girder:historical review and state of the art, International journal of polar Engineering, Vol.9(1):1-9.
    [134]Smith C. S.. Influence of local compressive failure on ultimate longitudinal strength of a ship's hull. Tokyo:The Society of Naval Architects of Japan,1977,72-79.
    [135]Adamchak J.C.. An approximate method for estimating the collapse of a ship's hull in preliminary design. New York:The society of naval architectures and marine engineers,1984,37-61.
    [136]Yao T., Nikolov P. I.. Progressive collapse analysis of a ship's hull under longitudinal bending. Journal of the society of naval architects of Japan, 1991,170:449-461.
    [137]Rahman M. K., Chowhury M.. Estimation of ultimate longitudinal bending moment of ships and box girders. Journal of ship research,1996,Vol.40(3):244-257.
    [138]Caldwell J. B.. Ultimate longitudinal strength. Trans RINA,107:411-430.
    [139]Paik J. K., Mansour A. E.. A simple formulation for predicting the ultimate strength of ships. Journal of marineScience and Technology,1995,1:52-62.
    [140]Kattan P.I.,Voyiadjis G.Z.. Damage mechanics with finite element:practical application with computer tools. New York:Springer-Verlag Berlin Heidelberg,2002.
    [141]Paik J. K., Kim B. J., Seo J. Kwan.. Methods for ultimate limit state assessment of ships and ship-shaped offshore structures:Part Ⅲ-hull girder. Ocean Engineering,2008, Vol. (35):281-286.
    [142]郭吕捷,唐翰岫,周炳焕.受损船体极限强度分析与可靠性评估.中国造船,1998,No.143:49-56.
    [143]Dowling P. J., Moolani F. M.. The effect of shear lag on the ultimate strength of box girder. London:Proceedings of international conference on steel structures, 1976,108-149.
    [144]Nishihara S.. Analysis of ultimate strength of stiffened rectangular plate (4th report)-on the ultimate bending moment of ship girders. Journal of the Society of naval architects of Japan,1983,154:367-375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700